Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Gavin Clowry

    Abnormal excitability in cortical networks has been reported in patients and animal models of Alzheimer's disease (AD), and other neurodegenerative conditions. Whether hyperexcitability is a core feature of alpha(α)-synucleinopathies,... more
    Abnormal excitability in cortical networks has been reported in patients and animal models of Alzheimer's disease (AD), and other neurodegenerative conditions. Whether hyperexcitability is a core feature of alpha(α)-synucleinopathies, including dementia with Lewy bodies (DLB) is unclear. To assess this, we used two murine models of DLB that express either human mutant α-synuclein (α-syn) the hA30P, or human wild-type α-syn (hWT-α-syn) mice. We observed network hyperexcitability in vitro in young (2-5 months), pre-symptomatic transgenic α-syn mice. Interictal discharges (IIDs) were seen in the extracellular local field potential (LFP) in the hippocampus in hA30P and hWT-α-syn mice following kainate application, while only gamma frequency oscillations occurred in control mice. In addition, the concentration of the GABAA receptor antagonist (gabazine) needed to evoke IIDs was lower in slices from hA30P mice compared to control mice. hA30P mice also showed increased locomotor activity in the open field test compared to control mice. Intracellular recordings from CA3 pyramidal cells showed a more depolarised resting membrane potential in hA30P mice. Quadruple immunohistochemistry for human α-syn, and the mitochondrial markers, porin and the complex IV enzyme cytochrome c oxidase subunit 1 (COX1) in parvalbumin (PV+)-expressing interneurons showed that 25% of PV+ cells contained human α-syn in hA30P mice. While there was no change in PV expression, COX1 expression was significantly increased in PV+ cells in hA30P mice, perhaps reflecting a compensatory change to support PV interneuron activity. Our findings suggest that hippocampal network hyperexcitability may be an important early consequence of α-syn-mediated impairment of neuronal/synaptic function, which occurs without any overt loss of PV interneurons. The therapeutic benefit of targeting network excitability early in the disease stage should be explored with respect to α-synucleinopathies such as DLB.
    The current model, based on rodent data, proposes that thalamocortical afferents (TCA) innervate the subplate towards the end of cortical neurogenesis. This implies that the laminar identity of cortical neurons is specified by intrinsic... more
    The current model, based on rodent data, proposes that thalamocortical afferents (TCA) innervate the subplate towards the end of cortical neurogenesis. This implies that the laminar identity of cortical neurons is specified by intrinsic instructions rather than information of thalamic origin. In order to determine whether this mechanism is conserved in the primates, we examined the growth of thalamocortical (TCA) and corticofugal afferents in early human and monkey fetal development. In the human, TCA, identified by secretagogin, calbindin, and ROBO1 immunoreactivity, were observed in the internal capsule of the ventral telencephalon as early as 7–7.5 PCW, crossing the pallial/subpallial boundary (PSB) by 8 PCW before the calretinin immunoreactive corticofugal fibers do. Furthermore, TCA were observed to be passing through the intermediate zone and innervating the presubplate of the dorsolateral cortex, and already by 10–12 PCW TCAs were occupying much of the cortex. Observations at...
    From studies of subhuman primates it has been assumed that functional corticospinal innervation occurs post-natally in man. We report a post-mortem morphological study of human spinal cord, and neurophysiological and behavioural studies... more
    From studies of subhuman primates it has been assumed that functional corticospinal innervation occurs post-natally in man. We report a post-mortem morphological study of human spinal cord, and neurophysiological and behavioural studies in preterm and term neonates and ...
    While integrated delivery of anatomy and radiology can support undergraduate anatomical education, the interpretation of complex three-dimensional spatial relationships in cross-sectional and radiological images is likely to be demanding... more
    While integrated delivery of anatomy and radiology can support undergraduate anatomical education, the interpretation of complex three-dimensional spatial relationships in cross-sectional and radiological images is likely to be demanding for novices. Due to the value of technology-enhanced and multimodal strategies, it was hypothesized that simultaneous digital and physical learning could enhance student understanding of cross-sectional anatomy. A novel learning approach introduced at a United Kingdom university medical school combined visualization table-based thoracic cross-sections and digital models with a three-dimensional printed heart. A mixed-method experimental and survey approach investigated student perceptions of challenging anatomical areas and compared the multimodal intervention to a two-dimensional cross-section control. Analysis of seven-point Likert-type responses of new medical students (n = 319) found that clinical imaging (mean 5.64 SD ±1.20) was significantly m...
    Several strategies have been recently introduced to improve the practicality of multiple immunolabelling and RNA in situ hybridization methods. We present a modified hybrid protocol of recently described complex detection strategies: (1)... more
    Several strategies have been recently introduced to improve the practicality of multiple immunolabelling and RNA in situ hybridization methods. We present a modified hybrid protocol of recently described complex detection strategies: (1) elution of antibodies prior to second round of staining (2) use of integrated polymers of HRP with secondary antibodies, and (3) tyramide signal amplification of multiple immunofluorescence labelling, to achieve a high sensitivity sequential multiple labeling using antibodies from the same species. A modified protocol of the novel RNAscope in situ hybridization method, including coupling with immunofluorescence on sections of early human fetal brain, has also been developed. These two techniques, when properly optimized, were highly compatible with routine formaldehyde-fixed paraffin-embedded tissue that preserves the best morphological characteristics of delicate fetal brain samples, allowing high power signal amplification for detection of protein...
    21 The development of the corticospinal tract in humans JANET A EYRE, SIMON MILLER, GAVIN J CLOWRY Introduction Evidence of corticospinal innervation in fetal life in humans Evidence for the pre-natal establishment of monosynaptic... more
    21 The development of the corticospinal tract in humans JANET A EYRE, SIMON MILLER, GAVIN J CLOWRY Introduction Evidence of corticospinal innervation in fetal life in humans Evidence for the pre-natal establishment of monosynaptic corticospinal projections to ...
    Electrical neurostimulation is effective in treating neurological disorders, but associated recording artefacts generally limit applications to ‘open-loop’ stimuli. Since light does not prevent concurrent electrical recordings,... more
    Electrical neurostimulation is effective in treating neurological disorders, but associated recording artefacts generally limit applications to ‘open-loop’ stimuli. Since light does not prevent concurrent electrical recordings, optogenetics enables real-time, continuous ‘closed-loop’ control of brain activity. Here we show that closed-loop optogenetic stimulation with excitatory opsins (CLOSe) affords precise manipulation of neural dynamics, both in vitro, in brain slices from transgenic mice, and in vivo, with anesthetised monkeys. We demonstrate the generation of oscillations in quiescent tissue, enhancement or suppression of endogenous patterns in active tissue, and modulation of seizure-like bursts elicited by 4-aminopyridine. New network properties, emergent under CLOSe, depended on the phase-shift imposed between neural activity and optical stimulation, and could be modelled with a nonlinear dynamical system. In particular, CLOSe could stabilise or destabilise limit cycles ass...
    Nephronophthisis-related ciliopathies (NPHP-RC) are a group of inherited genetic disorders that share a defect in the formation, maintenance or functioning of the primary cilium complex, causing progressive kidney failure and other... more
    Nephronophthisis-related ciliopathies (NPHP-RC) are a group of inherited genetic disorders that share a defect in the formation, maintenance or functioning of the primary cilium complex, causing progressive kidney failure and other clinical manifestations. Mutations in centrosomal protein 164 kDa (CEP164), also known as NPHP15, have been identified as a cause of NPHP-RC. Here we have utilised the MRC-Wellcome Trust Human Developmental Biology Resource (HDBR) to perform immunohistochemistry studies on human embryonic and foetal tissues to determine the expression patterns of CEP164 during development. Notably expression is widespread, yet defined, in multiple organs including the kidney, retina and cerebellum. Murine studies demonstrated an almost identical Cep164 expression pattern. Taken together, this data supports conserved roles for CEP164 throughout the development of numerous organs, which we suggest accounts for the multi-system disease phenotype of CEP164 mediated NPHP-RC.
    Intracellular accumulation of alpha-synuclein (α-syn) is a key pathological process evident in Lewy body dementias (LBDs), including Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). LBD results in marked... more
    Intracellular accumulation of alpha-synuclein (α-syn) is a key pathological process evident in Lewy body dementias (LBDs), including Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). LBD results in marked cognitive impairments and changes in cortical networks. To assess the impact of abnormal α-syn expression on cortical network oscillations relevant to cognitive function, we studied changes in fast beta/gamma network oscillations in the hippocampus in a mouse line that over-expresses human mutant α-syn (A30P). We found an age-dependent reduction in the power of the gamma (20-80 Hz) frequency oscillations in slices taken from mice aged 9-16 months (9+A30P), that was not present in either young 2-6 months old (2+A30P) mice, or in control mice at either age. The mitochondrial blockers potassium cyanide and rotenone both reduced network oscillations in a concentration-dependent manner in aged A30P mice and aged control mice but slices from A30P mice showed a g...
    SLM2 and Sam68 are splicing regulator paralogs that usually overlap in function, yet only SLM2 and not Sam68 controls the Neurexin2 AS4 exon important for brain function. Herein we find that SLM2 and Sam68 similarly bind to Neurexin2... more
    SLM2 and Sam68 are splicing regulator paralogs that usually overlap in function, yet only SLM2 and not Sam68 controls the Neurexin2 AS4 exon important for brain function. Herein we find that SLM2 and Sam68 similarly bind to Neurexin2 pre-mRNA, both within the mouse cortex and in vitro. Protein domain-swap experiments identify a region including the STAR domain that differentiates SLM2 and Sam68 activity in splicing target selection, and confirm that this is not established via the variant amino acids involved in RNA contact. However, far fewer SLM2 and Sam68 RNA binding sites flank the Neurexin2 AS4 exon, compared with those flanking the Neurexin1 and Neurexin3 AS4 exons under joint control by both Sam68 and SLM2. Doubling binding site numbers switched paralog sensitivity, by placing the Neurexin2 AS4 exon under joint splicing control by both Sam68 and SLM2. Our data support a model where the density of shared RNA binding sites around a target exon, rather than different paralog-spe...
    The brain is made up of trillions of synaptic connections that together form neural networks needed for normal brain function and behavior. SLM2 is a member of a conserved family of RNA binding proteins, including Sam68 and SLM1, that... more
    The brain is made up of trillions of synaptic connections that together form neural networks needed for normal brain function and behavior. SLM2 is a member of a conserved family of RNA binding proteins, including Sam68 and SLM1, that control splicing of Neurexin1-3 pre-mRNAs. Whether SLM2 affects neural network activity is unknown. Here, we find that SLM2 levels are maintained by a homeostatic feedback control pathway that predates the divergence of SLM2 and Sam68. SLM2 also controls the splicing of Tomosyn2, LysoPLD/ATX, Dgkb, Kif21a, and Cask, each of which are important for synapse function. Cortical neural network activity dependent on synaptic connections between SLM2-expressing-pyramidal neurons and interneurons is decreased in Slm2-null mice. Additionally, these mice are anxious and have a decreased ability to recognize novel objects. Our data reveal a pathway of SLM2 homeostatic auto-regulation controlling brain network activity and behavior.
    Rodents and primates both show considerable variation in the overall size, the radial and tangential dimensions, folding and subdivisions into distinct areas of their cerebral cortex. Our current understanding of brain development is... more
    Rodents and primates both show considerable variation in the overall size, the radial and tangential dimensions, folding and subdivisions into distinct areas of their cerebral cortex. Our current understanding of brain development is based on a handful of model systems. A detailed comparative analysis of the cellular and molecular mechanisms that regulate neural progenitor production, cell migration, and circuit assembly can provide much needed insights into the working of neocortical evolution. From the limited comparative data currently available, it is apparent that the emergence and variation of the neuronal progenitor cells have led to the production of increased neuronal populations and the evolution of the cortex. Further diversification and compartmentalization of the germinal zone together with changing proportions of radial glia in the ventricular zone and various intermediate progenitors in the subventricular zone may have been the driving force behind increased cell numbers in larger brains both in rodents and primates. Radial and tangential migratory patterns are both present in rodents and primates, but in different proportions. There are apparent differences between mouse and human in the generation and elaboration of the interneuronal subtypes and also in gene expression patterns associated with the appearance of distinct cortical areas. The increased cortical dimensions and the formation of a more elaborate cortical architecture in primates require a larger and more compartmentalized transient subplate zone during development. More comparative analysis in rodent and primate species with large, small, and smooth and folded brains is needed to reveal the biological significance of the alterations in these cortical developmental programs.
    Micromotion between the brain and implanted electrodes is a major contributor to the failure of invasive microelectrodes. Movements of the electrode tip cause recording instabilities while spike amplitudes decline over the weeks/months... more
    Micromotion between the brain and implanted electrodes is a major contributor to the failure of invasive microelectrodes. Movements of the electrode tip cause recording instabilities while spike amplitudes decline over the weeks/months post-implantation due to glial cell activation caused by sustained mechanical trauma. We compared the glial response over a 26-96 week period following implantation in the rabbit cortex of microwires and a novel flexible electrode. Horizontal sections were used to obtain a depth profile of the radial distribution of microglia, astrocytes and neurofilament. We found that the flexible electrode was associated with decreased gliosis compared to the microwires over these long indwelling periods. This was in part due to a decrease in overall microgliosis and enhanced neuronal density around the flexible probe, especially at longer periods of implantation.
    ABSTRACT Micromotion between the brain and implanted electrodes is a major contributor to the failure of invasive Brain-Machine Interfaces. Movements of the electrode tip cause recording instabilities while spike amplitudes decline over... more
    ABSTRACT Micromotion between the brain and implanted electrodes is a major contributor to the failure of invasive Brain-Machine Interfaces. Movements of the electrode tip cause recording instabilities while spike amplitudes decline over the weeks/months post-implantation due to glial cell activation caused by sustained mechanical trauma. We have designed a sinusoidal probe in order to reduce movement of the recording tip relative to the surrounding neural tissue. The probe was microfabricated from flexible materials and incorporated a sinusoidal shaft to minimize tethering forces and a 3D spheroid tip to anchor the recording site within the brain. Compared to standard microwire electrodes, the signal-to-noise ratio and local field potential power of sinusoidal probe recordings from rabbits was more stable across recording periods up to 678 days. Histological quantification of microglia and astrocytes showed reduced neuronal tissue damage especially for the tip region between 6-24 months post-implantation. We suggest that the micromotion-reducing measures incorporated into our design decreased the magnitude of gliosis, resulting in enhanced longevity of recording.
    Periventricular white matter injury (PVWMI) in premature babies is a major cause of cerebral palsy. Excitotoxic ibotenic acid (IBA) causes PVWMI-like lesions when injected into the white matter of neonatal rodents, however, whether it... more
    Periventricular white matter injury (PVWMI) in premature babies is a major cause of cerebral palsy. Excitotoxic ibotenic acid (IBA) causes PVWMI-like lesions when injected into the white matter of neonatal rodents, however, whether it causes sensorimotor behavioural deficits that could also model cerebral palsy has not been tested. We compared IBA injection at postnatal day 7 (P7) when rodent development is equivalent to the stage of human corticospinal maturation vulnerable to PVWMI and P5 when rodent oligodendrocyte precursor cells are more vulnerable to excitotoxicity. IBA or saline were injected bilaterally into white matter between the external angle of the lateral ventricle and the forelimb sensorimotor cortex. By P14, IBA injection at P5 caused localised hypomyelination and cyst formation in this region, although cortical grey matter remained intact. Treatment at P7 produced less hypomyelination, but more widespread loss of neurofilament immunoreactivity. From P28 onwards, corticospinal function was assessed by testing reaching and retrieval of food rewards. All rats improved with age, but there was a consistent and significant difference between IBA treated rats (P5 and P7) and controls. Histological examination following testing revealed no difference in forebrain cross-sectional area but that the lateral ventricles were significantly larger in IBA treated animals than controls, especially at P7. P5 treatment caused a significantly reduced density of anti-myelin immunoreactivity in the corpus callosum compared to the anterior commissure that was not consistently seen following P7 treatment. We conclude that IBA induced lesions provide a satisfactory model of PVWMI, particularly when made at P5.
    Rodents and primates both show considerable variation in the overall size, the radial and tangential dimensions, folding and subdivisions into distinct areas of their cerebral cortex. Our current understanding of brain development is... more
    Rodents and primates both show considerable variation in the overall size, the radial and tangential dimensions, folding and subdivisions into distinct areas of their cerebral cortex. Our current understanding of brain development is based on a handful of model systems. A detailed comparative analysis of the cellular and molecular mechanisms that regulate neural progenitor production, cell migration, and circuit assembly can provide much needed insights into the working of neocortical evolution. From the limited comparative data currently available, it is apparent that the emergence and variation of the neuronal progenitor cells have led to the production of increased neuronal populations and the evolution of the cortex. Further diversification and compartmentalization of the germinal zone together with changing proportions of radial glia in the ventricular zone and various intermediate progenitors in the subventricular zone may have been the driving force behind increased cell numbers in larger brains both in rodents and primates. Radial and tangential migratory patterns are both present in rodents and primates, but in different proportions. There are apparent differences between mouse and human in the generation and elaboration of the interneuronal subtypes and also in gene expression patterns associated with the appearance of distinct cortical areas. The increased cortical dimensions and the formation of a more elaborate cortical architecture in primates require a larger and more compartmentalized transient subplate zone during development. More comparative analysis in rodent and primate species with large, small, and smooth and folded brains is needed to reveal the biological significance of the alterations in these cortical developmental programs.
    The RNA binding protein T-STAR was created following a gene triplication 520-610 million years ago, which also produced its two parologs Sam68 and SLM-1. Here we have created a T-STAR null mouse to identify the endogenous functions of... more
    The RNA binding protein T-STAR was created following a gene triplication 520-610 million years ago, which also produced its two parologs Sam68 and SLM-1. Here we have created a T-STAR null mouse to identify the endogenous functions of this RNA binding protein. Mice null for T-STAR developed normally and were fertile, surprisingly, given the high expression of T-STAR in the testis and the brain, and the known infertility and pleiotropic defects of Sam68 null mice. Using a transcriptome-wide search for splicing targets in the adult brain, we identified T-STAR protein as a potent splicing repressor of the alternatively spliced segment 4 (AS4) exons from each of the Neurexin1-3 genes, and exon 23 of the Stxbp5l gene. T-STAR protein was most highly concentrated in forebrain-derived structures like the hippocampus, which also showed maximal Neurexin1-3 AS4 splicing repression. In the absence of endogenous T-STAR protein, Nrxn1-3 AS4 splicing repression dramatically decreased, despite phys...
    ABSTRACT There has undoubtedly been a quantum leap forward in the evolution of cognitive processing in the human brain that has uniquely granted our species the use of syntactically complex language, however, the building blocks are... more
    ABSTRACT There has undoubtedly been a quantum leap forward in the evolution of cognitive processing in the human brain that has uniquely granted our species the use of syntactically complex language, however, the building blocks are present earlier in evolution suggesting that language may derive from our genes, and thus brains have evolved to embody a knowledge of Universal Grammar. Gene expression changes in development are the most likely to cause such macro-evolutionary alterations in neural circuits, and in this review I explore four areas of development predicted to be of importance. Firstly, there has been an increase in size and gyrification of the cerebral cortex. Secondly, there is increased connectivity between functional areas of the cortex, an expanded role for the subplate in guiding this process, and changes in synapse formation. Thirdly, the role of GABAergic interneurons in modulating functional connectivity has been enhanced and an elaboration in the developmental origins of interneurons may have led to an increased repertoire of functional subtypes. Finally, the development of lateralisation of language function is also briefly considered.
    Interventions to treat cerebral palsy should be initiated as soon as possible in order to restore the nervous system to the correct developmental trajectory. One drawback to this approach is that interventions have to undergo... more
    Interventions to treat cerebral palsy should be initiated as soon as possible in order to restore the nervous system to the correct developmental trajectory. One drawback to this approach is that interventions have to undergo exceptionally rigorous assessment for both safety and efficacy prior to use in infants. Part of this process should involve research using animals but how good are our animal models? Part of the problem is that cerebral palsy is an umbrella term that covers a number of conditions. There are also many causal pathways to cerebral palsy, such as periventricular white matter injury in premature babies, perinatal infarcts of the middle cerebral artery, or generalized anoxia at the time of birth, indeed multiple causes, including intra-uterine infection or a genetic predisposition to infarction, may need to interact to produce a clinically significant injury. In this review, we consider which animal models best reproduce certain aspects of the condition, and the extent to which the multifactorial nature of cerebral palsy has been modeled. The degree to which the corticospinal system of various animal models human corticospinal system function and development is also explored. Where attempts have already been made to test early intervention in animal models, the outcomes are evaluated in light of the suitability of the model.
    Human beings have considerably expanded cognitive abilities compared with all other species and they also have a relatively larger cerebral cortex compared with their body size. But is a bigger brain the only reason for higher cognition... more
    Human beings have considerably expanded cognitive abilities compared with all other species and they also have a relatively larger cerebral cortex compared with their body size. But is a bigger brain the only reason for higher cognition or have other features evolved in parallel? Humans have more and different types of GABAergic interneurons, found in different places, than our model species. Studies are beginning to show differences in function. Is this expanded repertoire of functional types matched by an evolution of their developmental origins? Recent studies support the idea that generation of interneurons in the ventral telencephalon may be more complicated in primates, which have evolved a large and complex outer subventricular zone in the ganglionic eminences. In addition, proportionally more interneurons appear to be produced in the caudal ganglionic eminence, the majority of which populate the superficial layers of the cortex. Whether or not the cortical proliferative zones are a source of interneurogenesis, and to what extent and of what significance, is a contentious issue. As there is growing evidence that conditions such as autism, schizophrenia and congenital epilepsy may have developmental origins in the failure of interneuron production and migration, it is important we understand fully the similarities and differences between human development and our animal models.
    Research Interests:
    Research Interests:
    The membrane-associated protein gephyrin can form part of the glycine receptor complex at inhibitory synapses. This study provides evidence for gephyrin localisation in the developing axons of the rat brain and spinal cord, with... more
    The membrane-associated protein gephyrin can form part of the glycine receptor complex at inhibitory synapses. This study provides evidence for gephyrin localisation in the developing axons of the rat brain and spinal cord, with particular reference to the corticospinal tract. Using a well-characterised monoclonal antibody (MAb 7a) gephyrin-like immunoreactivity was found expressed by growing axons, disappearing as these axons became myelinated. Immunoelectron microscopy localised the antigen to the interior of small, unmyelinated axons in the dorsal funiculus of young rats. Western blot analysis of cervical spinal cord from different post-natal ages only detected one immunoreactive band at ages when immunohistochemistry revealed gephyrin-like immunoreactivity in both the grey matter and corticospinal tract. Furthermore, the molecular weight of this band corresponded to that of gephyrin, suggesting it is present both at synapses and in axons. The known tubulin binding ability of the gephyrin may have a role in stabilisation of microtubules in growing axons.
    Research Interests:
    ABSTRACT Solid grafts of E12 embryonic spinal ventral horn were transplanted into motoneuron-depleted adult lumbar spinal cord in the rat. A muscle was implanted parallel to the vertebral column with its nerve inserted into the lumbar... more
    ABSTRACT Solid grafts of E12 embryonic spinal ventral horn were transplanted into motoneuron-depleted adult lumbar spinal cord in the rat. A muscle was implanted parallel to the vertebral column with its nerve inserted into the lumbar cord at the site of transplantation so as to provide a target for innervation by the grafted neurons. Previous retrograde labelling studies have shown that modest numbers of grafted motoneuron-like cells participate in the muscle's reinnervation and these are often found outside the graft within the host spinal cord. However, Nissl stained sections show that larger numbers of neurons survive within tissue recognisable as being of graft origin. In this study we have examined the expression of acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) by neurons within the graft. These enzymes are involved in cholinergic neurotransmission and are characteristic of motoneurons. Thirty-four to seventy days following transplantation the grafts contained numerous neurons with acetylcholinesterase (AChE) activity. Different patterns of AChE staining were observed which probably reflected the degree of differentiation and maturation within the graft. AChE positive neurons were found in isolation or in groups resembling developing motor pools. Most of the AChE-positive neurons appeared immature with scant cytoplasm. However, neurons could be found which appeared relatively mature with a regularly shaped nucleus, prominent nucleolus and Nissl bodies. The grafts contained few AChE-positive axons and no dense plexuses of varicose fibres around the neurons such as are found around motoneurons in the mature ventral horn. Comparisons between the size of AChE-positive neurons in the graft and the size of AChE-positive neurons in the developing ventral horn found that the size of grafted neurons to be intermediate between the sizes of spinal motoneurons at E19 and P0. Far fewer grafted neurons were found to be immunoreactive for choline acetyltransferase (ChAT) than histochemically reactive for AChE. This was consistent with our findings in the spinal cord during normal development where we found that fixation and staining procedures which labelled adult motoneurons failed to reliably demonstrate ChAT immunoreactivety in normal motoneurons prenatally, although AChE histochemical reactivity could be demonstrated as early as E16. We conclude that the grafts contain numbers of immature motoneurons which fail to proceed beyond a certain stage of development, perhaps because of a failure to form appropriate efferent and afferent connections.
    Research Interests:
    Degenerative motoneurone diseases, whether in humans, animals, or transgenic mouse models, do not affect all types of motoneurone to the same degree. Understanding the relative differences in vulnerability of certain motor pools may be... more
    Degenerative motoneurone diseases, whether in humans, animals, or transgenic mouse models, do not affect all types of motoneurone to the same degree. Understanding the relative differences in vulnerability of certain motor pools may be the key to developing therapies. Expression of calbindin (CB) and parvalbumin (PV) immunoreactivity, which are potentially neuroprotective calcium-binding proteins, and NADPH-diaphorase (NADPH-d) histochemical reactivity, a marker for neurodegeneration, was studied in brainstem sections from mutant wobbler mice and their normal littermates during the motoneurone degeneration phase (3-8 weeks of age). The motor trigeminal and facial nuclei reacted in a manner previously observed in spinal somatic motoneurones in the wobbler. Many motoneurones expressed moderate NADPH-d reactivity, correlated with the appearance of vacuolated motoneurones in Nissl-stained sections. This was not observed in littermate controls. Motoneurone counts from Nissl-stained sections from 14-month-old wobblers and littermates revealed significantly fewer (approximately 27%) motoneurones in the trigeminal nucleus of wobblers. In contrast, the wobbler hypoglossal nucleus contained neither vacuolated nor NADPH-d reactive motoneurones. However, expression of CB immunoreactivity by the majority of wobbler hypoglossal motoneurones was observed but not in littermate controls or in any other motor nucleus. Counts in older animals showed a smaller but still significant difference in motoneurone number between wobblers and controls (approximately 9% reduction). Finally, the wobbler abducens nucleus displayed neither vacuolated neurones, nor NADPH-d reactivity nor CB immunoreactivity. Motor nuclei innervating extraocular muscles appear to be protected in many forms of motoneurone disease in man and other species. However, there were still markedly fewer abducens motoneurones in the old wobblers compared to controls (approximately 29% reduction). Sparing of oculomotor neurones in other diseases has been attributed to their relatively high PV expression, which we also observed in the abducens nucleus of both wobblers and littermates, and to a lesser extent in the other motor nuclei too. In conclusion, our results suggest that, in the wobbler mouse, motoneurone degeneration may occur without overt signs such as cell body vacuolation and NADPH-d expression. Induced CB expression may be neuroprotective but that constitutive expression of PV may not.
    Research Interests:

    And 46 more