Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Unfolded differential decay rates of four kinematic variables fully describing the $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decay in the $B$-meson rest frame are presented. Numbers taken from a YODA file provided by Holger... more
Unfolded differential decay rates of four kinematic variables fully describing the $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decay in the $B$-meson rest frame are presented. Numbers taken from a YODA file provided by Holger Schulz, in turn prepared from a ROOT file provided by Florian Bernlochner (Belle).
This thesis describes the measurement of the branching fraction of B to tau nu decays using the full data sample of the Japanese Belle experiment. The measurement uses the semileptonic tagging algorithm and gives a result of [1.25 ±... more
This thesis describes the measurement of the branching fraction of B to tau nu decays using the full data sample of the Japanese Belle experiment. The measurement uses the semileptonic tagging algorithm and gives a result of [1.25 ± 0.28(stat.) ± 0.27(syst.)] x 10^-4. Another topic described in this thesis is the development of a track-finding algorithm for the upcoming Belle 2 experiment.
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a ton-scale experiment in a phased and modular fashion. It consists of two... more
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a ton-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and 76Ge-enriched germanium p-type point contact detectors totaling 44.1 kg, located at the 4850’ level of the Sanford Underground Research Facility in Lead, South Dakota, USA. The DEMONSTRATOR uses custom high voltage cables to bias the detectors, as well as custom signal cables and connectors to read out the charge deposited at each detectors point contact. These low-mass cables and connectors must meet stringent radiopurity requirements while being subjected to thermal and mechanical stress. A number of issues have been identified with the currently installed cables and connectors. An improved set of cables and connectors for the MAJORANA DEMONSTRATOR are being developed with the aim of increasing their overall reliabilit...
We report the results of a high-statistics search for H dibaryon production in inclusive Υ(1S) and Υ(2S) decays. No indication of an H dibaryon with a mass near the M(H)=2m(Λ) threshold is seen in either the H→Λpπ(-) or ΛΛ decay channels... more
We report the results of a high-statistics search for H dibaryon production in inclusive Υ(1S) and Υ(2S) decays. No indication of an H dibaryon with a mass near the M(H)=2m(Λ) threshold is seen in either the H→Λpπ(-) or ΛΛ decay channels and 90% confidence level branching-fraction upper limits are set that are between one and two orders of magnitude below the measured branching fractions for inclusive Υ(1S) and Υ(2S) decays to antideuterons. Since Υ(1S,2S) decays produce flavor-SU(3)-symmetric final states, these results put stringent constraints on H dibaryon properties. The results are based on analyses of 102 million Υ(1S) and 158 million Υ(2S) events collected with the Belle detector at the KEKB e(+)e(-) collider.
We report a measurement of the exclusive π0 production in the process of e+e− scattering in kinematic region where the π0 and the final-state electron or positron are detected (i.e., tagged). We use 759 fb−1 data sample recorded with the... more
We report a measurement of the exclusive π0 production in the process of e+e− scattering in kinematic region where the π0 and the final-state electron or positron are detected (i.e., tagged). We use 759 fb−1 data sample recorded with the Belle detector at the KEKB asymmetric-energy e+e− collider to measure the γγ⁎→π0 transition form factor F(Q2) in the momentum transfer region 4 GeV2⩽Q2⩽40 GeV2. The reported values of Q2|F(Q2)| agree well with previous measurements at Q2⩽9 GeV2, are reasonably consistent with recent results reported by the BaBar experiment but do not support their hypothesis of the rapid increase of Q2|F(Q2)| at higher Q2 values.
We comment on the recent claim for the experimental observation of neutrinoless double-beta decay. We discuss several limitations in the analysis provided in that paper and conclude that there is no basis for the presented claim.
A radiochemical Ga-71-Ge-71 experiment to determine the primary flux of neutrinos from the Sun began measurements of the solar neutrino flux at the Baksan Neutrino Observatory in 1990. The number of Ge-71 atoms extracted from 30 tons of... more
A radiochemical Ga-71-Ge-71 experiment to determine the primary flux of neutrinos from the Sun began measurements of the solar neutrino flux at the Baksan Neutrino Observatory in 1990. The number of Ge-71 atoms extracted from 30 tons of gallium in 1990 and from 57 tons of gallium in 1991 was measured in twelve runs during the period of Jan. 1990
The MAJORANA DEMONSTRATOR is searching for double-beta decay of 76Ge to excited states (E.S.) in 76Se using a modular array of high purity Germanium detectors. 76Ge can decay into three E.S.s of 76Se. The E.S. decays have a clear event... more
The MAJORANA DEMONSTRATOR is searching for double-beta decay of 76Ge to excited states (E.S.) in 76Se using a modular array of high purity Germanium detectors. 76Ge can decay into three E.S.s of 76Se. The E.S. decays have a clear event signature consisting of a ββ-decay with the prompt emission of one or two γ-rays, resulting in with high probability in a multi-site event. The granularity of the DEMONSTRATOR detector array enables powerful discrimination of this event signature from backgrounds. Using 21.3 kg-y of isotopic exposure, the DEMONSTRATOR has set world leading limits for each E.S. decay, with 90% CL lower half-life limits in the range of (0.56 ‒ 2.1) ⋅ 1024 y. In particular, for the 2v transition to the first 0+ E.S. of 76Se, a lower half-life limit of 0.68 ⋅ 1024 at 90% CL was achieved.
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a large-scale experiment in a phased and modular fashion. It consists of two... more
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a large-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and 76 Ge-enriched germanium detectors totalling 44.1 kg, located at the 4850’ level of the Sanford Underground Research Facility in Lead, South Dakota, USA. Any neutrinoless double-beta decay search requires a thorough understanding of the background and the signal energy spectra. The various techniques employed to ensure the integrity of the measured spectra are discussed. Data collection is monitored with a thorough set of checks, and subsequent careful analysis is performed to qualify the data for higher level physics analysis. Instrumental background events are tagged for removal, and problematic channels are removed from consideration as necessary.
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a ton-scale experiment in a phased and modular fashion. It consists of two... more
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a ton-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and 76Ge-enriched germanium detectors totaling 44.1kg (29.7kg enriched detectors), located at the 4850’ level of the Sanford Underground Research Facility in Lead, South Dakota, USA. Data taken with this setup since summer 2015 at different construction stages of the experiment show a clear reduction of the observed background index around the ROI for 0νββ- decay search due to improvements in shielding. We discuss the statistical approaches to search for a धνββ-signal and derive the physics sensitivity for an expected exposure of 10kg· y from enriched detectors using a profile likelihood based hypothesis test in combination with toy Monte Carlo data.
The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in ^{76}Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground... more
The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in ^{76}Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidate events have been found in 285 days of data taking. New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e/1000.
The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in ^{76}Ge) split between two... more
The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in ^{76}Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Q_{ββ} and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×10^{25}  yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0_{-2.5}^{+3.1}  counts/(FWHM t yr).

And 310 more