Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Ghania Ait-Ghezala

    Roskamp Institute, Genomics, Faculty Member
    Gulf War Illness (GWI) is a chronic multisymptom illness with a central nervous system component that includes memory impairment as well as neurological and musculoskeletal deficits. Previous studies have shown that in the First Persian... more
    Gulf War Illness (GWI) is a chronic multisymptom illness with a central nervous system component that includes memory impairment as well as neurological and musculoskeletal deficits. Previous studies have shown that in the First Persian Gulf War conflict (1990-1991) exposure to Gulf War (GW) agents, such as pyridostigmine bromide (PB) and permethrin (PER), were key contributors to the etiology of GWI. For this study, we used our previously established mouse model of GW agent exposure (10 days PB+PER) and undertook an extensive lifelong neurobehavioral characterization of the mice from 11 days to 22.5 months post exposure in order to address the persistence and chronicity of effects suffered by the current GWI patient population, 24 years post-exposure. Mice were evaluated using a battery of neurobehavioral testing paradigms, including Open Field Test (OFT), Elevated Plus Maze (EPM), Three Chamber Testing, Radial Arm Water Maze (RAWM), and Barnes Maze (BM) Test. We also carried out neuropathological analyses at 22.5 months post exposure to GW agents after the final behavioral testing. Our results demonstrate that PB+PER exposed mice exhibit neurobehavioral deficits beginning at the 13 months post exposure time point and continuing trends through the 22.5 month post exposure time point. Furthermore, neuropathological changes, including an increase in GFAP staining in the cerebral cortices of exposed mice, were noted 22.5 months post exposure. Thus, the persistent neuroinflammation evident in our model presents a platform with which to identify novel biological pathways, correlating with emergent outcomes that may be amenable to therapeutic targeting. Furthermore, in this work we confirmed our previous findings that GW agent exposure causes neuropathological changes, and have presented novel data which demonstrate increased disinhibition, and lack of social preference in PB+PER exposed mice at 13 months after exposure. We also extended upon our previous work to cover the lifespan of the laboratory mouse using a battery of neurobehavioral techniques.
    [This corrects the article DOI: 10.1371/journal.pone.0128224.].
    Accumulation of the Aβ peptide is thought to be essential to the pathogenesis of Alzheimer's disease. Identifying factors which maintain or enhance the production of Aβ may clarify the pathogenic pathways and identify potential... more
    Accumulation of the Aβ peptide is thought to be essential to the pathogenesis of Alzheimer's disease. Identifying factors which maintain or enhance the production of Aβ may clarify the pathogenic pathways and identify potential therapeutic targets. We have previously shown that the accumulation of cerebral Aβ may be modified in the transgenic mouse model of the disease by genetically or pharmacologically reducing the availability of CD40 ligand. Furthermore, previous evidence suggests that inhibition of CD40 ligation reduces the activity of secretases which cleave Aβ from APP. We therefore, investigated whether under steady state conditions CD40 ligation could increase Aβ production. In order to achieve measurable levels of Aβ, we examined CD40 ligation in HEK 293, over-expressing an APP mutant and wild type human CD40. In addition since CD40 is known to signal through the NF-κB pathway, we explored the effect of NF-κB inhibitors to access the effects on CD40 ligand enhancement ...
    The role of CD40/CD40L interaction in cytokine modulation is well documented in the peripheral nervous system and in Alzheimer’s disease (AD). We have previously shown that interrupting the CD40/CD40L interaction either pharmacologically... more
    The role of CD40/CD40L interaction in cytokine modulation is well documented in the peripheral nervous system and in Alzheimer’s disease (AD). We have previously shown that interrupting the CD40/CD40L interaction either pharmacologically or genetically resulted in the mitigation of amyloid precursor protein (APP) processing in animal and cellular models of AD. To date, the mechanism of action by which CD40/CD40L affects Abeta production and other APP metabolites remains to be elucidated. In the present study, we have tested whether CD40L promotes Abeta production via activation of the canonical and/or non-canonical NF-κB pathways. We investigated, in the presence and absence of CD40L stimulation, the effect of different NF-κB inhibitors and siRNAs on APP processing using Human Embryonic Kidney cells over-expressing both CD40 and APP with the Swedish mutation (CD40+/APPsw+). Taken together, our results confirm that CD40/CD40L interaction increases the production of APP metabolites vi...
    We have previously shown that the transgenic mice carrying a mutant human APP (leading to an overproduction of Aβ but deficient in CD40L, displayed a decrease in astrocytosis and microgliosis associated with a lower amount of deposited... more
    We have previously shown that the transgenic mice carrying a mutant human APP (leading to an overproduction of Aβ but deficient in CD40L, displayed a decrease in astrocytosis and microgliosis associated with a lower amount of deposited Aβ. Furthermore, an anti-CD40L treatment caused a diminution of Aβ pathology in the brain and an improved performance in several cognitive tasks in double transgenic PS/APP mouse models. Our data strongly suggest that the CD40-CD40L pathway plays an important role in the development of Alzheimer’s disease. In the present report we have generated an APP and PS/APP mouse model deficient for the CD40 gene and compared the pathological features such as amyloid burden, CD45 and GFAP expression (using immunohistochemistry) that are typical of AD like pathology in these transgenic mouse strains with appropriate controls. These data are in accordance with our previous findings that blocking CD40/CD40L improves AD like pathology in these mouse models.
    Enzymatic processing of the amyloid precursor protein (APP) to beta-amyloid peptide (Abeta) is a key event in Alzheimer´s disease and Abeta accumulation is considered to be the cause of the inflammatory process which occurs in the brain... more
    Enzymatic processing of the amyloid precursor protein (APP) to beta-amyloid peptide (Abeta) is a key event in Alzheimer´s disease and Abeta accumulation is considered to be the cause of the inflammatory process which occurs in the brain of Alzheimer´s disease patients. Neuronal cells are considered to be the main producers of Abeta in the brain although several studies have shown that astrocytes can also be a source of Abeta when treated with pro-inflammatory compounds. The abundance of astrocytes in the brain renders this cell type an attractive model to assess their role in APP processing. CD40L has previously been suggested to trigger the amyloidogenic processing of APP in neurons whereas IFN-gamma, TNF-alpha or IL1beta seemed to trigger the amyloidogenic processing of APP in astrocytes. Using a genetically engineered astrocytoma cell line overexpressing the wild type human APP or APP bearing the swedish mutation, we assessed the effects of CD40 activation on APP processing in as...
    Alzheimer’s disease (AD) is defined histopathologically by beta-amyloid (Aβ) senile plaques andneurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. The question as to which of theselesions takes precedence in AD pathology... more
    Alzheimer’s disease (AD) is defined histopathologically by beta-amyloid (Aβ) senile plaques andneurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. The question as to which of theselesions takes precedence in AD pathology has long been an issue of debate. The amyloid cascadehypothesis, currently the predominant hypothesis, considers Aβ peptide to be responsible for the majorneurodegeneration observed in AD while the cytoskeleton hypothesis states that tauhyperphosphorylation and subsequent aggregation may be central to the neurodegeneration observed inAD. This review focuses on tau mutations, phosphorylation sites, tau isoforms and theneurohistopathology of AD, and three other tauopathies to demonstrate that disease progression andneuronal loss in AD correlate also with pathological tau and not just amyloid deposition. Although tau isat the center of all these neurodegenerative diseases, there exist differences in morphology, isoforms,phosphorylation sites and mutatio...
    Microglia expression of CD40 is enhanced in the lesions present in Alzheimer's disease (Togo T, et al., 2000). Our group has shown that CD40/CD40L interaction enables microglial activation in response to amyloid-beta peptide (Abeta),... more
    Microglia expression of CD40 is enhanced in the lesions present in Alzheimer's disease (Togo T, et al., 2000). Our group has shown that CD40/CD40L interaction enables microglial activation in response to amyloid-beta peptide (Abeta), which is associated with Alzheimer's disease (AD)-like neuronal tau hyperphosphorylation in vivo (Tan et al., 1999). Microglial activation is well documented to increase cytokine levels in the brain. After treatment of microglial cells with CD40L, we have observed an increase of cytokine protein levels measured with the BioPlex array system. In this report, HEK-293 cells over-expressing both the APPsw mutation and CD40 show a similar increase in specific cytokines after CD40L treatment. In addition, these cells show an increase in Abeta production after CD40L stimulation. In order to determine the mechanism of increased Abeta production after CD40L stimulation, we examined the role of the released cytokines on Abeta production by blocking antibo...
    One of the hallmarks of Alzheimer’s disease (AD) is the accumulation of amyloid beta (Aβ) plaques in the brain parenchyma. An inflammatory component to AD has been suggested in association with increased cytokine release. We have... more
    One of the hallmarks of Alzheimer’s disease (AD) is the accumulation of amyloid beta (Aβ) plaques in the brain parenchyma. An inflammatory component to AD has been suggested in association with increased cytokine release. We have previously shown that CD40L stimulation of microglia induces increases in pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-8 and GM-CSF. We have also shown that CD40L stimulation increases Aβ levels in HEK-293 cells over-expressing both the amyloid precursor protein (APP) and CD40 (HEK/APPsw/CD40). In this study, we show that GM-CSF neutralizing antibodies mitigate the CD40L-induced production of Aβ in HEK/APPsw/CD40 cells. In addition, we demonstrate that treatment of these cells with recombinant GM-CSF significantly increases Aβ levels. Furthermore, we show that shRNA silencing of the GM-CSF receptor gene significantly reduces Aβ levels to below base line in non-stimulated HEK/APPsw/CD40 cells. Analysis of cell surface proteins revealed...
    Although considered an immunologically privileged site, the central nervous system (CNS) can display significant inflammatory responses, which may play a pathogenic role in a number of neurological diseases. Microglia appear to be... more
    Although considered an immunologically privileged site, the central nervous system (CNS) can display significant inflammatory responses, which may play a pathogenic role in a number of neurological diseases. Microglia appear to be particularly important for initiating and sustaining CNS inflammation. These cells exist in a quiescent form in the normal CNS, but acquire macrophage-like properties (including active phagocytosis, upregulation of proteins necessary for antigen presentation, and production of proinflammatory cytokines) after stimulation with inflammatory substances such as lipopolysaccharide (LPS). Recent studies have focused on elucidating the role of neurons in the regulation of microglial inflammatory responses. In the present study, we demonstrate, using neuron-microglial cocultures, that neurons are capable of inhibiting LPS-induced tumor necrosis factor-alpha (TNF-alpha) production by microglia. This inhibition appears to be dependent on secretion of substances at a...
    ABSTRACT
    Although Alzheimer's Abeta peptide has been shown to form beta-sheet structure, a high-resolution molecular structure is still unavailable to date. A search for a sequence neighbor using Abeta(10-42) as the query in the Protein... more
    Although Alzheimer's Abeta peptide has been shown to form beta-sheet structure, a high-resolution molecular structure is still unavailable to date. A search for a sequence neighbor using Abeta(10-42) as the query in the Protein Data-Bank (PDB) revealed that an RNA binding protein, AF-Sm1 from Archaeoglobus fulgidus (PDB entry: 1i4k chain Z), shared 36% identical residues. Using AF-Sm1 as a template, we built a molecular model of Abeta(10-42) by applying comparative modeling methods. The model of Abeta(10-42) contains an antiparallel beta-sheet formed by residues 16-23 and 32-41. Hydrophobic surface constituted by residues 17-20 (LVFF) separates distinctly charged regions. Residues that interact with RNA in the AF-Sm1 crystal structure were found to be conserved in Abeta. Using a native gel we demonstrate for the first time that RNA can interact with Abeta and selectively retard the formation of fibrils or higher-order oligomers. We hypothesize that in a similar fashion to AF-Sm1...
    Anatabine, a naturally occurring alkaloid, is becoming a commonly used human food supplement, taken for its claimed anti-inflammatory properties although this has not yet been reported in human clinical trials. We have previously shown... more
    Anatabine, a naturally occurring alkaloid, is becoming a commonly used human food supplement, taken for its claimed anti-inflammatory properties although this has not yet been reported in human clinical trials. We have previously shown that anatabine does display certain anti-inflammatory properties and readily crosses the blood-brain barrier suggesting it could represent an important compound for mitigating neuro-inflammatory conditions. The present study was designed to determine whether anatabine had beneficial effects on the development of experimental autoimmune encephalomyelitis (EAE) in mice and to precisely determine its underlying mechanism of action in this mouse model of multiple sclerosis (MS). We found that orally administered anatabine markedly suppressed neurological deficits associated with EAE. Analyses of cytokine production in the periphery of the animals revealed that anatabine significantly reduced Th1 and Th17 cytokines known to contribute to the development of...
    We have previously shown that the L-type calcium channel (LCC) antagonist nilvadipine reduces brain amyloid-β (Aβ) accumulation by affecting both Aβ production and Aβ clearance across the blood-brain barrier (BBB). Nilvadipine consists of... more
    We have previously shown that the L-type calcium channel (LCC) antagonist nilvadipine reduces brain amyloid-β (Aβ) accumulation by affecting both Aβ production and Aβ clearance across the blood-brain barrier (BBB). Nilvadipine consists of a mixture of two enantiomers, (+)-nilvadipine and (-)-nilvadipine, in equal proportion. (+)-Nilvadipine is the active enantiomer responsible for the inhibition of LCC, whereas (-)-nilvadipine is considered inactive. Both nilvadipine enantiomers inhibit Aβ production and improve the clearance of Aβ across the BBB showing that these effects are not related to LCC inhibition. In addition, treatment of P301S mutant human Tau transgenic mice (transgenic Tau P301S) with (-)-nilvadipine reduces Tau hyperphosphorylation at several Alzheimer disease (AD) pertinent epitopes. A search for the mechanism of action of (-)-nilvadipine revealed that this compound inhibits the spleen tyrosine kinase (Syk). We further validated Syk as a target-regulating Aβ by showi...
    The central nervous system (CNS)-based symptoms of Gulf War Illness (GWI) include motor dysfunction, anxiety, and cognitive impairment. Gulf War (GW) agents, such as pyridostigmine bromide (PB), permethrin (PER),... more
    The central nervous system (CNS)-based symptoms of Gulf War Illness (GWI) include motor dysfunction, anxiety, and cognitive impairment. Gulf War (GW) agents, such as pyridostigmine bromide (PB), permethrin (PER), N,N-diethyl-meta-toluamide (DEET), and stress, are among the contributory factors to the pathobiology of GWI. This study characterizes disturbances in phosphocholine-containing lipids that accompany neurobehavioral and neuropathological features associated with GW agent exposure. Exposed mice received PB orally, dermal application of PER and DEET and restraint stress daily for 28 days, while controls received vehicle during this period. Neurobehavioral studies included the rotarod, open field, and Morris water maze tests. Histopathological assessments included glial fibrillary acid protein, CD45, and Nissl staining. Liquid chromatography/mass spectrometry with source collision-induced dissociation in negative and positive ionization scanning modes was performed to characterize brain phosphatidylcholine (PC) and sphingomyelin (SM). A significant increase in ether containing PC (ePC34:0, ePC36:2, and ePC36:1) or long-chain fatty acid-containing PC (38:1, 40:4, 40:2) was observed in exposed mice compared with controls. Among differentially expressed PCs, levels of those with monounsaturated fatty acids were more affected than those with saturated and polyunsaturated fatty acids. Sensorimotor deficits and anxiety, together with an increase in astrocytosis, were observed in exposed mice compared with controls. These lipid changes suggest that alterations in peroxisomal pathways and stearoyl-CoA desaturase activity accompany neurobehavioral and neuropathological changes after GW agent exposure and represent possible treatment targets for the CNS symptoms of GWI.
    Gulf War Illness (GWI) is a chronic multisymptom condition with a central nervous system (CNS) component, for which there is no treatment available. It is now believed that the combined exposure to Gulf War (GW) agents, including... more
    Gulf War Illness (GWI) is a chronic multisymptom condition with a central nervous system (CNS) component, for which there is no treatment available. It is now believed that the combined exposure to Gulf War (GW) agents, including pyridostigmine bromide (PB) and pesticides, such as permethrin (PER), was a key contributor to the etiology of GWI. In this study, a proteomic approach was used to characterize the biomolecular disturbances that accompany neurobehavioral and neuropathological changes associated with combined exposure to PB and PER. Mice acutely exposed to PB and PER over 10 days showed an increase in anxiety-like behavior, psychomotor problems and delayed cognitive impairment compared to control mice that received vehicle only. Proteomic analysis showed changes in proteins associated with lipid metabolism and molecular transport in the brains of GW agent-exposed mice compared to controls. Proteins associated with the endocrine and immune systems were also altered, and dysfunction of these systems is a prominent feature of GWI. The presence of astrogliosis in the GW agent-exposed mice compared to control mice further suggests an immune system imbalance, as is observed in GWI. These studies provide a broad perspective of the molecular disturbances driving the late pathology of this complex illness. Evaluation of the potential role of these biological functions in GWI will be useful in identifying molecular pathways that can be targeted for the development of novel therapeutics against GWI.
    Although considered an immunologically privileged site, the central nervous system (CNS) can display significant inflammatory responses, which may play a pathogenic role in a number of neurological diseases. Microglia appear to be... more
    Although considered an immunologically privileged site, the central nervous system (CNS) can display significant inflammatory responses, which may play a pathogenic role in a number of neurological diseases. Microglia appear to be particularly important for initiating and sustaining CNS inflammation. These cells exist in a quiescent form in the normal CNS, but acquire macrophage-like properties (including active phagocytosis, upregulation of proteins necessary for antigen presentation, and production of proinflammatory cytokines) after stimulation with inflammatory substances such as lipopolysaccharide (LPS). Recent studies have focused on elucidating the role of neurons in the regulation of microglial inflammatory responses. In the present study, we demonstrate, using neuron-microglial cocultures, that neurons are capable of inhibiting LPS-induced tumor necrosis factor-alpha (TNF-alpha) production by microglia. This inhibition appears to be dependent on secretion of substances at axon terminals, as treatment with the presynaptic calcium channel blocker omega-conotoxin abolishes this inhibitory effect. Moreover, we show that conditioned medium from neuronal cultures similarly inhibits microglial TNF-alpha production, which provides additional evidence that neurons secrete inhibitory substances. We previously demonstrated that the transmembrane protein-tyrosine phosphatase CD45 plays an important role in negatively regulating microglial activation. The recent characterization of CD22 as an endogenous ligand of this receptor led us to investigate whether neurons express this protein. Indeed, we were able to demonstrate CD22 mRNA and protein expression in cultured neurons and mouse brain, using reverse transcriptase-polymerase chain reaction and antibody-based techniques. Furthermore, we show that neurons secrete CD22, which functions as an inhibitor of microglial proinflammatory cytokine production.
    The CD40 receptor is a member of the tumor necrosis factor (TNF) super-family of trans-membrane receptors. Interaction of CD40 with its ligand CD40L mediates a broad range of immune and inflammatory responses in the periphery and in the... more
    The CD40 receptor is a member of the tumor necrosis factor (TNF) super-family of trans-membrane receptors. Interaction of CD40 with its ligand CD40L mediates a broad range of immune and inflammatory responses in the periphery and in the central nervous system. Recently it has been suggested that CD40/CD40L interaction is involved in amyloid precursor protein (APP) processing and Alzheimer's disease (AD)-like pathology in transgenic mouse models of AD. We have previously shown that pharmacologically inhibiting CD40/CD40L interaction improves memory deficits in the PSAPP AD mouse model. We have also recently shown that CD40 deficiency mitigates amyloid deposition in APPsw and PSAPP mouse models. In the present report, using human embryonic kidney cells (HEK293) over-expressing both the APPsw mutation and CD40, we demonstrate that CD40/CD40L interaction directly increases the production of APP metabolites (Aβ 1–40, Aβ 1–42, CTFs, sAPPβ and sAPPα). The results also show that CD40/CD40L interaction affects APP processing via the NF-κB pathway. Using NFκB inhibitors and SiRNAs to silence diverse elements of the NFκB pathway, we observe a reduction in levels of both Aβ 1–40 and Aβ 1–42. Taken together, our results further suggest that CD40L stimulation may be a key component in AD pathology and that elements of the NF-κB pathway may be suitable targets for therapeutic approaches against AD.
    Key pathological processes in... more
    Key pathological processes in Alzheimer's disease (AD) include the accumulation of amyloid beta peptide (Abeta) which, in excess, triggers pathological cascades including widespread inflammation, partly reflected by chronic microglial activation. It has previously been suggested that CD40/CD40L interaction promotes AD like pathology in transgenic mice. Thus, amyloid burden, gliosis and hyperphosphorylation of tau are all reduced in transgenic models of AD lacking functional CD40L. We therefore hypothesized that cellular events leading to altered APP metabolism, inflammation and increased tau phosphorylation underlying these observations would be regulated at the genomic level. In the present report, we used the Affymetrix (GeneChip) oligonucleotide microarray U133A to gain insight into the global and simultaneous transcriptomic changes in response to microglia activation after CD40/CD40L ligation. As expected, regulation of elements of the NF-kappaB signaling, chemokine and B cell signaling pathways was observed. Taken together, our data also suggest that CD40 ligation in human microglia specifically perturbs many genes associated with APP processing.
    Understanding complex relationship between gene expression and its corresponding protein levels over time is critical for system level studies of biological processes. We developed a vector based method to understand the correlation... more
    Understanding complex relationship between gene expression and its corresponding protein levels over time is critical for system level studies of biological processes. We developed a vector based method to understand the correlation between mRNA expression and its corresponding protein levels of different cytokines when microglia is treated with CD40L over different time points (1 hr and 6 hrs). Vectors are
    Research Interests:
    Tourette syndrome (TS) is a complex neuropsychiatric disorder characterized by both motor and vocal tics. The etiology of TS is poorly understood; however, evidence of genetic transmission arises from family and twin studies. A complex... more
    Tourette syndrome (TS) is a complex neuropsychiatric disorder characterized by both motor and vocal tics. The etiology of TS is poorly understood; however, evidence of genetic transmission arises from family and twin studies. A complex mode of inheritance has been suggested, likely involving contributions of several genes with different effect size. We describe here two unrelated families wherein balanced t(6;8) chromosomal translocations occur in individuals diagnosed with TS. In one of these families, the transmission of the translocation is associated with learning and behavioral difficulties; in the other family, one parent is unaffected and the other cannot be traced, thus transmission cannot be demonstrated and it is possible that the translocation may have occurred de novo. The breakpoint on chromosome 8 occurs within the q13 band in both families, suggesting that a gene or genes in this region might contribute to the TS phenotype. Existing linkage and cytogenetic data, suggesting involvement of chromosome 8 in TS families and individuals, further support this hypothesis. We have identified two YAC clones mapping distal and proximal to the chromosome 8 translocation site, as determined by fluorescent in situ hybridization (FISH). PCR amplification of genetic markers in this region, using isolated chromosomes from one of the patients, followed by BAC screening with the closest flanking genetic markers, has identified a 200-kb BAC, which, by FISH, we have demonstrated encompasses the chromosome 8 breakpoint in both families. The fact that the chromosomal breaks in the TS cases from both families occur within such a small region of chromosome 8 further supports the hypothesis that disruption of a gene or genes in this part of chromosome 8 contributes to the clinical phenotype.
    Background Aβ deposits represent a neuropathological hallmark of Alzheimer's disease (AD). Both soluble and insoluble Aβ species are considered to be responsible for initiating the pathological cascade that eventually leads to AD.... more
    Background Aβ deposits represent a neuropathological hallmark of Alzheimer's disease (AD). Both soluble and insoluble Aβ species are considered to be responsible for initiating the pathological cascade that eventually leads to AD. Therefore, the identification of therapeutic approaches that can lower Aβ production or accumulation remains a priority. NFκB has been shown to regulate BACE-1 expression level, the rate limiting enzyme responsible for the production of Aβ. We therefore explored whether the known NFκB inhibitor celastrol could represent a suitable compound for decreasing Aβ production and accumulation in vivo. Methods The effect of celastrol on amyloid precursor protein (APP) processing, Aβ production and NFκB activation was investigated by western blotting and ELISAs using a cell line overexpressing APP. The impact of celastrol on brain Aβ accumulation was tested in a transgenic mouse model of AD overexpressing the human APP695sw mutation and the presenilin-1 mutation M146L (Tg PS1/APPsw) by immunostaining and ELISAs. An acute treatment with celastrol was investigated by administering celastrol intraperitoneally at a dosage of 1 mg/Kg in 35 week-old Tg PS1/APPsw for 4 consecutive days. In addition, a chronic treatment (32 days) with celastrol was tested using a matrix-driven delivery pellet system implanted subcutaneously in 5 month-old Tg PS1/APPsw to ensure a continuous daily release of 2.5 mg/Kg of celastrol. Results In vitro, celastrol dose dependently prevented NFκB activation and inhibited BACE-1 expression. Celastrol potently inhibited Aβ1-40 and Aβ1-42 production by reducing the β-cleavage of APP, leading to decreased levels of APP-CTFβ and APPsβ. In vivo, celastrol appeared to reduce the levels of both soluble and insoluble Aβ1-38, Aβ1-40 and Aβ1-42. In addition, a reduction in Aβ plaque burden and microglial activation was observed in the brains of Tg PS1/APPsw following a chronic administration of celastrol. Conclusions Overall our data suggest that celastrol is a potent Aβ lowering compound that acts as an indirect BACE-1 inhibitor possibly by regulating BACE-1 expression level via an NFκB dependent mechanism. Additional work is required to determine whether chronic administration of celastrol can be safely achieved with cognitive benefits in a transgenic mouse model of AD.
    CD40, a member of tumor necrosis factor receptor superfamily, and its cognate ligand CD40L are both elevated in the brain of Alzheimer's disease (AD) patients compared to controls. We have... more
    CD40, a member of tumor necrosis factor receptor superfamily, and its cognate ligand CD40L are both elevated in the brain of Alzheimer's disease (AD) patients compared to controls. We have shown that pharmacological or genetic interruption of CD40/CD40L interaction results in mitigation of AD-like pathology in vivo in transgenic AD mouse models, and in vitro. Recently, we showed that CD40L stimulation could increase Abeta levels via NFkappaB signaling, presumably through TRAFs. In the present work, using CD40 mutants, we show that CD40L can increase levels of Abeta(1-40), Abeta(1-42), sAPPbeta, sAPPalpha and CTFbeta independently of TRAF signaling. We report an increase in mature/immature APP ratio after CD40L treatment of CD40wt and CD40-mutant cells, reflecting alterations in APP trafficking. In addition, results from CD40L treatment of a neuroblastoma cell line over-expressing the C-99 APP fragment suggest that CD40L has an effect on gamma-secretase. Furthermore, inhibition of gamma-secretase activity significantly reduces sAPPbeta levels in the CD40L treated HEK/APPsw CD40wt and the CD40-mutant cells. The latter suggests CD40/CD40L interaction primarily acts on gamma-secretase and affects beta-secretase via a positive feedback mechanism. Taken together, our data suggest that CD40/CD40L interaction modulates APP processing independently of TRAF signaling.

    And 4 more