Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
  • Santiago, Region Metropolitana, Chile
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most diagnosed cancers worldwide. Chemoprevention of HCC can be achieved using natural or synthetic compounds that reverse, suppress, detect, or prevent cancer progression.... more
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most diagnosed cancers worldwide. Chemoprevention of HCC can be achieved using natural or synthetic compounds that reverse, suppress, detect, or prevent cancer progression. OBJECTIVES: In this study, both the antiproliferative effects and luminescent properties of 2’-hydroxychalcones were evaluated. METHODS: Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay, spectroscopy assays, and density functional theory (DFT) calculations were used to determine the luminescent properties of 2´-hydroxychalcones. RESULTS: Cytotoxic effects of 2´-hydroxychalcones were observed over the HepG2 and EA.hy926 cells. Since the chalcone moiety could be used as a fluorescent probe, these compounds may be helpful in cancer diagnosis and tumor localization. They may enable tumor observation and regression through the fluorescence during treatment; therefore, the compounds are a...
Erythropoiesis is the most robust cellular differentiation and proliferation system, with a production of ∼2 × 1011 cells per day. In this fine-tuned process, the hematopoietic stem cells (HSCs) generate erythroid progenitors, which... more
Erythropoiesis is the most robust cellular differentiation and proliferation system, with a production of ∼2 × 1011 cells per day. In this fine-tuned process, the hematopoietic stem cells (HSCs) generate erythroid progenitors, which proliferate and mature into erythrocytes. During erythropoiesis, mitochondria are reprogrammed to drive the differentiation process before finally being eliminated by mitophagy. In erythropoiesis, mitochondrial dynamics (MtDy) are expected to be a key regulatory point that has not been described previously. We described that a specific MtDy pattern occurs in human erythropoiesis from EPO-induced human CD34+ cells, characterized predominantly by mitochondrial fusion at early stages followed by fission at late stages. The fusion protein MFN1 and the fission protein FIS1 are shown to play a key role in the progression of erythropoiesis. Fragmentation of the mitochondrial web by the overexpression of FIS1 (gain of fission) resulted in both the inhibition of ...
The molybdenum cluster [Mo₆Cl14](2-) is a fluorescent component with potential for use in cell labelling and pharmacology. Biological safety and antiviral properties of the cluster are as yet unknown. Here, we show the effect of acute... more
The molybdenum cluster [Mo₆Cl14](2-) is a fluorescent component with potential for use in cell labelling and pharmacology. Biological safety and antiviral properties of the cluster are as yet unknown. Here, we show the effect of acute exposition of human cells and red blood cells to the molybdenum cluster and its interaction with proteins and antiviral activity in vitro. We measured cell viability of HepG2 and EA.hy926 cell lines exposed to increasing concentrations of the cluster (0.1 to 250 µM), by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Hemolysis and morphological alterations of red blood cells, obtained from healthy donors, exposed to the cluster (10 to 200 µM) at 37 °C were analyzed. Furthermore, quenching of tryptophan residues of albumin was performed. Finally, plaque formation by rotavirus SA11 in MA104 cells treated with the cluster (100 to 300 µM) were analyzed. We found that all doses of the cluster showed similar cell viabil...
Chronic peritoneal dialysis (PD) therapy is equally efficient as hemodialysis while providing greater patient comfort and mobility. Therefore, PD is the treatment of choice for several types of renal patients. During PD, a high-glucose... more
Chronic peritoneal dialysis (PD) therapy is equally efficient as hemodialysis while providing greater patient comfort and mobility. Therefore, PD is the treatment of choice for several types of renal patients. During PD, a high-glucose hyperosmotic (HGH) solution is administered into the peritoneal cavity to generate an osmotic gradient that promotes water and solutes transport from peritoneal blood to the dialysis solution. Unfortunately, PD has been associated with a loss of peritoneal viability and function through the generation of a severe inflammatory state that induces human peritoneal mesothelial cell (HPMC) death. Despite this deleterious effect, the precise molecular mechanism of HPMC death as induced by HGH solutions is far from being understood. Therefore, the aim of this study was to explore the pathways involved in HGH solution-induced HPMC death. HGH-induced HPMC death included influxes of intracellular Ca(2+) and Na(+). Furthermore, HGH-induced HPMC death was inhibit...
Increased expression of the TRPM4 channel has been reported to be associated with the progression of prostate cancer. However, the molecular mechanism underlying its effect remains unknown. This work found that decreasing TRPM4 levels... more
Increased expression of the TRPM4 channel has been reported to be associated with the progression of prostate cancer. However, the molecular mechanism underlying its effect remains unknown. This work found that decreasing TRPM4 levels leads to the reduced proliferation of PC3 cells. This effect was associated with a decrease in total β-catenin protein levels and its nuclear localization, and a significant reduction in Tcf/Lef transcriptional activity. Moreover, TRPM4 silencing increases the Ser33/Ser37/Thr41 β-catenin phosphorylated population and reduces the phosphorylation of GSK-3β at Ser9, suggesting an increase in β-catenin degradation as the underlying mechanism. Conversely, TRPM4 overexpresssion in LNCaP cells increases the Ser9 inhibitory phosphorylation of GSK-3β and the total levels of β-catenin and its non-phosphorylated form. Finally, PC3 cells with reduced levels of TRPM4 showed a decrease of basal and stimulated phospho-activation of Akt1, which is likely responsible f...
Chagas disease (CD) is one of the most important neglected tropical disorders, being a major health concern in Latin America.
During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of... more
During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the depende...
During the pathogenesis of systemic inflammation, reactive oxygen species (ROS) circulate in the bloodstream and interact with endothelial cells (ECs), increasing intracellular oxidative stress. Although endothelial dysfunction is crucial... more
During the pathogenesis of systemic inflammation, reactive oxygen species (ROS) circulate in the bloodstream and interact with endothelial cells (ECs), increasing intracellular oxidative stress. Although endothelial dysfunction is crucial in the pathogenesis of systemic inflammation, little is known about the effects of oxidative stress on endothelial dysfunction. Oxidative stress induces several functions, including cellular transformation. A singular process of cell conversion is tendothelial-to-mesenchymal transition, in which ECs become myofibroblasts, thus losing their endothelial properties and gaining fibrotic behavior. However, the participation of oxidative stress as an inductor of conversion of ECs into myofibroblasts is not known. Thus, we studied the role played by oxidative stress in this conversion and investigated the underlying mechanism. Our results show that oxidative stress induces conversion of ECs into myofibroblasts through decreasing the levels of endothelial ...
Research Interests: