Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Francisco Javier  Martin-Romero
  • Department of Biochemistry and Molecular Biology
    School of Life Sciences
    University of Extremadura
    Avenida de Elvas s/n
    06006-Badajoz
    Spain
Tumor invasion requires efficient cell migration, which is achieved by the generation of persistent and polarized lamellipodia. The generation of lamellipodia is supported by actin dynamics at the leading edge where a complex of proteins... more
Tumor invasion requires efficient cell migration, which is achieved by the generation of persistent and polarized lamellipodia. The generation of lamellipodia is supported by actin dynamics at the leading edge where a complex of proteins known as the WAVE regulatory complex (WRC) promotes the required assembly of actin filaments to push the front of the cell ahead. By using an U2OS osteosarcoma cell line with high metastatic potential, proven by a xenotransplant in zebrafish larvae, we have studied the role of the plasma membrane Ca2+ channel ORAI1 in this process. We have found that epidermal growth factor (EGF) triggered an enrichment of ORAI1 at the leading edge, where colocalized with cortactin (CTTN) and other members of the WRC, such as CYFIP1 and ARP2/3. ORAI1-CTTN co-precipitation was sensitive to the inhibition of the small GTPase RAC1, an upstream activator of the WRC. RAC1 potentiated ORAI1 translocation to the leading edge, increasing the availability of surface ORAI1 an...
Stromal interaction molecule 1 (STIM1) plays a pivotal role in store-operated Ca2+ entry (SOCE), an essential mechanism in cellular calcium signaling and in maintaining cellular calcium balance. Because O-GlcNAcylation plays pivotal roles... more
Stromal interaction molecule 1 (STIM1) plays a pivotal role in store-operated Ca2+ entry (SOCE), an essential mechanism in cellular calcium signaling and in maintaining cellular calcium balance. Because O-GlcNAcylation plays pivotal roles in various cellular function, we examined the effect of fluctuation in STIM1 O-GlcNAcylation on SOCE activity. We found that both increase and decrease in STIM1 O-GlcNAcylation impaired SOCE activity. To determine the molecular basis, we established STIM1-knockout HEK293 (STIM1-KO-HEK) cells using the CRISPR/Cas9 system and transfected STIM1 wild-type (STIM1-KO-WT-HEK), S621A (STIM1-KO-S621A-HEK), or T626A (STIM1-KO-T626A-HEK) cells. Using these cells, we examined the possible O-GlcNAcylation sites of STIM1 to determine whether the sites were O-GlcNAcylated. Co-immunoprecipitation analysis revealed that Ser621 and Thr626 were O-GlcNAcylated and that Thr626 was O-GlcNAcylated in the steady state but Ser621 was not. The SOCE activity in STIM1-KO-S621...
STIM1 (stromal interaction molecule 1) is a key regulator of store-operated calcium entry (SOCE). Upon depletion of Ca(2+) concentration within the endoplasmic reticulum (ER), STIM1 relocalizes at ER-plasma membrane junctions, activating... more
STIM1 (stromal interaction molecule 1) is a key regulator of store-operated calcium entry (SOCE). Upon depletion of Ca(2+) concentration within the endoplasmic reticulum (ER), STIM1 relocalizes at ER-plasma membrane junctions, activating store-operated calcium channels (SOCs). Although the molecular details for STIM1-SOC binding is known, the regulation of SOCE remains largely unknown. A detailed list of phosphorylated residues within the STIM1 sequence has been reported. However, the molecular pathways controlling this phosphorylation and its function are still under study. Using phosphospecific antibodies, we demonstrate that ERK1/2 mediates STIM1 phosphorylation at Ser575, Ser608 and
Ser621 during Ca(2+) store depletion, and that Ca(2+) entry and store refilling restore phosphorylation to basal levels. This phosphorylation occurs in parallel to the dissociation from end-binding protein 1 (EB1), a regulator of growing microtubule ends. Although Ser to Ala mutation of residues 575, 608 and 621 showed a constitutive binding to EB1 even after Ca(2+) store depletion, Ser to Glu mutation of these residues (to mimic the phosphorylation profile attained after store depletion) triggered full dissociation from EB1. Given that wild-type
STIM1 and STIM1(S575E/S608E/S621E) activate SOCE similarly, a model is proposed to explain how ERK1/2-mediated phosphorylation of STIM1 regulates SOCE. This regulation is based on the phosphorylation of STIM1 to trigger dissociation from EB1 during Ca(2+) store depletion, an event that is fully reversed by Ca(2+) entry and store refilling.
Research Interests:
... W: A muscle protein in search of a function 137 L Walt Ream, William R. Vorachek and Phillip D. Whanger Chapter 13 The 15 kDa selenoprotein (SeplS): functional studies and a role in cancer etiology 147 Vadim N. Gladyshev, Alan M... more
... W: A muscle protein in search of a function 137 L Walt Ream, William R. Vorachek and Phillip D. Whanger Chapter 13 The 15 kDa selenoprotein (SeplS): functional studies and a role in cancer etiology 147 Vadim N. Gladyshev, Alan M Diamond and Dolph L. Hatfield Page 11. ...
From 1 to 3 h after the onset of cerebellar granule cells (CGC) apoptosis in a low-K+(5 mm KCl) medium there was a large decay of NADH and a 2.5-fold increase of the rate of reactive oxygen species (ROS) production (measured using CGC... more
From 1 to 3 h after the onset of cerebellar granule cells (CGC) apoptosis in a low-K+(5 mm KCl) medium there was a large decay of NADH and a 2.5-fold increase of the rate of reactive oxygen species (ROS) production (measured using CGC loaded with dichlorodihydrofluorescein). During the same time period, the ascorbate-dependent NADH oxidase activity, which accounted for more than 90% of both total NADH oxidase activity and NADH-dependent *O2- production of CGC lysates, increased 2.5- to threefold. The stimulation of the ascorbate-dependent NADH oxidase activity by oxidized cytochrome c, 2.5-fold at saturation with a K(0.5) of 4-5 microm cytochrome c, can at least partially explain this activation. The plasma membrane ascorbate-dependent NADH oxidase activity accounted for more than 70% of the total activity (both in terms of NADH oxidase and *O2- release) of CGC lysates. 4-Hydroxyquinazoline (4-HQ), which was found to block this apoptotic process, prevented the increase of ROS production. 4-HQ protection against cell viability loss and DNA fragmentation correlated with the inhibition by 4-HQ of the ascorbate-dependent NADH oxidase activity of CGC lysates, showing the same K(0.5)-value (4-5 mm 4-HQ). The efficient blockade of CGC apoptosis by addition of superoxide dismutase to the medium further supports the neurotoxic role of *O2- overproduction by the plasma membrane ascorbate-dependent NADH oxidase.
Synaptosomes can be loaded with mag-fura-2 without significant perturbation of their ATP content by incubation for 10 min at 37 degrees C with 10 microM mag-fura-2 acetoxymethyl ester in... more
Synaptosomes can be loaded with mag-fura-2 without significant perturbation of their ATP content by incubation for 10 min at 37 degrees C with 10 microM mag-fura-2 acetoxymethyl ester in Hanks'-HEPES buffer (pH 7.45). The intrasynaptosomal free Mg2+ concentration ([Mg2+]i) was found to be dependent on external Mg2+ concentration, increasing from 0.8 to 1.25 mM when the concentration of Mg2+ in the incubation medium increased from 1 to 8 mM. Dissipation of the Na+ gradient across the plasma membrane of synaptosomes by treatment with the Na+ ionophore monensin (0.2 mM) or with veratridine (0.2 mM) and ouabain (0.6 mM) produced a moderate increase of [Mg2+]i, from 1.0 to 1.2-1.3 mM in an incubation medium containing 5 mM Mg2+. Plasma membrane depolarization by incubation of synaptosomes in a medium containing 68 mM KCl and 68 mM NaCl had no effect on [Mg2+]i. Reversal of the Na+ gradient by incubation of synaptosomes in a medium in which external Na+ was replaced by choline increased [Mg2+]i up to 1.6 and 2.2 mM for extrasynaptosomal Mg2+ concentrations of 1 and 8 mM, respectively. We conclude that a Na+/Mg2+ exchange operates in the plasma membrane of synaptosomes. In the presence of Mg2+ in the incubation medium, extrasynaptosomal ATP, but not ADP or adenosine, increased [Mg2+]i from 1.1 +/- 0.1 up to 1.6 +/- 0.1 mM. The nonhydrolyzable ATP analogue adenosine 5'-(beta gamma-imido)triphosphate antagonized the effect of ATP, but had no effect by itself on [Mg2+]i. It is concluded that Mg2+ transport across the plasma membrane of synaptosomes is modulated by the activity of an ecto-ATPase or an ecto-protein kinase.
Synaptic plasma membranes (SPMV) decrease the steady state ascorbate free radical (AFR) concentration of 1mM ascorbate in phosphate/EDTA buffer (pH 7), due to AFR recycling by redox coupling between ascorbate and the ubiquinone content of... more
Synaptic plasma membranes (SPMV) decrease the steady state ascorbate free radical (AFR) concentration of 1mM ascorbate in phosphate/EDTA buffer (pH 7), due to AFR recycling by redox coupling between ascorbate and the ubiquinone content of these membranes. In the presence of NADH, but not NADPH, SPMV catalyse a rapid recycling of AFR which further lower the AFR concentration below 0.05 microM. These results correlate with the nearly 10-fold higher NADH oxidase over NADPH oxidase activity of SPMV. SPMV has NADH-dependent coenzyme Q reductase activity. In the presence of ascorbate the stimulation of the NADH oxidase activity of SPMV by coenzyme Q(1) and cytochrome c can be accounted for by the increase of the AFR concentration generated by the redox pairs ascorbate/coenzyme Q(1) and ascorbate/cytochrome c. The NADH:AFR reductase activity makes a major contribution to the NADH oxidase activity of SPMV and decreases the steady-state AFR concentration well below the micromolar concentration range.
The production of peroxynitrite during 3-morpholinosydnonimine (SIN-1) decomposition can be continuously monitored, with a sensitivity ≤ 0.1 μM, from the kinetics of NADH fluorescence quenching in phosphate buffers, as well as in buffers... more
The production of peroxynitrite during 3-morpholinosydnonimine (SIN-1) decomposition can be continuously monitored, with a sensitivity ≤ 0.1 μM, from the kinetics of NADH fluorescence quenching in phosphate buffers, as well as in buffers commonly used with cell cultures, like Locke's buffer or Dulbecco's modified Eagle's medium (DMEM-F12). The half-time for peroxynitrite production during SIN-1 decomposition ranged from 14–18 min in DMEM-F12 (plus and minus phenol red) to 21.5 min in Locke's buffer and 26 min in DMEM-F12 supplemented with apotransferrin (0.1 mg/mL). The concentration of peroxynitrite reached a peak that was linearly dependent upon SIN-1 concentration, and that for 100 μM SIN-1 amounted to 1.4 ± 0.2 μM in Locke's buffer, 3.2–3.6 μM in DMEM-F12 (plus and minus phenol red) and 1.8 μM in DMEM-F12 supplemented with apotransferrin. Thus, the maximum concentration of peroxynitrite ranged from 1.2 to 3.6% of added SIN-1. NADH was found to be less sensitive than dihydrorhodamine 123 and 2′,7′-dichlorodihydrofluorescein diacetate to oxidation by H2O2, which is produced during SIN-1 decomposition in common buffers. It is shown that peroxynitrite concentration can be controlled (±5%) during predetermined times by using sequential SIN-1 pulses, to simulate chronic exposure of cells or subcellular components to peroxynitrite.