Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Ray Anderson
  • USDA-ARS, George E. Brown Jr. Salinity Laboratory
    450 W. Big Springs Rd.
    Riverside, CA 92507-4617
  • 951-369-4851
The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) was launched to the International Space Station on 29 June 2018 by the National Aeronautics and Space Administration (NASA). The primary science focus of... more
The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) was launched to the International Space Station on 29 June 2018 by the National Aeronautics and Space Administration (NASA). The primary science focus of ECOSTRESS is centered on evapotranspiration (ET), which is produced as Level‐3 (L3) latent heat flux (LE) data products. These data are generated from the Level‐2 land surface temperature and emissivity product (L2_LSTE), in conjunction with ancillary surface and atmospheric data. Here, we provide the first validation (Stage 1, preliminary) of the global ECOSTRESS clear‐sky ET product (L3_ET_PT‐JPL, Version 6.0) against LE measurements at 82 eddy covariance sites around the world. Overall, the ECOSTRESS ET product performs well against the site measurements (clear‐sky instantaneous/time of overpass: r2 = 0.88; overall bias = 8%; normalized root‐mean‐square error, RMSE = 6%). ET uncertainty was generally consistent across climate zones, biome types, ...
The lack of consistent, accurate information on evapotranspiration (ET) and consumptive use of water by irrigated agriculture is one of the most important data gaps for water managers in the western United States (U.S.) and other arid... more
The lack of consistent, accurate information on evapotranspiration (ET) and consumptive use of water by irrigated agriculture is one of the most important data gaps for water managers in the western United States (U.S.) and other arid agricultural regions globally. The ability to easily access information on ET is central to improving water budgets across the West, advancing the use of data‐driven irrigation management strategies, and expanding incentive‐driven conservation programs. Recent advances in remote sensing of ET have led to the development of multiple approaches for field‐scale ET mapping that have been used for local and regional water resource management applications by U.S. state and federal agencies. The OpenET project is a community‐driven effort that is building upon these advances to develop an operational system for generating and distributing ET data at a field scale using an ensemble of six well‐established satellite‐based approaches for mapping ET. Key objectiv...
The Haihe Plain is the largest component of the agriculturally vital North China Plain, and it is characterized by serious water shortage and frequent droughts, which lead to crop reduction and have adverse effects on agriculture and... more
The Haihe Plain is the largest component of the agriculturally vital North China Plain, and it is characterized by serious water shortage and frequent droughts, which lead to crop reduction and have adverse effects on agriculture and ecology. We used daily precipitation data from 1955–2017; the region’s spatiotemporal characteristics of drought were analyzed by using the standardized precipitation index (SPI), drought probability, and Mann–Kendall test for seasonal scale including two main crops growth seasons for the region’s main crops. Furthermore, a cloud algorithm model was established to analyze the dispersion and instability of the SPI. The annual drought frequency is 28.57%; the SPI for spring has an increasing tendency, while summer shows a significant decreasing trend (p < 0.05); the Haihe Plain has had a tendency towards drought over the last 63 years. The SPI in northwest is the smallest and increases gradually toward the south; the severity of drought in dry years in...
Evapotranspiration (ET) is one of the largest components of the water cycle, and accurately measuring and modeling ET is critical for improving and optimizing agricultural water management. However, parameterizing ET in croplands can be... more
Evapotranspiration (ET) is one of the largest components of the water cycle, and accurately measuring and modeling ET is critical for improving and optimizing agricultural water management. However, parameterizing ET in croplands can be challenging due to the wide variety of irrigation strategies and techniques, crop varieties, and management approaches that employ traditional tabular ET and make crop coefficient approaches obsolete. This special issue of Agronomy highlights nine approaches to improve the measurement and modeling of ET across a range of spatial and temporal resolutions and differing environments that address some of the challenges encountered.
Accurate simulation of plant water use across agricultural ecosystems is essential for various applications, including precision agriculture, quantifying groundwater recharge, and optimizing irrigation rates. Previous approaches to... more
Accurate simulation of plant water use across agricultural ecosystems is essential for various applications, including precision agriculture, quantifying groundwater recharge, and optimizing irrigation rates. Previous approaches to integrating plant water use data into hydrologic models have relied on evapotranspiration (ET) observations. Recently, the flux variance similarity approach has been developed to partition ET to transpiration (T) and evaporation, providing an opportunity to use T data to parameterize models. To explore the value of T/ET data in improving hydrologic model performance, we examined multiple approaches to incorporate these observations for vegetation parameterization. We used ET observations from 5 eddy covariance towers located in the San Joaquin Valley, California, to parameterize orchard crops in an integrated land surface – groundwater model. We find that a simple approach of selecting the best parameter sets based on ET and T performance metrics works be...
Regional estimates of evapotranspiration (ET) are needed for environmental analysis and management purposes, yet can be difficult to obtain. Current methods for determining regional ET have spatial, temporal, methodological, and/or... more
Regional estimates of evapotranspiration (ET) are needed for environmental analysis and management purposes, yet can be difficult to obtain. Current methods for determining regional ET have spatial, temporal, methodological, and/or logistical limitations that affect their usefulness. To address these gaps, we developed a surface mobile measurement technique, the Regional Evaporative Fraction Energy Balance platform (REFEB), which measures evaporative fraction (EF) and water use efficiency (WUE) using a truck operating on a public right of way. REFEB can measure EF and WUE at 25 or more locations per day, which allows for rapid, dense, and spatially distributed sampling of fields across a region. We assessed the accuracy of the field measurements of EF and WUE with REFEB by comparing them to an Eddy covariance (EC) and Bowen ratio energy balance (BREB) tower. This site validation showed that REFEB has error and uncertainty similar to previous BREB approaches. We then used empirical r...
This is the AmeriFlux version of the carbon flux data for the site US-SuM Maui Sugarcane Middle. Site Description - Continuous, irrigated, sugarcane cultivation for >100 years. Practice is to grow plant sugarcane for 2 years, drydown,... more
This is the AmeriFlux version of the carbon flux data for the site US-SuM Maui Sugarcane Middle. Site Description - Continuous, irrigated, sugarcane cultivation for >100 years. Practice is to grow plant sugarcane for 2 years, drydown, burn leaves, harvest cane, and then till and replant very shortly after harvest. Site differs from Sugarcane Windy and Sugarcane Lee/sheltered in soil and meteorology.
This is the AmeriFlux version of the carbon flux data for the site US-SuW Maui Sugarcane Windy. Site Description - Continuous, irrigated, sugarcane cultivation for >100 years. Practice is to grow plant sugarcane for 2 years, drydown,... more
This is the AmeriFlux version of the carbon flux data for the site US-SuW Maui Sugarcane Windy. Site Description - Continuous, irrigated, sugarcane cultivation for >100 years. Practice is to grow plant sugarcane for 2 years, drydown, burn leaves, harvest cane, and then till and replant very shortly after harvest. Site differs from Sugarcane Lee/Sheltered and Sugarcane Middle in soil type and site meteorology.
Abstract A three-year study was conducted to assess the ability of satellite-based vegetation index (VI) images to track evapotranspiration over wheat. While the ability of using VIs, notably with the Normalized Difference Vegetation... more
Abstract A three-year study was conducted to assess the ability of satellite-based vegetation index (VI) images to track evapotranspiration over wheat. While the ability of using VIs, notably with the Normalized Difference Vegetation Index (NDVI), to track vegetation growth has been well established, the operational capability to accurately estimate the crop coefficient (Kc) and crop evapotranspiration (ETc) at farm-scale from spaceborne platforms has not been widely studied. The study evaluated wheat ET over 7 sites between 2016 and 2019 in Yuma and Maricopa, Arizona, USA estimated by using Sentinel 2 and Venus satellites to map NDVI time-series for entire wheat cropping seasons, December to June. The basal crop coefficient (Kcb) was modeled by the NDVI time-series and the daily FAO56 reference ETo was obtained by near-by weather network stations. Eddy covariance (EC) stations in each field observed ETc during the same seasonal periods, and applied irrigation amounts were logged. The experiment found that remote sensing of NDVI and modeled Kcb accurately estimated Kc and crop ET during mid-season through senescence in most cases. However, NDVI-based estimation performed less well during early season (
Saline-sodic soils are a major impediment for agricultural production in semi-arid regions. Salinity and sodicity drastically reduce agricultural crop yields, damage farm equipment, jeopardize food security, and render soils unusable for... more
Saline-sodic soils are a major impediment for agricultural production in semi-arid regions. Salinity and sodicity drastically reduce agricultural crop yields, damage farm equipment, jeopardize food security, and render soils unusable for agriculture. However, many farmers in developing semi-arid regions cannot afford expensive amendments to reclaim saline-sodic soils. Furthermore, existing research does not cover soil types (e.g., Luvisols and Lixisols) that are found in many semi-arid regions of South America. Therefore, we used percolation columns to evaluate the effect of inexpensive chemical and organic amendments (gypsum and cow manure) on the reclamation of saline-sodic soils in the northeast of Brazil. Soil samples from two layers (0–20 cm and 20–40 cm in depth) were collected and placed in percolation columns. Then, we applied gypsum into the columns, with and without cow manure. The experiment followed a complete randomized design with three replications. The chemical amend...
Diminishing availability of non-saline water in arid and semiarid regions is of concern to all irrigated agricultural producers, including wine and grape producers. Grapes are not a salt tolerant crop and producers often face the choice... more
Diminishing availability of non-saline water in arid and semiarid regions is of concern to all irrigated agricultural producers, including wine and grape producers. Grapes are not a salt tolerant crop and producers often face the choice of either limiting fresh water application, using alternative saline waters or a combination of both. We examined the salt tolerance and effect of restricted water application on three purported salt tolerant rootstocks grafted to Cabernet Sauvignon scion in a 4-year replicated field experiment. ANOVA indicated significant effects of salinity water stress and rootstock on fruit yields. The 140 Ruggeri scion was the top producer across all treatments including control, followed by Salt Creek, with St. George significantly less productive than 140 Ruggeri across all treatments. In terms of salt tolerance, Salt Creek and 140 Ruggeri were not statistically different but St. George was significantly less tolerant than Salt Creek. In terms of drought toler...
Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical... more
Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical environments. We measured ET (ET<sub>EC</sub>) using eddy covariance (EC) towers at two irrigated sugarcane fields on the leeward (dry) side of Maui, Hawaii, USA in contrasting climates. We calculated reference ET at the fields using the short (ET<sub>0</sub>) and tall (ET<sub>r</sub>) vegetation versions of the American Society for Civil Engineers (ASCE) equation. The ASCE equations were compared to the Priestley–Taylor ET (ET<sub>PT</sub>) and ET<sub>EC</sub>. Reference ET from the ASCE approaches exceeded ET<sub>EC</sub> during the mid-period (when vegetation coefficients suggest ET<sub>EC</sub> should exceed reference ET). At the windier tower site, cumulative ET<sub>r...
Soil salinity increases when growers are forced to use higher salinity irrigation waters due to water shortages. It is necessary to estimate the impact of irrigation water on soil properties and conditions for crop growth to manage the... more
Soil salinity increases when growers are forced to use higher salinity irrigation waters due to water shortages. It is necessary to estimate the impact of irrigation water on soil properties and conditions for crop growth to manage the effects of salinity on perennial crops. Therefore, in this study, we monitored root zone salinity in five almond and pistachio orchards in eastern and western San Joaquin Valley (SJV), California (CA). Volumetric soil water contents and bulk electrical conductivities were measured at four root-zone depths. Evapotranspiration was measured by eddy covariance along with three other types of data. The first is seasonal precipitation and irrigation patterns, including the temporal distribution of rains, irrigation events, and irrigation water salinity. The second is soil chemistry, including the initial sodium adsorption ratio (SAR) and soil solute electrical conductivity (ECe). The third type is the physical properties, including soil type, hydraulic cond...
Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical... more
Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical environments. We measured ET (ET<sub>EC</sub>) using Eddy Covariance (EC) towers at two irrigated sugarcane fields on the leeward (dry) side of Maui, Hawaii, USA in contrasting climates. We calculated reference ET at the fields using the short (ET<sub>0</sub>) and tall (ET<sub>r</sub>) vegetation versions of the American Society for Civil Engineers (ASCE) equation. The ASCE equations were compared to the Priestley–Taylor ET (ET<sub>PT</sub>) and ET<sub>EC</sub>. Reference ET from the ASCE approaches exceeded ET<sub>EC</sub> during the mid-period (when vegetation coefficients suggest ET<sub>EC</sub> should exceed reference ET). At the windier tower site, cumulative ET<sub>r...
Diminishing availability of non-saline water in arid and semiarid regions is of concern to all irrigated agricultural producers, including wine and grape producers. Grapes are not a salt tolerant crop and producers often face the choice... more
Diminishing availability of non-saline water in arid and semiarid regions is of concern to all irrigated agricultural producers, including wine and grape producers. Grapes are not a salt tolerant crop and producers often face the choice of either limiting fresh water application, using alternative saline waters or a combination of both. We examined the salt tolerance and effect of restricted water application on three purported salt tolerant rootstocks grafted to Cabernet Sauvignon scion in a 4-year replicated field experiment. ANOVA indicated significant effects of salinity water stress and rootstock on fruit yields. The 140 Ruggeri scion was the top producer across all treatments including control, followed by Salt Creek, with St. George significantly less productive than 140 Ruggeri across all treatments. In terms of salt tolerance, Salt Creek and 140 Ruggeri were not statistically different but St. George was significantly less tolerant than Salt Creek. In terms of drought tolerance (relative yield), there were no statistical differences among rootstocks. Soil salinity profiles and soil moisture sensors indicated reduced water consumption under high salinity, thus no matric stress under 60% of optimal water application when high salt stress was present. The multiplicative stress model where salt and water stress are individually evaluated did not satisfactorily predict yield under combined salinity and reduced water application, likely due to decreased water consumption under saline conditions. Short term (one year) experiments underestimate salt damage to grape vines as salt tolerance decreased over the 4-year experiment.
A B S T R A C T The eddy covariance method is regularly used for measuring gas fluxes over agricultural fields and natural ecosystems. For many applications, it is desirable to partition the measured fluxes into constitutive components:... more
A B S T R A C T The eddy covariance method is regularly used for measuring gas fluxes over agricultural fields and natural ecosystems. For many applications, it is desirable to partition the measured fluxes into constitutive components: the water vapor flux into transpiration and direct evaporation components, and the carbon dioxide flux into photosynthesis and respiration components. The flux variance similarity (FVS) partitioning method is based on flux variance similarity relationships and correlation analyses of high-frequency eddy covariance data (Scanlon and Sahu, 2008; Scanlon and Kustas, 2010, 2012). The FVS method is relatively complex computationally, and that complexity has likely been an impediment to greater use and testing of the procedure. In this work, we present a new algebraic solution to the key computational task in the partitioning algorithm, which significantly simplifies the FVS method. We also introduce Fluxpart, a free and open source Python 3 module that implements the FVS partitioning procedure. Example flux partitioning calculations are presented.
Research Interests:
N/A
Research Interests:
Accurate parameterization of reference evapotranspiration (ET0) is necessary for optimizing irrigation scheduling and avoiding costs associated with over-irrigation (water expense, loss of water productivity, energy costs, and pollution)... more
Accurate parameterization of reference evapotranspiration (ET0) is necessary for optimizing irrigation scheduling and avoiding costs associated with over-irrigation (water expense, loss of water productivity, energy costs, and pollution) or with under-irrigation (crop stress and suboptimal yields or quality). ET0 is often estimated using the FAO-56 method with meteorological data gathered over a reference surface, usually short grass. However, the density of suitable ET0 stations is often low relative to the microclimatic variability of many arid and semi-arid regions, leading to a potentially inaccurate ET0 for irrigation scheduling. In this study, we investigated multiple ET0 products from six meteorological stations, a satellite ET0 product, and integration (merger) of two stations’ data in Southern California, USA. We evaluated ET0 against lysimetric ET observations from two lysimeter systems (weighing and volumetric) and two crops (wine grapes and Jerusalem artichoke) by calculating crop ET (ETc) using crop coefficients for the lysimetric crops with the different ET0. ETc calculated with ET0 products that incorporated field-specific wind speed had closer agreement with lysimetric ET, with RMSE reduced by 36 and 45% for grape and Jerusalem artichoke, respectively, with on-field anemometer data compared to wind data from the nearest station. The results indicate the potential importance of on-site meteorological sensors for ET0 parameterization; particularly where microclimates are highly variable and/or irrigation water is expensive or scarce.
Research Interests:
Urban vegetation provides many highly valued ecosystem services but also requires extensive urban water resources. Increasingly, cities are experiencing water limitations and managing outdoor urban water use is an important concern.... more
Urban vegetation provides many highly valued ecosystem services but also requires extensive urban water resources. Increasingly, cities are experiencing water limitations and managing outdoor urban water use is an important concern. Quantifying the water lost via evapotranspiration (ET) is critical for urban water management and conservation, especially in arid or semi-arid regions. In this study, we deployed a mobile energy balance platform to measure evaporative fraction throughout Riverside, California, a warm, semi-arid, city. We observed the relationship between evaporative fraction and satellite derived vegetation index across 29 sites, which was then used to map whole-city ET for a representative midsummer period. Resulting ET distributions were strongly associated with both neighborhood population density and income. By comparing 2014 and 2015 summer-period water uses, our results show 7.8% reductions in evapotranspiration, which were also correlated with neighborhood demographic characteristics. Our findings suggest a mobile energy balance measurement platform coupled with satellite imagery could serve as an effective tool in assessing the outdoor water use at neighborhood to whole city scales.
Research Interests:

And 29 more