Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Research Interests:
Research Interests:
This study evaluated the effect of chronic sucrose feeding on hemodynamic parameters and renal sympathetic nervous activity. In addition, angiotensin I, II, and 1-7 levels were determined in plasma, heart, kidney, and the epididymal... more
This study evaluated the effect of chronic sucrose feeding on hemodynamic parameters and renal sympathetic nervous activity. In addition, angiotensin I, II, and 1-7 levels were determined in plasma, heart, kidney, and the epididymal adipose tissue. Male Wistar rats were treated for 30 days with 20% sucrose solution (n = 21) or tap water (n = 19) and food ad libitum. Blood pressure, cardiac output, and total peripheral resistance were recorded at the end of the 30-day treatment period. Sympathetic and angiotensinergic systems were evaluated by acute hexamethonium and captopril administration; plasma and tissue (heart, kidney, and epididymal adipose tissue) angiotensins were measured by high-performance liquid chromatography; and angiotensin-converting enzyme activity was determined by continuous fluorescent assay. Plasma renin activity and plasma levels of insulin and leptin were evaluated by radioimmunoassay. Chronic sucrose feeding was associated with increased blood pressure (BP) (129 +/- 1 v 102 +/- 3 mm Hg) and circulating insulin (171%) and leptin (356%) levels when compared with the control group. The sucrose group also showed a 27% higher renal sympathetic nervous activity. The depressor response to hexamethonium was similar in both groups, whereas captopril caused a more pronounced decrease in BP in the sucrose group than in controls (-40 +/- 2 v -11 +/- 2 mm Hg), possibly reflecting the higher plasma renin activity and plasma content of angiotensin II and renal angiotensin II in sucrose rats. These findings suggest a specific renal renin-angiotensin-sympathetic activation as a potential mechanism for the cardiovascular changes in response to chronic sucrose feeding.
The present study was designed to evaluate, in Wistar rats, the effect of high- or low-salt diet on the hemodynamic parameters and on the renal and lumbar sympathetic nerve activity. The renal gene expression of the renin angiotensin... more
The present study was designed to evaluate, in Wistar rats, the effect of high- or low-salt diet on the hemodynamic parameters and on the renal and lumbar sympathetic nerve activity. The renal gene expression of the renin angiotensin system components was also evaluated, aiming to find some correlation between salt intake, sodium homeostasis and blood pressure increase. Male Wistar rats received low (0.06% Na, TD 92141-Harlan Teklad), a normal (0.5% Na, TD 92140), or a high-salt diet (3.12% Na, TD 92142) from weaning to adulthood. Hemodynamic parameters such as cardiac output and total peripheral resistance, and the renal and lumbar sympathetic nerve activity were determined (n=45). Plasma renin activity, plasma and renal content of angiotensin (ANG) I and II, and the renal mRNA expression of angiotensinogen, renin, AT1 and AT2 receptors were also measured (n=24). Compared to normal- and low-salt diet-, high-salt-treated rats were hypertensive and developed an increase (P<0.05) in total peripheral resistance and lumbar sympathetic nerve activity. A decrease in renal renin and angiotensinogen-mRNAs and in plasma ANG II and plasma renin activity was also found in salt overloaded animals. The renal sympathetic nerve activity was higher (P<0.05) in low- compared to high-salt-treated rats, and was associated with an increase (P<0.05) in renal ANG I and II and with a decrease (P<0.05) in AT2 renal mRNA. Plasma ANG I and II and plasma renin activity were higher in low- than in normal-salt rats. Our results show that increased blood pressure is associated with increases in lumbar sympathetic nerve activity and total peripheral resistance in high-salt-treated rats. However, in low-salt-treated rats an increase in the renal sympathetic nerve was correlated with an increase in the renal content of ANG I and II and with a decrease in AT2 renal mRNA. These changes are probably in favor of the antinatriuretic response and the sodium homeostasis in the low-salt group.