Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Fe de errata (1) En el Resumen del artículo, e el pu to dos de e de ir: Mostrar ejemplos de fragmentos decidibles e indecidibles dentro de la Lógica de primer orden y ofrecer una demostración, siguiendo las sugerencias de Nerode y Shore en su libro Logic for applications, del siguiente teorema: Son decidibles todas las fórmulas de la Lógica de primer orden tal que su forma normal prenexa quede de la siguiente manera: ∀ ,…,∀xn∃ ,…,∃ φ ,…, , ,…, ) . (2) En el Abstract del artículo original, en el punto dos (2) debe decir: how examples of decidable and undecidable fragments inside the First-orderLogic and provide a demonstration, following the suggestions of Nerode and Shore in their book "Logic for Applications", of the following theorem: Any formula of First of order logic is decidable if its prenex normal form is in the following form: ∀ ,…,∀xn∃ ,…,∃ymφ ,…, , ,…, . (1) En la introducción, página 91, en las tercera y cuarta líneas del tercer párrafo, debe decir: ofre ie do una prueba, siguiendo las sugerencias que hacen Nerode y Shore en su libro Logic for applications, del siguiente teorema: Son decidibles todas las fórmulas de la Lógica de primer orden tal que su forma normal prenexa quede de la siguiente manera: ∀ ,…,∀xn∃ ,…,∃ φ ,…, , ,…, . Atentamente Los autores.
Fragmentos decidibles e indecidibles en la Lógica de primer orden Ricardo Da Silva * y Franklin Galindo **. Resumen El siguiente artículo tiene tres objetivos: (1) Presentar una actualización de una prueba de la decidibilidad de la Lógica de predicados monádicos en el contexto de la teoría de modelos contemporánea; (2) Mostrar ejemplos de fragmentos decidibles e indecidibles dentro de la Lógica de primer orden, ofreciendo una prueba original del siguiente teorema: Son decidibles todas las fórmulas de la Lógica de primer orden tal que su forma normal prenexa quede de la siguiente manera: ∀x1,…,∀xn∃y1,…,∃ym φ(x1,…,xn,y1,…,ym); (3) Presentar un teorema que caracteriza la validez de la Lógica de Primer orden mediante la tautologicidad de la Lógica proposicional, dicho resultado es de interés, pues inmediatamente surge la duda de cómo conciliar tal caracterización con el Teorema de indecidibilidad de la Lógica de Primer orden de Alonzo Church (1936). Palabras Claves: Lógica de primer orden, Forma Normal Prenexa, Fragmentos decidibles, Fragmentos indecidibles. Decidable and undecidable fragments in First order logic Abstract The present paper has three objectives: (1) Presenting an actualization of a proof of the decidability of monadic predicates logic in the contemporary model theory context; (2) Show examples of decidable and undecidable fragments inside First order logic, offering an original proof of the following theorem: Any formula of First of order logic is decidable if its prenex normal form is in the following form: ∀x1,…,∀xn∃y1,…,∃ymφ(x1,…,xn,y1,…,ym); (3) Presenting a theorem that characterizes the validity of First order logic by the tautologicity of Propositional logic, said result is interesting since immediately arises the doubt of how to conciliate said characterization with Alonzo Church’s Undecidability Theorem for First Order Logic (1936). Keywords: First order logic, Prenex normal form, Decidable fragments, Undecidable fragments. * Universidad Central de Venezuela. Universidad Central de Venezuela. Articulo recibido 15 de octubre de 2016 – Arbitrado 15 de noviembre de 2016 ** Apuntes Filosóficos. Vol. 26. Nº 50 (2017): 90-113. 90 Apuntes Filosóficos. Volumen 26. Número 50/2017 0. Ricardo Da Silva y Franklin Galindo Introducción Aunque la Lógica de primer orden (L 1) como un todo es indecidible 1, se tiene conocimiento de fragmentos dentro de la misma que son decidibles. La noticia de un primer fragmento decidible llega en el año de 1915 de la mano del lógico Leopold Löwenheim, probando así la decidibilidad del cálculo de predicados monádicos (LPM). Mientras que en 1921 el lógico y matemático Emil Post prueba la decidibilidad de un fragmento deductivo del sistema de Principia Mathematica, se trata pues de la decidibilidad de la Lógica proposicional (L p )2. Durante la tercera década de 1900, antes y después del descubrimiento del Teorema de indecidibilidad de Church, muchos lógicos y matemáticos trataban de buscar respuestas parciales (positivas o negativas) al Entscheidungsproblem. Estos intentos implicaban utilizar técnicas de normalización de fórmulas, como es el caso de la Forma normal prenexa o la skolemización, que hacen más fácil el análisis sobre las fórmulas y, en consecuencia, facilitan el estudio de la decidibilidad. En el presente artículo presentamos una actualización de una prueba de la decidibilidad de la Lógica de predicados monádicos al lenguaje de la teoría de modelos contemporánea. Mostraremos ejemplos de fragmentos decidibles e indecidibles dentro de L 1, ofreciendo una prueba original del siguiente teorema: Son decidibles todas las fórmulas de la Lógica de primer orden tal que su forma normal prenexa quede de la siguiente manera: ∀x1,…,∀xn∃y1,…,∃ym φ(x1,…,xn,y1,…,ym) Por último, presentaremos un teorema que caracteriza la validez de L 1 mediante la tautologicidad de L p, dicho resultado es de interés, pues inmediatamente surge la duda de cómo conciliar tal caracterización con el resultado limitativo de Church. 1 Church, A. “An unsolvable problem of elementary number theory” (1936) en Davis, M. (editor), The undecidable. Basic papers on undecidable propositions, unsolvable problems and computable functions. Raven Press, Nueva York, 1965 . En 1936 el lógico americano Alonzo Church prueba que la Lógica de primer orden es indecidible, esto es, no existe un método efectivamente calculable que determine cuando una fórmula es un teorema del sistema o no lo es. Con ayuda de la noción de función recursiva y la técnica de aritmetización de la sintaxis, la numeración de Gödel, podemos enunciar del Teorema de indecidibilidad de Church de la siguiente forma: El conjunto de los números de Gödel de los teoremas de la Lógica de primer orden no es recursivo, es decir, su función característica no es recursiva. 2 Torretti, R. El paraíso de Cantor: la tradición conjuntista en la filosofía de la matemática. Universitaria. Santiago de Chile. 1998. Pág. 253 91 Apuntes Filosóficos. Volumen 26. Número 50/2017 1. Ricardo Da Silva y Franklin Galindo La Lógica de predicados monádicos es decidible En contextos finitos es posible re-expresar una fórmula de la Lógica de predicados monádicos en términos de la Lógica proposicional, expondremos dicho método mediante una serie de ejemplos 3: Si consideramos la existencia de un individuo, a1, la re-escritura de los cuantificadores quedaría de la siguiente manera: ∀x Px ↔ Pa1 y Ǝx Px ↔ Pa1 Si consideramos un universo con dos individuos, a1 y a2, la re-escritura de los cuantificadores quedaría de la siguiente manera: ∀x Px ↔ Pa1 ˄ Pa2 y Ǝx Px ↔ Pa1 v Pa2 En el caso de un universo con k individuos, la re-escritura de los cuantificadores sería la siguiente: ∀x Px ↔ Pa1 ˄ Pa2 ˄ Pa3 ˄ … ˄ Pak Ǝx Px ↔ Pa1 v Pa2 v Pa3 v… v Pak Ahora bien, consideremos la siguiente fórmula de la Lógica de predicados monádicos: [(∀x Px → Qx) ˄ (∀x Sx → Qx)] → (∀x Px → Sx) y evaluémosla en un modelo que contiene exactamente un individuo, a1, su re-escritura proposicional sería: [(Pa1 → Qa1) ˄ (Sa1 → Qa1)] → (Pa1 → Sa1) Si hacemos la tabla de verdad de la fórmula anterior, nos daremos cuenta que hay una fila en donde se le asigna verdad a “Pa1” y “Qa1”, y falso a “Sa1”, esta asignación de valores de verdad hace falsa a toda la fórmula. Dicha fila va permitir definir (de manera natural) un universo con un individuo en la cual la proposición sea falsa. Por lo tanto la fórmula original no es válida. 3 Cf. Copi, I. Lógica simbólica, CECSA, México D.F., 2000, Pág. 103. 92 Fragmentos decidibles e indecidibles en la Lógica de primer orden Consideremos ahora esta otra fórmula: [(∀x Px → Qx) ˄ (Ǝx Sx ˄ Qx)] → (∀x Px → Sx). Para un modelo con un sólo individuo, a1, dicha fórmula sería equivalente a la siguiente: [(Pa1 → Qa1) ˄ (Sa1 ˄ Qa1)] → (Pa1 → Sa1) Si hacemos su tabla de verdad nos daremos cuenta que toda asignación de valores de verdad la hace verdadera, por lo tanto se trata de una fórmula tautológica. Sin embargo, evaluándola bajo un modelo que conste de dos individuos la cuestión cambia, veamos primero como quedaría re-escrita la fórmula en términos proposicionales considerando dos individuos a1 y a2: {[(Pa1 → Qa1) ˄ (Pa2 → Qa2)] ˄ [(Sa1 ˄ Qa1) v (Sa2 ˄ Qa2)]} → [(Pa1 → Sa1) ˄ (Pa2 → Sa2)] Cuando elaboremos la tabla de verdad de la fórmula anterior tendremos que cuando se le asigna verdad a “Pa1”, “Qa1”, “Pa2”, “Qa2” y “Sa2”, y falso a “Sa1” la fórmula resulta falsa. En consecuencia, la fórmula original no es válida. Por lo ocurrido cuando evaluamos la fórmula anterior, cabe preguntarse cuántos individuos hay que considerar para responder a la pregunta de si una fórmula cualquiera de la Lógica de predicados monádicos es válida o no. Se ha encontrado una respuesta satisfactoria a esta pregunta, la cual expresaremos en forma de teorema de la siguiente manera: Teorema de decidibilidad de la Lógica de predicados monádicos (primera versión): Sea φ una fórmula de la Lógica de predicados monádicos que tiene n predicados distintos. Sea U un universo de 2n individuos, y sea φ’ la re-escritura proposicional de φ a esos 2n individuos. Se cumple lo siguiente: I) Si φ’ es tautología, entonces φ es válida. II) Si φ’ no es tautología, entonces φ no es válida. 93 Apuntes Filosóficos. Volumen 26. Número 50/2017 Ricardo Da Silva y Franklin Galindo Una prueba de este resultado puede encontrarse en Introduction to mathematical logic de A. Church 4. Un ejemplo sería el siguiente: Sea φ la fórmula ∀x Px → Ǝx Px. Sea U un universo con dos individuos a1 y a2. La re-escritura de φ con esos dos individuos sería: (Pa1 ˄ Pa2) → (Pa1 v Pa2). Procedamos ahora a realizar la tabla de verdad de la fórmula re-escrita: Pa1 Pa2 (Pa1 ˄ Pa2) → (Pa1 v Pa2) V V V V V V F F V V F V F V V F F F V F Como la fórmula es una tautología podemos concluir que la fórmula original (∀x Px → Ǝx Px) es válida. A continuación, ofreceremos una prueba actualizada del teorema anterior siguiendo al profesor Manuel Garrido 5, previamente ofreceremos las siguientes definiciones y hechos, necesarios para la ejecución de la prueba. Definiciones: Una fórmula φ es válida en un universo no vacío U, si para toda estructura � para el lenguaje φ, cuyo dominio es U, se cumple que � ⊧φ Si una fórmula φ es válida en un universo no-vacío U lo denotaremos así: ⊧U φ Si │U│= n, entonces se dice que φ es n-válida relativa a U, y se denota por: ⊧Un φ 4 Cf. Church, A. Introduction to mathematical logic, Volumen I. Princeton University Press. New Jersy. 1956 Pág. 253. 5 Cf. Garrido, M. Lógica simbólica. Tecnos. Madrid. 2001 (4ta edición)., Págs. 365-366. 94 Fragmentos decidibles e indecidibles en la Lógica de primer orden Una fórmula φ es satisfacible en un universo no-vacío U, si existe una estructura � para el lenguaje de φ, cuyo universo es U, y existe una función s: Var⟶U, tal que � ⊧ φ[s]. Hechos sobre satisfacibilidad y validez en relación con los conceptos anteriormente formulados: (1) Sea φ una fórmula cuantificacional y U un universo no-vacío. Si φ es satisfacible en U, entonces es satisfacible en cualquier universo de igual o mayor cardinalidad, U’. Demostración de (1): Consideremos la cardinalidad de U’. En caso de que sea igual a U se puede establecer entre los individuos de ambos una biyección. En el caso de que U tenga menor cardinalidad que U’ se puede establecer una biyección entre los individuos de U y los individuos de un subconjunto de U’. En cualquiera de los dos casos podemos definir un sistema de predicaciones en U’ que sean equivalentes a los de U y que satisfagan a φ. En el caso de que U’ tenga cardinalidad igual a U se considera que el isomorfismo entre estructuras preserva la verdad. En el caso en que U’ tenga cardinalidad mayor que U, la prueba usa inducción en la complejidad de la fórmula φ de la siguiente manera: Sea φ(x1,…,xn) satisfacible en U. Es decir, existen �1� ,…, ��� y a1,…,an ∈ U tal que <U, �1� ,…, ��� >⊧ φ[a1,…,an] donde ��� ⊆ U es una interpretación de �i en U, y �i son los predicados monádicos de φ, 1≤ i ≤ n. Sea U’ un conjunto tal que |U| < |U’|, y sea h: U ⇾ U’ una función inyectiva. Definimos, con la ayuda de la función h, una estructura con universo U’, así: k є ���’ ⇔ h-1(k) є ��� , 1≤ i ≤ n. Sea la estructura <U’, �1�’ ,…, ���’ >. Probaremos inductivamente en la complejidad de φ que: <U’, �1�’ ,…, ���’ > ⊧ φ[h(a1),…,h(an)]. 1. Caso base: φ es atómica. φ = �i (x). Por hipótesis, existe un a ∈ U, tal que ��� . ���������� ó� <U, �1� ,…, ��� >⊧ �i [a] ��������� a ∈ ��� . Entonces, por definición, <U’, �1�’ ,…, ���’ > ⊧ �i [h(a)]. 2. h(a) ∈ ���’ ⇔ Caso inductivo: φ = ¬α y φ = α ⌃ β se demuestran fácilmente por la definición de satisfacción. Probemos el caso de φ = Ǝx ψ(x1,…,xn): 95 Apuntes Filosóficos. Volumen 26. Número 50/2017 Ricardo Da Silva y Franklin Galindo Si <U, �1� ,…, ��� >⊧ Ǝx ψ[a1,…,an], entonces existe un a ∈ U tal que <U, �1� ,…, ��� >⊧ ��� ��� . ��������� ��� . ���������� ó� ψ[a, a1,…,an] ������� <U’, �1�’ ,…, ���’ > ⊧ ψ[h(a),h(a1),…,h(an)] ���������� <U’, �1�’ ,…, ���’ > ⊧ Ǝx ψ[h(a1),…,h(an)]. □ Otra demostración de este hecho puede encontrarse en el texto Introduction to mathematical logic de Alonzo Church 6. (2) Sea φ una fórmula cuantificacional y U un universo no-vacío. Si φ es válida en U, entonces φ es válida en cualquier universo no-vacío de igual o menor cardinalidad, U’. Demostración de (2): Por la hipótesis del hecho tenemos que φ es válida en U, esto implica que ¬φ no es satisfacible en U, luego por contraposición del hecho anterior tenemos que ¬φ tampoco es satisfacible en U’ y, por tanto, φ es válida en U’.□ Teorema de decidibilidad de la Lógica de predicados monádicos (segunda versión) 7: Sea φ una fórmula de la Lógica cuantificacional mónadica que conste de n letras predicativas distintas. Si φ es válida en un universo de al menos 2n individuos, entonces es válida en todo universo novacío de cualquier cardinalidad. Demostración: Sean P1,…,Pn las letras predicativas distintas que aparecen en la fórmula φ. Sea � =<U,�1∗ ,…, ��∗ > una estructura para el lenguaje de φ. Debemos probar que <U,�1∗ ,…, ��∗ >⊧ φ. A continuación clasificamos los elementos de U mediante la siguiente relación de equivalencia (~): x~y si, y sólo si, x e y cumplen las mismas propiedades en � ( �1∗ ,…, ��∗ ). Así pues, sean u1 y u2 dos elementos de U, tenemos que u1 y u2 pertenecerán a la clase α si las predicaciones P1(u1),…,Pn(u1) tienen en dicho orden el mismo valor de verdad que las 6 7 Cf. Church, A. Introduction to mathematical logic, Pág. 231. Cf. Garrido, M. Lógica simbólica. Pág. 365. 96 Fragmentos decidibles e indecidibles en la Lógica de primer orden predicaciones P1(u2),…,Pn(u2). A lo sumo el número resultante de clases de equivalencias es 2n: α1,…, αk (1≤ k ≤ 2n). El conjunto de las clases de equivalencia (conjunto cociente), lo denotaremos por U/~. Definiremos ahora subconjuntos del conjunto cociente U/~, para interpretar los predicados P1,…,Pn de φ. Diremos que αj є Qi si, y sólo si, para todo u ∈ αj (u ∈ ��∗ ). Donde 1≤ j ≤ 2n y 1≤ i ≤ n. Consideremos ahora la estructura <U/~, Q1,..,Qn> para el lenguaje de φ. Por la hipótesis del teorema y por el hecho (2) tenemos que ⊧U/~ φ, es decir, φ es válida en el conjunto U/~. En particular <U/~, Q1,..,Qn>⊧ φ. Ahora bien, por la forma en que se definieron los conjuntos Qi se cumple que φ es verdad en <U,�1∗ ,…, ��∗ >. Por lo tanto φ es válida. (<U,�1∗ ,…, ��∗ >⊧ φ se puede demostrar, por inducción en la complejidad de φ, probando la siguiente proposición: <U,�1∗ ,…, ��∗ >⊧ φ[s] si, y sólo si, <U/~, Q1,..,Qn>⊧ φ[s’], donde s’: Var⟶ U/~, que se define de la siguiente manera s’(xi)= la clase de equivalencia de s(xi). La demostración procede de la siguiente manera: 1. ∗ ��� . ���������� ó� ��� . ∗ �� ��� �� Caso base: φ es atómica. φ = �(x). <U,� >⊧ �(x)[s] ��������� s(x) ∈ � ������ ��� . ���������� ó� [s(x)] ∈ Q (Esto es, la clase de equivalencia de s(x) pertenece a Q) ��������� <U/~, Q>⊧ �(x)[s’]. 2. satisfacción: Caso inductivo: φ = ¬α y φ = α ⌃ β se demuestran fácilmente por la definición de <U,�1∗ ,…, ��∗ >⊧ ¬α[s] si, y sólo si, <U/~, Q1,..,Qn>⊧ ¬α[s’] <U,�1∗ ,…, ��∗ >⊧ α ⌃ β[s] si, y sólo si, <U/~, Q1,..,Qn>⊧ α ⌃ β[s’] Probemos el caso de φ = Ǝx ψ : ��� . ���������� ó� <U,�1∗ ,…, ��∗ >⊧ Ǝx ψ[s] ��������� existe una asignación s tal que ��� . ��� ������ <U,�1∗ ,…, ��∗ >⊧ ψ[s] ��� . 8 ���������� ó� (donde s = s en todas las variables distintas de x) ������� <U/~, Q1,..,Qn>⊧ ψ[s’] ��������� <U/~, Q1,..,Qn>⊧ Ǝx ψ[s’]). Con esto concluye la prueba del teorema.□ 8 La función s’ se define de la siguiente manera s’(x)= [s(x)]. 97 Apuntes Filosóficos. Volumen 26. Número 50/2017 2. Ricardo Da Silva y Franklin Galindo Forma normal prenexa: Algunos ejemplos de casos decidibles e indecidibles Para toda fórmula φ de la Lógica de primer orden existe otra fórmula φ’ equivalente a φ (es decir, ˫φ ⟷ φ’ o por completitud ⊧ φ ⟷ φ’) que se caracteriza por poseer todos los cuantificadores al inicio de la misma, sobre esta última fórmula decimos que se encuentra en Forma normal prenexa (FNP). Esta re-distribución de los cuantificadores de una fórmula al inicio de la misma facilita tanto las transformaciones sintácticas como las decisiones de interés en el análisis de las fórmulas; es por ello que “una manera cómoda de estudiar el problema de la decisión es el restringir nuestra atención a las fórmulas en forma normal prenexa” 9. Motivados a mostrar como hallar la FNP de una fórmula de L 1 para luego poder mostrar ejemplos de casos decidibles e indecidibles según el prefijo de las fórmulas, listaremos a continuación un conjunto de leyes sobre los cuantificadores que deben entenderse como los fundamentos del procedimiento de obtención de una FNP. Leyes de descenso cuantificacional y de mutación de variables ligadas: Ley de descenso cuantificacional 10: Esta ley permite el paso de lo general a lo particular, es decir, autoriza el paso de la cuantificación universal a la cuantificación particular (siempre y cuando el universo no sea vacío): Desc: ∀x Px → Ǝx Px Leyes de mutación de variables 11: Permiten realizar cambios en las variables ligadas en el interior de una fórmula: MVG: ∀x Px ↔ ∀y Py MVP: Ǝx Px ↔ Ǝy Py 9 Mosterín, J. “El problema de la decisión en la lógica de predicados” en Convivium, Núm. 39, 1973., Pág. 9. Cf. Garrido, M. Lógica simbólica, Pág. 206. 11 Cf. Ibíd., Pág. 206-207. 10 98 Fragmentos decidibles e indecidibles en la Lógica de primer orden Leyes de distribución de cuantificadores 12: La idea general que subyace a las leyes de distribución cuantificacional, es que los cuantificadores pueden ser trasladados desde el exterior hacia el interior, así como del interior hacia el exterior de una fórmula, sin que este cambio afecte (lógicamente) su significado. El esquema general de una ley de distribución cuantificacional es el de una implicación, o en ciertos casos una complicación, que vincula, de uno y otro sentido, un enunciado complejo compacto (donde el prefijo cuantificacional se encuentra fuera del paréntesis) con un enunciado distribuido del mismo (donde los cuantificadores se encuentran adosados a los componentes de las fórmula). Bajo las leyes de distribución cuantificacional encontramos los siguientes grupos de leyes: Distribución de cuantificadores en conjunción. DGC: ∀x (Px ˄ Qx) ↔ ∀x Px ˄ ∀x Qx DPC1: Ǝx (Px ˄ Qx) → Ǝx Px ˄ Ǝx Qx DPC2: Ǝx Px ˄ ∀x Qx → Ǝx (Px ˄ Qx) Distribución de cuantificadores en disyunción. DPD: Ǝx (Px v Qx) ↔ Ǝx Px v Ǝx Qx DGD1: ∀x Px v ∀x Qx → ∀x (Px v Qx) DGD2: ∀x (Px v Qx) → ∀x Px v Ǝx Qx Distribución de cuantificadores en implicación. DGI1: ∀x (Px → Qx) → (∀x Px → ∀x Qx) DGI2: ∀x (Px → Qx) → (Ǝx Px → Ǝx Qx) DPI1: Ǝx (Px → Qx) → (∀x Px → Ǝx Qx) DPI2: (Ǝx Px → Ǝx Qx) → Ǝx (Px → Qx) 12 Cf. Ibíd., Pág. 207-215. 99 Apuntes Filosóficos. Volumen 26. Número 50/2017 Ricardo Da Silva y Franklin Galindo Distribución de cuantificadores en Coimplicación. DGCo1: ∀x (Px ↔ Qx) → (∀x Px ↔ ∀x Qx) DGCo2: ∀x (Px ↔ Qx) → (Ǝx Px ↔ Ǝx Qx) Leyes condicionales de Distribución cuantificacional 13: Existen otras leyes de Distribución cuantificacional para cada conectiva a las que podemos llamar o calificar de condicionales pues han de sujetarse a la condición de que la variable x no esté libre en A. Para la conjunción tenemos: Dist.Cond.G-˄: A ˄ ∀x Px ↔ ∀x (A ˄ Px) Dist.Cond.P-˄: A ˄ Ǝx Px ↔ Ǝx (A ˄ Px) Para la disyunción tenemos: Dist.Cond.G-v: A v ∀x Px ↔ ∀x (A v Px) Dist.Cond.P-v: A v Ǝx Px ↔ Ǝx (A v Px) Para la implicación tenemos: Dist.Cond.G→1: ∀x (A → Px) ↔ (A → ∀x Px) Dist.Cond.G→2: (Ǝx Px→A) ↔ ∀x (Px → A) Dist.Cond.P→1: (A → Ǝx Px) ↔ Ǝx (A → Px) Dist.Cond.P→2: (∀x Px→A) ↔ Ǝx (Px→ A) 13 Cf. Ibíd., Pág. 215-220. 100 Fragmentos decidibles e indecidibles en la Lógica de primer orden Con todas las leyes de distribución de los cuantificadores, podemos definir el concepto de Forma normal prenexa. Forma Normal Prenexa (FNP) 14: Una fórmula se encuentra en Forma Normal Prenexa (FNP) cuando todos los cuantificadores presentes en dicha fórmula están situados al inicio de la misma. Una fórmula α está en FNP si, y sólo si, α tiene la siguiente forma: Q1x1,…,Qnxn β Donde Q1,…,Qn son cuantificadores (universales o existenciales), x1,…,xn son variables y β es una fórmula libre de cuantificadores. De tal manera que a la reunión de los cuantificadores (Q1,…,Qn) se le llama prefijo, mientras que a β se le llama matriz. Dentro de una FNP los cuantificadores no se encuentran negados y el alcance de los mismos llega hasta el final de la fórmula. Teorema: Para cualquier fórmula cuantificacional α existe una fórmula θ en FNP que es equivalente a α. Una demostración de este teorema se puede encontrar en Introduction to mathematical logic de Mendelson, en dicha obra el teorema aparece como la proposición 2.30 15, y la prueba corre por inducción sobre el número de ocurrencias de cuantificadores y conectivas en α, es decir, en la complejidad de α. Un procedimiento para poder transformar una fórmula de la Lógica de primer orden a FNP es el siguiente 16: Paso 1: Se deben eliminar todos los coimplicadores e implicadores que aparecen en la fórmula. Esta tarea se lleva a cabo mediante la eliminación del coimplicador y las leyes de definición de implicador mediante otras conectivas ({˄, ¬}, {v, ¬}). 14 Cf. Mosterín, J. y Torretti, R. Diccionario de lógica y filosofía de la ciencia. Alianza. Madrid. 2002. pág. 247 (Entrada: Forma Normal Prenexa) 15 Cf. Mendelson, E. Introduction to the Mathematical Logical, Chapman and Hall, London, 1997 (4ta Ed.), Pág. 108. 16 Existen varios procedimientos para hallar la FNP de una fórmula de la Lógica de primer orden, nosotros seguiremos el método ofrecido por Garrido, M., Lógica simbólica, Págs. 362-363. 101 Apuntes Filosóficos. Volumen 26. Número 50/2017 Ricardo Da Silva y Franklin Galindo (R1) A↔ B ↔ [(A→ B) ˄ (B→ A)] (R2) A→ B ↔ ¬(A ˄¬B) (R3) A→ B ↔ (¬A v B) Paso 2: Se deben interiorizar las negaciones que afectan directamente a los cuantificadores; esta tarea se lleva a cabo mediante las leyes de negación de cuantificadores. (R4) ¬∀x Px ↔ Ǝx ¬Px (R5) ¬ Ǝx Px ↔ ∀x ¬Px Paso 3: Se deben exteriorizar los cuantificadores existentes respecto a toda conjunción y disyunción. Esta tarea se realiza mediante las cuatro reglas de distribución condicionada del cuantificador en conjunción y disyunción: (R6)= Dist.Cond.G-˄: A ˄ ∀x Px ↔ ∀x (A ˄ Px) (R7) = Dist.Cond.P-˄: A ˄ Ǝx Px ↔ Ǝx (A ˄ Px) (R8)=Dist.Cond.G-v: A v ∀x Px ↔ ∀x (A v Px) (R9)=Dist.Cond.P-v: A v Ǝx Px ↔ Ǝx (A v Px) Paso 4: Con el fin de no ligar alguna otra variable que originalmente no estaba ligada tras la aplicación de las reglas condicionadas de las distribución del cuantificador, es menester aplicar, obviamente cuando sea el caso, las reglas de mutación de variables ligadas que ya expusimos anteriormente: (R10)=MVG: ∀x Px ↔ ∀y Py (R11)=MVP: Ǝx Px ↔ Ǝy Py Paso 5: También se utilizarán las reglas de eliminación de la doble negación y la ley conmutativa, tanto de la conjunción como de la disyunción, con el fin de llevar a cabo la máxima reducción posible en la fórmula. (R12) ¬¬A ↔ A (R13) A˄B↔B˄A (R14) AvB↔BvA 102 Fragmentos decidibles e indecidibles en la Lógica de primer orden (Importante es notar que aquí pudiesen agregarse leyes como las de De Morgan que permiten una mayor reducción y elegancia en la fórmula obtenida). Paso 6 (alternativo): Existe la posibilidad de mantener una absoluta simpleza en el lenguaje de las fórmulas a normalizar a cambio de aumentar el número de reglas de transformación, es decir, se puede omitir el primer paso en pro de la introducción de las siguientes reglas condicionadas: (R15)= Dist.Cond.G→1: ∀x (A → Px) ↔ (A → ∀x Px) (R16)= Dist.Cond.P→1: (A → Ǝx Px) ↔ Ǝx (A → Px) (R17)= Dist.Cond.P→2: (∀x Px→A) ↔ Ǝx (Px→ A) (R18)= Dist.Cond.G→2: (Ǝx Px→A) ↔ ∀x (Px → A) (R19)= DGC: ∀x (Px ˄ Qx) ↔ ∀x Px ˄ ∀x Qx (R20)= DPD: Ǝx (Px v Qx) ↔ Ǝx Px v Ǝx Qx (R21)= DPI1: Ǝx (Px → Qx) → (∀x Px → Ǝx Qx) Es importante señalar que el procedimiento de buscar la FNP de una cierta fórmula α es efectivamente calculable, puesto que este procedimiento termina tras un número finito de pasos, y esto se debe a que la fórmula inicial es de una longitud finita y que el número de reglas es finito (y la aplicación de las mismas se lleva en un numero finito de pasos). Ejemplos: 1) Encuentre la FNP de la siguiente fórmula: Ǝx Qxa → Ǝx Px Solución n° 1: 1. Ǝx Qxa → Ǝx Px (Fórmula inicial) 2. ¬Ǝx Qxa v Ǝx Px 3. ∀x ¬ Qxa v Ǝx Px (R3) 4. Ǝx(∀x ¬ Qxa v Px) (R9) (R5) 103 Apuntes Filosóficos. Volumen 26. Número 50/2017 Ricardo Da Silva y Franklin Galindo 5. Ǝx(∀y ¬ Qya v Px) (R10) (se cambio x por y) 6. Ǝx∀y (¬ Qya v Px) (R8) (FNP de 1) Solución n° 2: 1. Ǝx Qxa → Ǝx Px (Fórmula inicial) 2. Ǝx(Ǝx Qxa → Px) (R16) 3. Ǝx(Ǝy Qya → Px) (R11) (se cambio x por y) 4. Ǝx∀y (Qya → Px) (R18) (FNP de 1) 2) Encuentre la FNP de la siguiente fórmula: ∀xƎy Pxy v ¬Ǝx∀y Qxy Solución n°1: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. ∀xƎy Pxy v ¬Ǝx∀y Qxy ∀uƎy Puy v ¬Ǝx∀y Qxy (Fórmula inicial) ∀u (Ǝw Puw v ¬Ǝx∀y Qxy) (R8) ∀u Ǝw (Puw v ∀x¬∀y Qxy) (R9) ∀u Ǝw (Puw v ∀zƎy¬ Qzy) (R4) ∀u Ǝw∀z (Puw v Ǝv¬ Qzv) (R8) ∀u (Ǝy Puy v ¬Ǝx∀y Qxy) (R10) (se cambio x por u) ∀u Ǝw (Puw v ¬Ǝx∀y Qxy) (R11) (se cambio y por w) ∀u Ǝw (Puw v ∀xƎy¬ Qxy) (R5) ∀u Ǝw∀z (Puw v Ǝy¬ Qzy) (R10) (se cambio x por z) ∀uƎw∀zƎv (Puw v ¬ Qzv) (R11) (se cambio y por v) (R9) (FNP de 1) Solución n°2: 1. 2. 3. 4. 5. ∀xƎy Pxy v ¬Ǝx∀y Qxy ∀uƎy Puy v ¬Ǝx∀y Qxy (Fórmula inicial) ∀u (Ǝy Puy v ∀x¬∀y Qxy) (R8) ∀u (Ǝy Puy v ¬Ǝx∀y Qxy) (R10) (se cambio x por u) ∀u (Ǝy Puy v ∀w¬∀y Qwy) (R5) (R10) (se cambio x por w) 104 Fragmentos decidibles e indecidibles en la Lógica de primer orden 6. 7. 8. 9. 10. 11. ∀u∀w (Ǝy Puy v ¬∀y Qwy) ∀u∀w (Ǝz Puz v ¬∀y Qwy) (R8) ∀u∀wƎz (Puz v Ǝy¬Qwy) (R9) ∀u∀wƎz (Puz v ¬∀y Qwy) (R11) (se cambio y por z) ∀u∀wƎz (Puz v Ǝv¬Qwv) (R4) ∀u∀wƎzƎv (Puz v ¬Qwv) (R11) (se cambio y por v) (R9) (FNP de 1) Gracias a esta técnica de normalización de fórmulas de la Lógica de primer orden el problema de la decisión ha sido profundamente investigado durante la segunda mitad del siglo pasado, dando una rica gama de resultados y, en especial, ofreciendo una demarcación entre conjuntos de fórmulas que son decidibles y las que no lo son de acuerdo a su prefijo. Con respecto a los resultados positivos tenemos que los lógicos P. Bernays y M. Schönfinkel demostraron en 1928 que la clase de fórmulas cuyo prefijo está constituido sólo por cuantificadores universales (∀m) o sólo por cuantificadores existencias (∃m) son clases de fórmulas decidibles 17. También demostraron que las fórmulas cuyo prefijo tenga una cantidad n de cuantificadores universales seguida de una cantidad m de cuantificadores existenciales (∀n∃m) son decidibles 18, una demostración original de este resultado lo ofrecemos más adelante. En 1933 Gödel en un artículo titulado “Sobre el problema de la decisión de la Lógica de primer orden” 19 demuestra que cualquier fórmula en FNP que tenga dos cuantificadores universales seguidos, e.g. (∃n∀2∃m), es decidible. Una lista más detallada y con demostraciones de casos positivos del problema de la decisión para la Lógica de primer orden puede encontrarse en Introduction to mathematical logic de Alonzo Church y en Solvable cases of the decisión problem de W. Ackermann. Ahora bien, para poder listar algunos casos negativos de decidibilidad debemos primero definir el siguiente concepto. 17 Una demostración puede encontrarse en Hilbert y Ackermann, Elementos de la lógica teórica, Editorial Tecnos, Madrid, 1975 (2da. Edición en castellano que corresponde a la séptima edición de la versión alemana)., Págs. 147148. 18 Una demostración puede encontrarse en Ibíd., Pág. 148. 19 Gödel, K. “Sobre el problema de la decisión de la Lógica de primer orden” en Kurt Gödel, Obras completas, Jesús Mosterín (Ed.). Alianza Editorial. Madrid. 1989 (2da edición). 105 Apuntes Filosóficos. Volumen 26. Número 50/2017 Ricardo Da Silva y Franklin Galindo Clase de reducción 20: Una clase de fórmulas de la Lógica de primer orden es una clase de reducción, si el problema general de la decisión de la Lógica de primer orden es reducible al problema de decisión de esa clase. Dicho de otra forma, una clase A es una clase de reducción, si A ⊂ LP (donde LP debe entenderse como el conjunto de todas las fórmulas de L 1) y existe una función recursiva f que a cada fórmula φ Є LP le asigna una, y sólo una, fórmula de A (f(φ)), tal que φ es satisfacible si, y sólo si, f(φ) es satisfacible. Ahora bien, como la Lógica de primer orden es indecidible, entonces cada clase de reducción es indecidible. Con la ayuda de esta noción podemos mencionar los casos negativos del problema de la decisión. El primero fue obtenido en 1920 gracias a Skolem; éste probó que la unión de las clases ∀n∃m es una clase de reducción 21. En el artículo antes mencionado de Gödel de 1933 el autor probó que la unión de las clases ∀3∃m es una clase de reducción. Otro resultado negativo fue obtenido por Kalmar 1950; probó que la unión de las clases ∀2∃m∀ es una clase de reducción. En 1962 los lógicos A. Kahr, E. Moore y H. Wang probaron que ∀∃∀ es una clase de reducción 22. Para demostrar el caso anterior que resulta ser decidible (no referimos a las fórmulas cuyo prefijo tienen la forma ∀n∃m), necesitamos primero listar las reglas del método de las tablas semánticas siguiendo la presentación que hacen Nerode y Shore en Logic for applications 23. Las reglas son las siguientes: 20 Cf. Mosterín, J. “El problema de la decisión en la lógica de predicados”, Pág. 8 Cf. Ibíd. Pág. 9. 22 Cf. Ibídem. 23 Nerode, A. y Shore, R., Logic for applications. Springer, 1997. Pág. 98. 21 106 Fragmentos decidibles e indecidibles en la Lógica de primer orden 1a 1b 2a 2b V (α ˄ β) F (α ˄ β) | V A Vα F A Fα | Fβ Vβ 3a 3b 4a 4b F (α ˄ β) V (¬α) F (¬α) V (α v β) | | Fα Fα Vα | Vα 5a 5b V (α → β) Vβ 6a F (α → β) | Fβ 6b V (α ↔ β) F (α ↔ β) | Vα Fα 7a Vβ V ∀x φ(x) 7b | Fα Vα Vα Fα Fβ | | | | Fβ Vβ Fβ Vβ F ∀x φ(x) 8a 8b V ∃x φ(x) F ∃x φ(x) | | | | V φ(t) F φ(c) V φ(c) F φ(t) Para cualquier término t del Para una nueva constante c. Para una nueva constante c. lenguaje. Para cualquier término t del lenguaje. Ya presentadas las reglas podemos demostrar el siguiente teorema. 107 Apuntes Filosóficos. Volumen 26. Número 50/2017 Ricardo Da Silva y Franklin Galindo Teorema 24: Toda fórmula de la Lógica de primer orden (sin identidad) tal que su forma normal prenexa quede de la siguiente manera: ∀x1,…,∀xn∃y1,…,∃ym φ(x1,…,xn,y1,…,ym) Es decidible. Demostración (Sugerida por Nerode y Shore 25): Es conocido que la validez de ∀x1,…,∀xn∃y1,…,∃ym φ(x1,…,xn,y1,…,ym) se puede reducir a la validez de la fórmula ∃y1,…,∃ym φ(c1,…,cn,y1,…,ym), donde c1,..,cn son nuevos símbolos constantes (una demostración de este hecho puede encontrarse en Elementos de lógica teórica de Hilbert y Ackermann). Ahora consideramos todas las fórmulas de la forma φ(c1,…,cn,d1,…,dm), donde di Є { c1,..,cn }. Debemos notar que la cantidad de dichas sentencias es nm, pues nm = |{ c1,..,cn }m|. Luego, como cada una de estas sentencias se puede considerar una fórmula de la Lógica proposicional, se le puede aplicar algún procedimiento de decisión para decidir su validez, por ejemplo tablas de verdad, forma normal conjuntiva o tablas semánticas. Caso 1: Si alguna de las nm sentencias consideradas es válida, entonces con alguna de dichas sentencias válidas construimos la tabla semántica de la fórmula original ∃y1,…,∃ym φ(c1,…,cn,y1,…,ym) y dicha tabla tendrá todos sus caminos contradictorios, por lo tanto, tal fórmula es válida. El siguiente gráfico sugiere lo que se hace en el caso 1: F ∃y1,…,∃ym φ(c1,…,cn,y1,…,ym) | F φ(c1,…,cn,di1,…,dim) Caso 2: Si ninguna de las nm sentencias consideradas es válida, entonces construimos (considerando las reglas de las tablas semánticas, más el hecho de que cada sentencia tiene al 24 25 Cf. Ibid. Pág. 114. Cf. Ibídem. 108 Fragmentos decidibles e indecidibles en la Lógica de primer orden menos un camino no contradictorio), un camino no contradictorio (de nm trozos, uno por cada sentencia) para la tabla semántica de la sentencia: ∃y1,…,∃ym φ(c1,…,cn,y1,…,ym) Con dicho camino no contradictorio construimos un modelo de la manera usual (RA (ti1,…,tip) ฀ V R(ti1,…,tip)), que hará falsa a la sentencia ∃y1,…,∃ymφ(c1,…,cn,y1,…,ym), por lo tanto, ∃y1,…,∃ym φ(c1,…,cn,y1,…,ym) no es válida. El siguiente gráfico sugiere lo que se hace en el caso 2: F ∃y1,…,∃ym φ(c1,…,cn,y1,…,ym) | F φ(c1,…,cn,di1,…,dim) F φ(c1,…,cn,di1’,…,dim’) F φ(c1,…,cn,di1’’,…,dim’') (nm) -3 veces. Con esto termina la demostración del teorema.□ Un ejemplo del teorema anterior es el siguiente: Decidiremos la validez de la siguiente fórmula: ∀x1∀x2∃y1∃y2(R(y2,x2) → S(x1,y1)) Por el teorema antes mencionado es suficiente con decidir la validez de la siguiente fórmula ∃y1∃y2(R(y2,c2) → S(c1, y1)), donde c1 y c2 son nuevos símbolos constantes. Ahora construimos el siguiente producto cartesiano {c1,c2}×{c1,c2} = {(c1,c1),(c1,c2),(c2,c1),(c2,c2)} y sustituimos a y1 e y2 en ∃y1∃y2(R(y2,c2) → S(c1, y1)). El resultado de tal sustitución son las siguientes sentencias: 109 Apuntes Filosóficos. Volumen 26. Número 50/2017 1) R(c1,c2) → S(c1, c1) 2) R(c2,c2) → S(c1, c1) 3) R(c1,c2) → S(c1, c2) 4) R(c2,c2) → S(c1, c2) Ricardo Da Silva y Franklin Galindo Como ninguna de las cuatro sentencias anteriores es válida, estamos en presencia del caso 2 del teorema y procedemos a construir el camino no-contradictorio de la fórmula ∃y1∃y2(R(y2,c2) → S(c1, y1)): F ∃y1∃y2(R(y2,c2) → S(c1, y1)) | F R(c1,c2) → S(c1, c1) | V R(c1,c2) | F S(c1, c1) | F R(c2,c2) → S(c1, c1) | V R(c2,c2) | F S(c1, c1) | F R(c1,c2) → S(c1, c2) | V R(c1,c2) | F S(c1, c2) | F R(c2,c2) → S(c1, c2) | V R(c2,c2) | F S(c1, c2) 110 Fragmentos decidibles e indecidibles en la Lógica de primer orden Ahora con el camino no-contradictorio construimos la estructura que falseará la sentencia ∃y1∃y2(R(y2,c2) → S(c1, y1)): �= <{c1,c2}, R� = {(c1,c2),(c2,c2)}, S� = ∅, c1, c2> Por la construcción de la estructura se tiene que: � ⊭ ∃y1∃y2(R(y2,c2) → S(c1, y1)) Por lo tanto ∃y1∃y2(R(y2,c2)→ S(c1, y1)) no es válida y en consecuencia ∀x1∀x2∃y1∃y2(R(y2,x2) → S(x1, y1)) no es válida. 3. Una relación entre skolemización, validez en la Lógica de primer orden, tautologicidad en la Lógica proposicional y El Teorema de indecidibilidad de Church. Existe dentro de la lógica formal un teorema que permite caracterizar la validez en la Lógica de primer orden mediante la tautologicidad en la Lógica proposicional, para enunciar dicho teorema debemos previamente ofrecer una definición y unos teoremas que están íntimamente relacionados con su enunciación. Definición de equisatisfacibilidad 26: Decimos que φ y ψ son equisatisfacibles, si ambas son satisfacibles o si ninguna lo es. Teorema (skolemización) 27: Por cada sentencia φ en un lenguaje dado L existe una fórmula universal φ’ en un lenguaje ampliado L’ (que se obtiene por la introducción de nuevos símbolos de función al lenguaje L), tal que φ y φ’ son equisatisfacibles. 26 27 Cf. Ibíd., Pág. 116. Cf. Ibíd., Pág. 118. 111 Apuntes Filosóficos. Volumen 26. Número 50/2017 Ricardo Da Silva y Franklin Galindo Lema 28: Para cualquier sentencia φ de la siguiente forma ∀x1,…,∀xn∃yψ de un lenguaje L, existe una sentencia φ’ de la forma ∀x1,…,∀xn ψ(y/f(x1,…,xn)) 29, en donde f es un símbolo de función que no estaba en L, tal que φ y φ’ son equisatisfacibles. Una demostración, tanto del teorema como del lema, puede encontrarse en Logic for applications de Nerode y Shore 30. A continuación ofrecemos algunos ejemplos de skolemización. Consideremos la siguiente fórmula en su FNP y obtengamos su skolemización: 1. 2. 3. ∀uƎw∀zƎv (P(u,w) v ¬ Q(z,v)) (Fórmula en FNP) ∀u∀z (P(u,f1(u)) v ¬ Q(z,f2(u,z))) (Skolemización de 1) ∀u∀zƎv (P(u,f1(u)) v ¬ Q(z,v)) Consideremos otro ejemplo para hallar la skolemización correspondiente: 1. 2. ∀x∀yƎu∀z (¬( P(x,y) ˄ P(y,z)) v Q(x,y,u)) ∀x∀y∀z (¬( P(x,y) ˄ P(y,z)) v Q(x,y,f(x,y))) (Fórmula en FNP) (Skolemización de 1) Con base en lo anterior podemos enunciar el siguiente teorema, que relaciona la técnica de skolemización, la validez en L 1 y la tautologicidad en L p. Una demostración puede encontrar en Logic for applications de Nerode y Shore 31. Teorema: Sea φ una sentencia en FNP en un lenguaje L, sea ψ la equivalente prenexa de ¬ φ y sea θ(�⃗) 32 una skolemización abierta de ψ en un lenguaje L’. Tenemos que φ es válida si, y sólo si, existen términos �⃗1 ,…,�⃗n 33, de L’ tal que θ(�⃗1),…, θ(�⃗n) es una tautología. 28 Cf. Ibídem. Se sustituye y por f(x1,…,xn) 30 Cf. Ibidem. 31 Cf. Ibid., Pág. 123. 32 �⃗ es una sucesión finita de variables. 29 112 Fragmentos decidibles e indecidibles en la Lógica de primer orden Del teorema anterior se puede inferir que es posible caracterizar la validez en la Lógica de primer orden mediante la noción de tautologicidad de la Lógica proposicional. Ahora bien, ya que para la Lógica proposicional sí existen mecanismos efectivamente calculables que determinen cuándo una fórmula es una tautología o no, surgen inmediatamente las siguientes inquietudes ¿El resultado anterior no contradice el Teorema de indecidibilidad de Church? ¿Nos está diciendo el teorema que se puede reducir el problema de la decidibilidad de L 1 al caso de L p? La respuesta a ambas inquietudes es negativa, el resultado no contradice el Teorema de indecidibilidad de Church, ya que sólo nos dice que existen unos n términos, pero no dice cómo podemos elegirlos de manera efectiva, esto es, no se ofrece un algoritmo para la elección de los términos mencionados (no hay un procedimiento mecánico efectivo para determinar los n términos). 33 �⃗ es una sucesión finita de términos. 113