Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Alfred Tarski’s semantic conception of truth is arguably the most influential – certainly, most discussed - modern conception of truth. It has provoked many different interpretations and reactions, some thinkers celebrating it for... more
    • by 
    •   15  
      Philosophy Of LanguagePragmatismSemanticsTruth
Aξιωματική βάση διατεταγμένο σώμα μεταμαθηματικά Αξίωμα της πληρότητας (συνέχειας) Δεκαδικά αναπτύγματα αριθμών Ακολουθίες Κωσύ Άνω φράγμα, ελάχιστο άνω φράγμα Ιδιότητες της συνέχειας στο R Αρχιμήδειος νόμος πραγματικών αριθμών Ο... more
    • by 
    •   2  
      CalculusMetamathematics
This chapter is devoted to introducing the theories of interval algebra to people who are interested in applying the interval methods to uncertainty analysis in science and engineering. In view of this purpose, we shall introduce the key... more
    • by 
    •   82  
      MathematicsApplied MathematicsRing TheoryField Theory
The first theorem of Cantor's 1891 paper introduced the diagonal method by example; namely, as an argument for showing that any list of the reals is necessarily incomplete and concluding the reals are not denumerable. The present paper,... more
    • by 
    •   11  
      MathematicsSet TheoryRecursion TheoryLogic
From David Hilbert's Philosophy of Mathematics to Rudolf Carnap's Analytic Philosophy: Formalism and the Verifiability Criterion

http://www.ethosfelsefe.com/ethosdiyaloglar/main/?page=oku&id=220
    • by 
    •   17  
      MathematicsPhilosophy Of LanguageEpistemologyPhilosophy of Science
Nous reconsidérons les arguments de Zénon d’Élée dits de l’« Achille » et de la « Dichotomie », en réunissant les perspectives de plusieurs disciplines, dont l’histoire de la philosophie ancienne, l’histoire et la philosophie des... more
    • by 
    •   9  
      History of MathematicsPhilosophy Of MathematicsMetamathematicsPhilosophy of Time
Historical analysis and new concepts enable understanding of Riemann's Hypothesis (RH), his zeta function, mathematics, the principles enabling them, and ontological proofs. They enable new, post-modern metamathematics. New terms and... more
    • by 
    •   20  
      SemioticsSociologyPsychologyNumber Theory
My Oxford 1983doctoral  dissertation
    • by 
    •   5  
      Proof TheoryMetamathematicsArithmeticOrdinals
    • by 
    •   43  
      LanguagesPhilosophyMetaphysicsOntology
In Différence et répétition, Deleuze’s ontology is structured by his theory of dialectical Ideas or problems, which draws features from Plato, Kant, and classical calculus. Deleuze unifies these features through a theory of Ideas/problems... more
    • by 
    •   15  
      MetaphysicsOntologyPhilosophy Of MathematicsPhenomenology
On pense généralement que l'impossibilité, l'incomplétdulité, la paracohérence, l'indécidabilité, le hasard, la calcul, le paradoxe, l'incertitude et les limites de la raison sont des questions scientifiques physiques ou mathématiques... more
    • by 
    •   20  
      MathematicsComputer ScienceComputability TheoryArtificial Intelligence
These remarks take up the reflexive problematics of Being and Nothingness and related texts from a metalogical perspective. A mutually illuminating translation is posited between, on the one hand, Sartre's theory of pure reflection, the... more
    • by 
    •   20  
      AtheismMetamathematicsMetaethicsDialectic
The present paper has three objectives: (1) Presenting an actualization of a proof of the decidability of monadic predicates logic in the contemporary model theory context; (2) Show examples of decidable and undecidable fragments inside... more
    • by  and +1
    •   8  
      Logic And Foundations Of MathematicsLogicPhilosophy Of MathematicsMetamathematics
ويعتقد عادة أن الاستحالة، وعدم اكتمال، وParaconsistency، وعدم تحديد، العشوائية، والحوسبة، والمفارقة، وعدم اليقين وحدود العقل هي قضايا علمية مادية أو رياضية متباينة وجود القليل أو لا شيء في المشتركه. أقترح أنها مشاكل فلسفية قياسية إلى حد... more
    • by 
    •   20  
      HistorySociologyCultural StudiesPsychology
Dedicated to Professor Roberto Torretti, philosopher of science, historian of mathematics, teacher, friend, and collaborator—on his eightieth birthday. This paper discusses the history of the confusion and controversies over whether the... more
    • by  and +1
    •   17  
      Logic And Foundations Of MathematicsLogicHistory of LogicMetamathematics
    • by 
    •   8  
      Logic And Foundations Of MathematicsPhilosophy of MindPhilosophy Of MathematicsMetamathematics
    • by 
    •   7  
      PhilosophyMetamathematicsProbabilityConsistency
The Löwenheim-Hilbert-Bernays theorem states that, for an arithmetical first-order language L, if S is a satisfiable schema, then substitution of open sentences of L for the predicate letters of S results in true sentences of L. For two... more
    • by 
    •   17  
      Analytic PhilosophyLogicHistory of Analytic PhilosophyHistory of Logic
String theory: the foundation of proof theory, grammar, metamathematics, and word processing. John Corcoran, William Frank & Michael Maloney (1974). String Theory. Journal of Symbolic Logic 39 (4):625-637. For each positive n, two... more
    • by  and +1
    •   21  
      SemioticsLogic And Foundations Of MathematicsComputer ScienceLogic
Corcoran’s publications that interpret, criticize, explain, or build on Alfred Tarski’s theories and results.
    • by 
    •   19  
      Logic And Foundations Of MathematicsModel TheoryMetaphysicsLogic
Nous reconsiderons les arguments de Zenon d’Elee dits de l’« Achille » et de la « Dichotomie », en reunissant les perspectives de plusieurs disciplines, dont l’histoire de la philosophie ancienne, l’histoire et la philosophie des... more
    • by 
    •   10  
      PhilosophyHistory of MathematicsPhilosophy Of MathematicsMetamathematics
My CV in English written in Research Gate format.
#DONATIONS. Anyone can donate for dr. Dragoi’s independent research and original music at: https://www.paypal.com/donate/?hosted_button_id=AQYGGDVDR7KH2
    • by 
    •   14  
      MathematicsApplied MathematicsMathematical PhysicsPhysics
This paper presents SRVB, which consists of four approaches for knapsack-based public-key cryptosystems, the three first authored by prof. Daniel Santana Rocha and Yuri Villas Boas, and the other by the latter alone. It provides some... more
    • by 
    •   7  
      MetamathematicsCryptographyCryptanalysisCrowdfunding
INTRODUCING TARSKI'S 1983 LSM.docx Editor's introduction revised edition. Logic, Semantics, Metamathematics. Alfred Tarski, pages xv–xxvii. I wish to express here my most genuine and cordial gratefulness to Professor John Corcoran for... more
    • by 
    •   20  
      MathematicsLogic And Foundations Of MathematicsSet TheoryModel Theory
Topological challenges to the geometry of globalization and polarization Space-time crystals as fundamental to comprehension of global order Via sphere, torus and hyperbola to space-time crystals of governance? Comprehension of... more
    • by 
    •   12  
      CrystallographyGlobal GovernanceSurrealismMetaphor
This paper proposes two distinct types of imaginary (im) infinities ("imfinities") in mathematics and meta-mathematics (including meta-geometry), emphasizing the unlimited "diversity" of zero and infinity, with far-reaching implications... more
    • by 
    •   19  
      MathematicsApplied MathematicsMathematical PhysicsGeometry And Topology
Hal ini sering berpikir bahwa kemustahilan, ketidaklengkapan, Paraconsistency, Undecidability, Randomness, komputasi, Paradox, ketidakpastian dan batas alasan yang berbeda ilmiah fisik atau matematika masalah memiliki sedikit atau tidak... more
    • by 
    •   20  
      HistorySociologyCultural StudiesPsychology
In this first part of a series of articles we discuss the torsion geometry of biology, physics, cognition and perception. We discuss the relations with the non-linear morphomechanics of organisms and the integration of the body's... more
    • by 
    •   17  
      Cognitive ScienceLogic And Foundations Of MathematicsMetaphysicsDevelopmental Biology
यह आमतौर पर सोचा जाता है कि असंभवता, अपूर्णता, Paraconsistency, अनिर्णितता, Randomness, Computability, विरोधाभास, अनिश्चितता और कारण की सीमा अलग वैज्ञानिक शारीरिक या गणितीय मुद्दों में कम या कुछ भी नहीं कर रहे हैं आम. मेरा सुझाव है कि वे... more
    • by 
    •   20  
      HistorySociologyCultural StudiesPsychology
We start from the analysis of how Alan Turing proceeded to build the notion of computability in his famous 1936 text `On computable numbers, with an application to the Entscheidungsproblem'. Looking in detail at his stepwise construction,... more
    • by  and +1
    •   7  
      MathematicsSocial AnthropologyHistory of MathematicsPhilosophy Of Mathematics
This paper will focus on contradictions found between the Godel completeness and first incompleteness theorem in relation to Principia Mathematica (PM). Analysis accepts the first result of the proof that shows that an undecideable... more
    • by 
    •   4  
      Artificial IntelligenceLogicMetamathematicsMathematical Logic
    • by 
    •   26  
      MathematicsSet TheoryAlgorithmsPhilosophy
 In his paper "Finitism" (1981), W.W. Tait maintains that the chief difficulty for everyone who wishes to understand Hilbert's conception of finitist mathematics is this: to specify the sense of the provability of general... more
    • by 
    •   8  
      PhilosophyMetamathematicsClosureEquation
Historical analysis, new discoveries, and explanation enable understanding of Riemann's Hypothesis (RH), his zeta function, and the principles enabling them. The work provides comprehensively definitive, unconditional proofs of Riemann's... more
    • by 
    •   5  
      MathematicsNumber TheorySet TheoryProof Theory
Differentiation arithmetic is a principal and accurate technique for the computational evaluation of derivatives of first and higher order. This article aims at recasting real differentiation arithmetic in a formalized theory of dyadic... more
    • by 
    •   20  
      Ring TheoryModel TheoryReal AnalysisProof Theory
1971. Notes on a Semantic Analysis of Variable Binding Term Operators (Co-author John Herring), Logique et Analyse 55, 646–57. MR0307874 (46 #6989). RG A variable binding term operator (vbto) is a non-logical constant, say v, which... more
    • by 
    •   17  
      Discourse AnalysisNumber TheoryLogic And Foundations Of MathematicsSet Theory
2008. Meanings of Form. Manuscrito 31, 223–266. P Abstract The expressions ‘form’, ‘structure’, ‘schema’, ‘shape’, ‘pattern’, ‘figure’, ‘mold’, and related locutions are used in logic both as technical terms and in metaphors. This paper... more
    • by 
    •   18  
      SemioticsMetaphysicsLogicSemantics
Gödel mostrou que um sistema formal suficientemente complexo para falar sobre si mesmo, não poderia ser ao mesmo tempo completo (capaz de provar a veracidade ou falsidade de qualquer enunciado formalizado no próprio sistema) e consistente... more
    • by  and +1
    •   6  
      Philosophy of SciencePhilosophy Of MathematicsSociology of KnowledgePoststructuralism
I fortunately have questions that I’ve answered about my video and publish them here for your review.
    • by 
    •   44  
      LanguagesCognitive ScienceMathematicsInformation Technology
Three contrasting approaches to the epistemology of argument are presented. Each one is naturalistic, drawing upon successful practices as the basis for epistemological virtue. But each looks at very different sorts of practices and they... more
    • by 
    •   10  
      SociologyPhilosophyEpistemologyPhilosophy of Science
    • by 
    •   8  
      EpistemologyPhilosophy of ScienceLogicMetamathematics
Este voluminoso libro es una recopilación de algunos trabajos del matemático y filósofo William Boos (1943-2014), situados en la zona fronteriza entre matemáticas y filosofía. El estilo que comparten todos los trabajos es un ir y venir... more
    • by 
    •   4  
      EpistemologyMetamathematicsMeta-OntologyHistory of Philosophy
We argue that the set of humanly known mathematical truths (at any given moment in human history) is finite and so recursive. But if so, then given various fundamental results in mathematical logic and the theory of computation, the set... more
    • by 
    •   5  
      Computability TheoryArtificial IntelligenceLogicMetamathematics
This research aims at studying engineering students’ perceptions of their mathematics courses. We present the methodology of data collection, the main themes that the questionnaire investigates and the results. The population on which we... more
    • by 
    •   8  
      PerceptionEngineering EducationMathematics EducationMetamathematics
In Différence et répétition, Deleuze's ontology is structured by his theory of dialectical Ideas or problems, which draws features from Plato, Kant, and classical calculus. Deleuze unifies these features through a theory of... more
    • by 
    •   14  
      MetaphysicsOntologyPhilosophy Of MathematicsPhenomenology
This piece isn't about deflating Kurt Gödel's metamathematics or even deflating his own comments on physics. It's about deflating other people's applications of Gödel's theorems to physics. Indeed Gödel himself wasn't too keen on... more
    • by 
    •   5  
      MathematicsPhysicsPhilosophy of ScienceMetamathematics
'explain' is a game of exploring space(s); #Logica is what it is programmed in. It is a language game of sorts, with a metaphysical twist and a lot of computation. It's a virtual machine of 2 bits fitting into 117 lines of shell script.... more
    • by 
    •   8  
      MathematicsTheory Of ComputationLogicLanguages and Linguistics
Este artigo é uma versão traduzida, revisada e expandida do artigo de G. J. Chaitin publicado em língua inglesa no American Philosophical Association Newsletter on Philosophy and Computers em 2009, uma palestra proferida em junho de 2008... more
    • by 
    •   3  
      EpistemologyTransdisciplinarityMetamathematics