Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
    • by 
    •   6  
      EngineeringBlind Source SeparationNeurocomputingHigh Dimensionality
    • by 
    •   18  
      Information SystemsAlgorithmsArtificial IntelligencePrincipal Component Analysis
    • by 
    •   16  
      Civil EngineeringPrincipal Component AnalysisNonlinear dynamicsModeling
The retrieval of biophysical variables using canopy reflectance models is hindered by the fact that the inverse problem is ill posed. This is due to the measurement, model errors and the inadequacy between the model and reality, which... more
    • by 
    •   10  
      Support Vector MachinesNear InfraredPrior KnowledgeGeomatic Engineering
    • by 
    •   5  
      Unsupervised LearningError AnalysisLow-Rank ApproximationKernel Pca
This paper presents a novel Daubechies-based kernel Principal Component Analysis (PCA) method by integrating the Daubechies wavelet representation of palm images and the kernel PCA method for palmprint recognition. The palmprint is first... more
    • by 
    •   3  
      Support vector machineKernel PcaMachine Learning & Data Mining In Pattern Recognition
    • by 
    •   19  
      Image ProcessingSignal ProcessingData AnalysisPrincipal Component Analysis
    • by 
    •   18  
      Feature SelectionPerformance EvaluationNearest NeighborData Quality
    • by 
    •   8  
      Principal Component AnalysisSupport Vector MachinesNeural NetworksMultidisciplinary
    • by 
    •   20  
      Cognitive SciencePrincipal Component AnalysisSupport Vector MachinesFeature Selection
    • by 
    •   3  
      Speech RecognitionFeature ExtractionKernel Pca
    • by 
    •   25  
      RoboticsComputer ScienceArtificial IntelligenceMachine Learning
The aim of this article is to present the potential of Kernel Principal Component Analysis (Kernel PCA) in the field of vision based robot localization. Using Kernel PCA we can extract features from the visual scene of a mobile robot. The... more
    • by 
    •   6  
      Principal Component AnalysisMobile RobotKernel principal component analysis (KPCA)Kernel Pca
    • by 
    •   32  
      Information SystemsAlgorithmsArtificial IntelligenceImage Processing
Recently, kernel Principal Component Analysis is becoming a popular technique for feature extraction. It enables us to extract nonlinear features and therefore performs as a powerful preprocessing step for classification. There is one... more
    • by 
    •   7  
      Principal Component AnalysisPattern RecognitionFeature ExtractionKernel principal component analysis (KPCA)
    • by 
    •   5  
      Word Sense DisambiguationSupport vector machineComponent AnalysisKernel Pca
The cardiovascular diseases are one of the main causes of death around the world. Automatic detection and classification of electrocardiogram (ECG) signals are important for diagnosis of cardiac irregularities. This paper proposes to... more
    • by 
    •   13  
      Principal Component AnalysisSupport Vector MachinesCardiovascular diseaseElectrocardiography
This paper presents a wavelet-based kernel Principal Component Analysis (PCA) method by integrating the Daubechies wavelet representation of palm images and the kernel PCA method for palmprint recognition. Kernel PCA is a technique for... more
    • by 
    •   9  
      Pattern RecognitionDimension ReductionStandard DeviationWavelet Transform
    • by  and +1
    •   13  
      Principal Component AnalysisSupport Vector MachinesCardiovascular diseaseElectrocardiography
Automated inspection of apple quality involves computer recognition of good apples and blemished apples based on geometric or statistical features derived from apple images. This paper introduces a Gabor feature-based kernel principal... more
    • by 
    •   10  
      Food EngineeringPrincipal Component AnalysisNear InfraredSupport vector machine
In this paper, we address the problem of nding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel ap- plications, such as on using kernel principal component analysis... more
    • by  and +1
    •   15  
      AlgorithmsArtificial IntelligenceMultidimensional ScalingPrincipal Component Analysis
    • by 
    •   10  
      Principal Component AnalysisMathematical ProgrammingMultidisciplinaryDNA analysis
    • by 
    •   29  
      AlgorithmsArtificial IntelligenceIterative MethodsPrincipal Component Analysis
    • by 
    •   20  
      AlgorithmsBiomedical EngineeringPrincipal Component AnalysisRadial Basis Function
    • by 
    •   13  
      Computational ModelingPrincipal Component AnalysisLinear ProgrammingImage Registration
    • by 
    •   10  
      Software EngineeringPrincipal Component AnalysisDimension ReductionCluster Analysis
    • by 
    •   2  
      Experimental EvaluationKernel Pca
    • by 
    •   10  
      Software EngineeringPrincipal Component AnalysisDimension ReductionCluster Analysis
    • by 
    •   5  
      Information TheoryMachine LearningMutual InformationKernel Pca
    • by 
    •   6  
      Principal Component AnalysisFace RecognitionFeature ExtractionEigenfaces
This study investigates recognition of affect in human walking as daily motion, in order to provide a means for affect recognition at distance. For this purpose, a data base of affective gait patterns from non-professional actors has been... more
    • by 
    •   10  
      Machine LearningPrincipal Component AnalysisDiscriminant AnalysisGait Analysis
    • by 
    •   9  
      Principal Component AnalysisPattern RecognitionBreast CancerNovelty Detection
    • by 
    •   11  
      Information SystemsImage segmentationOptimization ProblemModel Selection
Automatic target recognition (ATR) system performance over various operating conditions is of great interest in military applications. The performance of ATR system depends on many factors, such as the characteristics of input data,... more
    • by 
    •   18  
      Feature SelectionPerformance EvaluationNearest NeighborData Quality
    • by 
    •   9  
      Cardiovascular diseaseElectrocardiographyFeature ExtractionSupport vector machine
We develop gain adaptation methods that improve convergence of the Kernel Hebbian Algorithm (KHA) for iterative kernel PCA (Kim et al., 2005). KHA has a scalar gain parameter which is either held constant or decreased according to a... more
    • by 
    •   12  
      MathematicsComputer ScienceMachine LearningOnline Learning
    • by 
    •   15  
      EngineeringMechanical EngineeringChemical EngineeringSystems Engineering
    • by 
    •   20  
      AlgorithmsInformation TheoryInverse ProblemsLie Groups
    • by 
    •   20  
      Applied MathematicsGeologyAlgorithmsMachine Learning
    • by 
    •   14  
      Mechanical EngineeringChemical EngineeringSystems EngineeringNonlinear dynamics
Kernel PCA, as a multivariate statistical process monitoring (MSPM) tool, is a powerful technique capable of coping with non linear relations between variables, thus outperforming classical linear techniques when non linearities are... more
    • by 
    •   2  
      Chemical EngineeringKernel Pca
    • by 
    •   2  
      Support vector machineKernel Pca
    • by 
    •   7  
      Computer ModelHuman CognitionUnsupervised LearningPrimary visual cortex
    • by 
    •   6  
      EngineeringBlind Source SeparationNeurocomputingHigh Dimensionality
    • by 
    •   25  
      RoboticsComputer ScienceArtificial IntelligenceMachine Learning
Recent studies show that principal component analysis (PCA) of heartbeats is a well-performing method to derive a respiratory signal from ECGs. In this study, an improved ECG-derived respiration (EDR) algorithm based on kernel PCA (kPCA)... more
    • by 
    •   33  
      AlgorithmsBiomedical EngineeringGenetic AlgorithmsPrincipal Component Analysis
Recognizing people by gait has a unique advantage over other biometrics: it has potential for use at a distance when other biometrics might be at too low a resolution, or might be obscured. In this paper, an improved method for gait... more
    • by 
    •   13  
      Computer VisionMachine LearningHigher Order ThinkingHigher order statistics
    • by 
    •   9  
      AlgorithmsArtificial IntelligenceMultidisciplinaryLearning
    • by 
    •   4  
      Science LearningKernel principal component analysis (KPCA)Kernel PcaTagucghi Loss Function
    • by  and +1
    •   10  
      Machine LearningPrincipal Component AnalysisData CompressionKernel Methods