The forestry working group of the committee for scientific and technical cooperation between Finland and the Soviet Union initiated cooperation work between the two countries in the field of forestry almost ten years ago. The Finnish organizations the Department of Peatland Forestry, the Finnish Forestry Research Institute, and the Institute of Peatland Forestry of the University of Helsinki participated in the activity. From the Soviet Union the participants have been the Ministry of Forestry, the Russian Federation of USSR, and the Forestry Research Institutes of Leningrad and Estonia.
This paper includes the papers presented in the joint symposium arranged at the Forest Field Station of University of Helsinki on 17.9.1979. The 9 Russian lectures and the 8 Finnish ones, are presented either in their entirety or slightly condensed variably in Finnish, English or Russian. The summary of the seminar is presented in English and in Russian.
The aim of this study was to determine under what conditions and with what premises the growing of Betula pubescens Ehrh. is an economically competitive alternative to the growing of Scots pine (Pinus sylvestris L.) in drained peatlands. The basic material consisted of all drainage projects in Ostrobothnia in Western Finland in 1937–38 and 1957–59, according to the archives of the Central Board of Forestry Tapio, including such areas that were at least moderately fertile and had birch dominated young stands or no tree cover. A total of 202 sample plots were measured.
According to the results, the discounted timber yield of the thinned B. pubescens stands is about 10% greater than that of untreated stands. The removing of birch seedlings and the subsequent growing of fully stocked Scots pine is more profitable than growing B. pubescens stands only if the establishment and subsequent development of the pine stand involve no costs. If the site in question is a fertile open drained peatland, establishment of a pine stand is obviously a better financial proposition than a naturally regenerated birch stand. However, if there is already a fully stocked young birch stand on the site, it is more economical to let it grow using a shortish rotation time.
The PDF includes a summary in English.
In most pine swamp stands on drained peatlands the dwarf-shrubs are rather important biomass producers. The aim of the experiment was to determine the effect of killing off the dwarf-shrub vegetation on the subsequent development of Scots pine (Pinus sylvestris L.) stand. The dwarf-shrub vegetation was killed by means of herbicides. The results show that by removing competition by the dwarf-shrub vegetation on drained pine swamps, it is possible to pass onto the trees at least some of the freed growth potential.
The PDF includes a summary in Finnish.
About one million hectares of forests are fertilized annually in Finland. The goal of the present study was to find out, by means of calculations, how the profitability of forest fertilization varies with variations in the stage of development of tree crops, the quality of the site and its geographical location. Calculations concerned bot fertilization of forests in mineral soil sites and in drained peatlands. The study is a part of a larger project concerning the order of profitability of different forest improvement measures in different conditions. The problems dealt with in this study were approached from the point of view of national economy.
On the basis of two empirical materials it is shown that there is a high correlation between the stand growth percentages before and after the fertilization. Applying the results to existing yield tables the authors calculate benefit/cost ratios showing the stage of development of the stand, the quality of the site and its geographical location. According to the results, fertilization is more profitable in sites of medium fertility than on poor sites. Profitability decreases rather fast from south to north and with decreasing timber prices.
The PDF includes a summary in English.
The paper describes the results obtained from an experiment of fertilization of drained treeless peatlands in connection of planting in three sites in Central Finland. Scots pine (Pinus sylvestris L.) seedlings 2+0 was used. The fertilizer (Y-fertilizer for peat soils, 14% N, 18% P2O5, 10% K2O) was applied in rates of 0, 20, 40 and 80 g/transplant. The fertilizer was strewn either around the plant within a circular patch of 20 cm in diameter, in a ring with a radius of 10 cm and in a ring with a radius of 20 cm. The seedlings were measured two and five years after planting.
The greater the quantity of fertilizer applied and the closer it was applied to the plant the higher was the mortality of transplants. Fertilization increased the mortality during the first two growing seasons after application. Later, however, the mortality decreased to a similar level irrespective the way the fertilizer was applied. In the beginning of the second growing season the fertilized plants showed considerably better height growth than the control plants. The smallest quantity of fertilizer applied produced almost full increase in growth. The pattern of application of the fertilizer had little effect on the growth.
It was concluded that a use of small amounts of fertilizer can be recommended in connection with planting and that it should not be applied very near the seedlings.
The PDF includes a summary in English.
The present paper is a preliminary report of a project designed to determine the order of profitability of various forest improvement measures – seeding and planting, drainage, and fertilization – in various types of stands and in different parts of the country on drained peatlands. Sample plot data on the effect of draining on increment was derived from areas drained 28– 36 years ago. The study was carried out in the southern half of Finland.
The observations on increment changes are based on two measurements of the sample stands 12 years apart. Supplementary calculations indicate that the stands on drained peatland, depending on site quality and tree species, have either continued to grow like mineral-soil sites of similar fertility or have somewhat increased their growth rate.
The effect of draining intensity was studied using strip measurements. It was found that both the total amount of wood produced (current stand + cutting removal + natural removal) and the current annual volume increment for the 5-year period systematically decrease as the ditch interval increases. The decrease is, however, relatively slight. In Eriophorum vaginatum pine swamps, the total amount of wood produced and the increment show a decrease of ca. 20% with an increase in ditch interval from 20 to 60 metres. In other sites, the decrease is ca. 5-10%
It can be concluded that if the increase in ditch interval do not result in considerably poorer timber assortment distributions than indicates by stand production and increment, it is profitable to pan for a relatively large ditch interval and a slightly smaller than maximum wood production. Supplementary data and check calculations may cause some changes in these preliminary results.
The PDF includes a summary in English.
This paper describes the preliminary results of Scots pine (Pinus sylvestris L.) seeding and planting trials on drained peat soils.
The results showed that a perpared peat surface was a better surface for seeding than the unprepared one. Planting of 2+1-year seedlings succeeded better than planting 1-year seedlings. Planting on the turf gave better survival than planting on the unprepared soil surface. The whole growing season was suitable time for planting Scots pine seedlings except May when the peat soil under the surface was still frozen.
Using fertilizers in connection with planting was surveyed in two ways. Mortality of seedlings increased when they were top-dressed with NPK fertilizer. Using a so-called spot fertilizing with several combinations of fertilizers resulted in K and N tending to increase the mortality of seedlings, but P decreasing mortality.
The PDF includes a summary in English.
One forest drainage undertaking in Finland often consists of woodlots belonging to several owners, and over hundred owners may be involved. In the present paper a method for allocation the costs to different owners in a joint drainage undertaking is worked out. The problem has been emphasised by the new Waterways Law, which enables also such drainage projects to be undertaken to which some of the land owners oppose. In those cased the costs must be allocated according to the benefit driven by each owner from the project.
The method attempts to assess the benefits to be driven from the forest drainage, those costs of the drainage that are joint and thus subjected to allocation, and what is the area affected by drainage as used as a basis for cost allocation.
The joined costs are apportioned in the following manner. The area of peatland adjusted to differences in the benefit obtained by drainage is ascertained by the land holder by multiplying the index number by the corresponding areas. In the case of cultivated agricultural land, also an index showing the need for drainage is used in computing the adjusted area. Each topographic unit in the map is provided with a notation of its apportionment area. Joined costs are allocated to different land owners in relation to their adjusted land areas.
The PDF includes a summary in English.
The aim of this work was to study, on the basis of material published earlier (Heikurainen 1959), the effect of temperature on stand increment, to find out if there is any differences between Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.), and to study the effect of site quality on the relationship between stand increment and temperature. The calculations were based on data collected from 396 sample plots on drained peatlands in different parts of Finland.
There seemed to be no differences due to tree species or site quality in the relative amounts of growth under different climatic conditions. Thus, differences in the absolute growth between poor and fertile sites are noticeably smaller in Northern Finland than in Southern Finland. The author suggests that this implies that the lasting maximal increase of growth which can be produced, for instance, by using soil-improving agents must be less in unfavourable conditions than in favourable.
The determination of biologically most favourable strip width in peatlands to be drained has been hindered by lack of information of the temperature conditions in the surface peat and in the air close to the ground after drainage of different intensities. Temperature measurements were carried out on peatlands drained to different degrees in Central Finland in the summers of 1960 and 1961. The ground water level in the measuring points, and the strip width served as the criterion for differences in water condition.
When the drainage became more intensive, the temperature of the surface peat decreased. However, temperature differences were small, and discernible only when the differences of water conditions were considerable. The effect of strip condition to temperature seems to be of similar nature than the ground water level. Even in extreme cases temperature differences due to different drainage intensity were relatively small, and seldom exceeded 2°C.
Differences in temperature dependent on the growing stock may be as high as 10°C. Thus, the temperature of the surface peat may be dependent on factors more important than temperature differences caused by aspects of drainage. A well-drained peatland is coldest at the beginning of a growing season compared with poorly drained peatland. The temperature differences increase deeper in the peat. This is caused by the better heat conductivity of the moist peat. Also, daily variations in temperature in the surface peat are large in moist peat.
The PDF includes a summary in English.
An extensive field-based survey was conducted to establish the distribution of site types on drained peatlands, the condition of the drainage networks, the post-drainage development of the tree stands, their structure and silvicultural condition and the corresponding requirements for operational measures. The data is based on sampling of the forest drainage undertaking during 1930–78 and consists of 1,312 km inventory transect, 6,030 relascope sample plots and 21,700 studied ditches.
Of the studied peatlands more than 60% were Scots pine (Pinus sylvestris L.) mires, slightly under 20% Norway spruce (Picea abies) mires, and under 10% each treeless mires and paludified upland forest sites. The remaining peatland area that is to be considered suitable for forest drainage according to criteria used by Heikurainen (1960) now consists mainly of spruce mires and paludified upland forest types; about 1 million ha both groups still remain undrained.
The proportion of ditches in need of ditch cleaning was estimated to be under 10% in the youngest drained areas and under 30% in the oldest. The mean tree stand volumes of the drained peatlands of different site types show the same dependence on the trophic level as in earlier studies but the volumes seem to be some 5–10% lower. These results compare favourably with those of the 7th national forest inventory.
Trends in the post-drainage development of tree stand volumes and increment are also, generally, in accordance with earlier findings but have somewhat lower values. The development of the nutrient-poor site type stands, especially in Northern Finland, seems to be significantly poorer than was earlier assumed.
The PDF includes a summary in English.
The study deals with the development during the 1950s and 1960s of a stand growing on peatlands which had been drained in the 1930s. The following characters were determined by measurements: the volume of the growing stock, the volume increment, the relative increment, the increment percent and the increment curves. Moreover, the possible changes taking place in the difference between tree growth along the ditches and in the middle of the strip between ditches were studied. In addition, the regional variation in increment was studied; this question was studied as the regression between the relative growth and the temperature sum. The results were compared with other Finnish investigations into the regional variation of increment.
The volumes of the growing stock had increased during the course of twelve years by 70–10 m3 /ha depending on the site type and climatic zone concerned. The relative increment had dropped in each case studied. As a matter of fact, this is only to be expected because the volumes had increased and the absolute growth had remained more or less unchanged. The development of the increment percent was compared with mineral soil stands in the case of Southern Finland, both uncut stands and stands treated with cuttings. According to the results obtained, the development of the increment percent was better in the present material than in uncut forests, but in some cases it did not reach the level of tended stands. The revival of the tree crop after draining takes place at different rates in the vicinity of and, on the other hand, at greater distances from the ditches and that this relationship is dependent on the fertility of the site.
The PDF includes a summary in English.
The paper is based on data collected from 411 sample plots in various parts of Finland situated on peatlands which had been drained in the 1930's. The purpose of the study was to determine the influence of ditch spacing on the volume, increment and structure of timber crops growing on drained peatlands. The ditches had been spaced 70–90 m apart, and the sample plots were placed strip wise along the ditches.
The results of the study indicate that the influence of ditch spacing on both the total volume and the volume increment is greater, the poorer the site. On the other hand, the influence of ditch spacing on the structure of the stand as described by means of the mean diameter as weighted by the basal area, seems to be of similar magnitude in all the sites covered by the study.
Generally speaking, the influence of ditch spacing on stand development is surprisingly small, even in extreme cases. The total volume and the increment of the growing stock decrease by about 20% when the ditch spacing increases from 20 to 60 m, the corresponding decrease in the mean diameter having a magnitude of 10%. This was interpreted to be due to the fact that the main part of the superior growth along the margin of the ditch is spent in compensating for the space lost in the area taken up by the ditches.
On the basis of the results obtained it was concluded that the best solution in forest drainage from the economic viewpoint is to employ relatively wide ditch spacings, which leads to a rate of stand development somewhat below the potential.
The PDF includes a summary in Finnish.
The present study is an attempt to establish the response to drainage of Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.) on some peatland sites, and to determine the revival of the trees and continuance of the growth after drainage. Growth of trees in four types of peatland types of drained peatlands drained between 1908-1918 were studied, and the results were compared with corresponding mineral soil sites
In pine the response to drainage was faster than in spruce in all age classes. Even the oldest groups of trees showed as good growth as trees of the same size growing on mineral soils. The rapidity of revival and the radial growth maximum are affected by the age of the tree at the time of ditching and the site fertility. The size of the trees, too, is of importance for the magnitude of post-drainage radial growth; the influence is similar in different sites. The basal area growth of trees growing on peat usually showed an unbroken increase during the entire post-drainage period. Neither the height growth indicates a decline in growth over time.
In the light of the results from sample tree analysis, it seems that tree growth gradually rises even after the revival period in peatlands originally covered by forest. The are some errors in the comparisons made, but it can be observed that aging of drainage areas as such does not mean that growth conditions become poorer.
The PDF includes a summary in English.