Location via proxy:
[ UP ]
[Report a bug]
[Manage cookies]
No cookies
No scripts
No ads
No referrer
Show this form
Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
http://dbpedia.org/class/yago/WikicatLieAlgebras
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia.org
Property
Value
rdfs:
subClassOf
yago
:Algebra106012726
owl:
equivalentClass
yago-res
:wikicat_Lie_algebras
is
rdf:
type
of
dbr
:Engel's_theorem
dbr
:Engel_group
dbr
:Engel_identity
dbr
:Engel_subalgebra
dbr
:Monster_Lie_algebra
dbr
:Restricted_Lie_algebra
dbr
:Bianchi_classification
dbr
:Algebraic_character
dbr
:Anyonic_Lie_algebra
dbr
:Argument_shift_method
dbr
:Littelmann_path_model
dbr
:Derivation_(differential_algebra)
dbr
:Duflo_isomorphism
dbr
:Dynkin_diagram
dbr
:Dynkin_index
dbr
:Index_of_a_Lie_algebra
dbr
:Invariant_convex_cone
dbr
:Jacobi_identity
dbr
:Lie_algebroid
dbr
:R-algebroid
dbr
:Levi_decomposition
dbr
:Lie's_third_theorem
dbr
:Lie-*_algebra
dbr
:Lie_algebra_cohomology
dbr
:Lie_algebra_representation
dbr
:Lie_bialgebra
dbr
:Lie_coalgebra
dbr
:Lie_conformal_algebra
dbr
:Lie_group
dbr
:Lie_superalgebra
dbr
:Lie–Kolchin_theorem
dbr
:Lie–Palais_theorem
dbr
:Pre-Lie_algebra
dbr
:Weil_algebra
dbr
:(B,_N)_pair
dbr
:Complexification_(Lie_group)
dbr
:Chevalley_basis
dbr
:Generalized_Kac–Moody_algebra
dbr
:Nilradical_of_a_Lie_algebra
dbr
:N_=_2_superconformal_algebra
dbr
:Quadratic_Lie_algebra
dbr
:Quasi-Frobenius_Lie_algebra
dbr
:Coset_construction
dbr
:Crystal_base
dbr
:Vogel_plane
dbr
:Lie_algebra
dbr
:Magnus_expansion
dbr
:Chiral_Lie_algebra
dbr
:Fundamental_representation
dbr
:Harish-Chandra_isomorphism
dbr
:Parabolic_Lie_algebra
dbr
:Macdonald_identities
dbr
:Malcev_Lie_algebra
dbr
:Malcev_algebra
dbr
:Structure_constants
dbr
:Symplectic_group
dbr
:Baker–Campbell–Hausdorff_formula
dbr
:Adjoint_bundle
dbr
:Ado's_theorem
dbr
:Whitehead's_lemma_(Lie_algebras)
dbr
:Dixmier_mapping
dbr
:Dual_representation
dbr
:Jantzen_filtration
dbr
:Laurent_polynomial
dbr
:Linear_Lie_algebra
dbr
:Super-Poincaré_algebra
dbr
:Supersymmetry_algebra
dbr
:Tate_Lie_algebra
dbr
:Nilpotent_cone
dbr
:Nilpotent_orbit
dbr
:N_=_1_supersymmetry_algebra_in_1_+_1_dimensions
dbr
:Affine_Lie_algebra
dbr
:Current_algebra
dbr
:Capelli's_identity
dbr
:Differential_graded_Lie_algebra
dbr
:Graded_Lie_algebra
dbr
:Jordan–Chevalley_decomposition
dbr
:Kac–Moody_algebra
dbr
:Kantor–Koecher–Tits_construction
dbr
:Knizhnik–Zamolodchikov_equations
dbr
:Kostant's_convexity_theorem
dbr
:Leibniz_algebra
dbr
:Universal_enveloping_algebra
dbr
:Radical_of_a_Lie_algebra
dbr
:Regular_element_of_a_Lie_algebra
dbr
:Ringel–Hall_algebra
dbr
:Atiyah_algebroid
dbr
:Coxeter_group
dbr
:Hypoalgebra
dbr
:Simple_Lie_group
dbr
:Affine_root_system
dbr
:Killing_form
dbr
:Symmetric_cone
dbr
:Weight_(representation_theory)
dbr
:Weyl's_theorem_on_complete_reducibility
dbr
:Modular_Lie_algebra
dbr
:Borel–de_Siebenthal_theory
dbr
:Poincaré–Birkhoff–Witt_theorem
dbr
:Special_linear_Lie_algebra
dbr
:Group_contraction
dbr
:Group_of_Lie_type
dbr
:Orthogonal_group
dbr
:Cartan's_criterion
dbr
:Cartan_decomposition
dbr
:Cartan_matrix
dbr
:Cartan_subalgebra
dbr
:Casimir_element
dbr
:Nijenhuis–Richardson_bracket
dbr
:Loop_algebra
dbr
:Satake_diagram
dbr
:Valya_algebra
dbr
:Virasoro_algebra
dbr
:Principal_subalgebra
dbr
:Zinbiel_algebra
dbr
:Restricted_root_system
dbr
:Superconformal_algebra
dbr
:Manin_triple
dbr
:Springer_resolution
dbr
:Vogan_diagram
dbr
:Super_Virasoro_algebra
dbr
:Real_form_(Lie_theory)
dbr
:Takiff_algebra
dbr
:Sl2-triple
dbr
:Whitehead_product
dbr
:Witt_algebra
dbr
:Quasi-Lie_algebra
dbr
:Table_of_Lie_groups
dbr
:Orthogonal_symmetric_Lie_algebra
dbr
:Weyl_group
dbr
:Root_system_of_a_semi-simple_Lie_algebra
dbr
:Simplicial_Lie_algebra
dbr
:Split_Lie_algebra
dbr
:Supermathematics
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported License