Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
The purpose of this study was to compare joint kinematics, knee and trunk muscle activation and co-activation patterns during a sit-to-stand movement in women with knee osteoarthritis and age-matched controls. Eleven women with knee... more
The purpose of this study was to compare joint kinematics, knee and trunk muscle activation and co-activation patterns during a sit-to-stand movement in women with knee osteoarthritis and age-matched controls. Eleven women with knee osteoarthritis (mean and standard deviation, age: 66.90, 4.51years, height: 1.63, 0.02m, mass: 77.63, 5.4kg) and eleven healthy women (mean and standard deviation, age: 61.90, 3.12years, height: 1.63m, 0.03, mass: 78.30, 4.91kg) performed a Sit to Stand movement at a self-selected slow, normal and fast speed. Three-dimensional joint kinematics of the lower limb, vertical ground reaction forces and electromyographic activity of the biceps femoris vastus lateralis and erectus spinae were recorded bilaterally. A two-way ANOVA showed that the osteoarhtitis group performed the sit to stand task using a smaller knee and hip range of motion compared with the control group while no differences in temporal kinematics and ground reaction force-related parameters were observed. In addition, women with osteoarhtritis displayed significantly lower vastus lateralis coupled with a higher biceps feomoris electromyographic activity and higher agonist-antagonist co-contraction and co-activation than asymptomatic women. The activation of erectus spinae was not different between groups. Results indicate that patients with moderate knee osteoarthritis rise from the chair using greater knee muscle co-contraction, earlier and greater activation of the hamstrings which results in reduced hip and knee range of motion. This may be a way to overcome the pain and potential muscle atrophy of knee extensor muscles without compromising overall task duration.
Good kicking technique is an important aspect of a soccer player. Therefore, understanding the biomechanics of soccer kicking is particularly important for guiding and monitoring the training process. The purpose of this review was to... more
Good kicking technique is an important aspect of a soccer player. Therefore, understanding the biomechanics of soccer kicking is particularly important for guiding and monitoring the training process. The purpose of this review was to examine latest research findings on biomechanics of soccer kick performance and identify weaknesses of present research which deserve further attention in the future. Being a multiarticular movement, soccer kick is characterised by a proximal-to-distal motion of the lower limb segments of the kicking leg. Angular velocity is maximized first by the thigh, then by the shank and finally by the foot. This is accomplished by segmental and joint movements in multiple planes. During backswing, the thigh decelerates mainly due to a motion-dependent moment from the shank and, to a lesser extent, by activation of hip muscles. In turn, forward acceleration of the shank is accomplished through knee extensor moment as well as a motion-dependent moment from the thig...
The purpose of this study was to examine, first, the movement actions performed during two different small-sided games and, second, their effects on a series of field endurance and technical tests. Thirty-four young soccer players (age:... more
The purpose of this study was to examine, first, the movement actions performed during two different small-sided games and, second, their effects on a series of field endurance and technical tests. Thirty-four young soccer players (age: 13 ± 0.9 yrs; body mass: 62.3 ± 15.1 kg; height: 1.65 ± 0.06 m) participated in the study. Small-sided games included three-a-side (3 versus 3 players) and six-a-side (6 versus 6 players) games consisting of 10 bouts of 4 min duration with 3 min active recovery between bouts. Soccer player performance was evaluated using five field tests: a) 30m sprint, b) throw-in for distance, c) Illinois Agility Test, d) dribbling the ball and e) horizontal jump before, in the middle and after the implementation of both game situations. Heart rate was monitored during the entire testing session. Each game was also filmed to measure soccer movements within the game. The ANOVA analysis indicated that the three-a- side games displayed significantly higher heart rate ...
Hamstrings activation when acting as antagonists is considered very important for knee joint stability. However, the effect of hamstring antagonist activity on knee joint loading in vivo is not clear. Therefore, the purpose of this study... more
Hamstrings activation when acting as antagonists is considered very important for knee joint stability. However, the effect of hamstring antagonist activity on knee joint loading in vivo is not clear. Therefore, the purpose of this study was to examine the differences in antagonistic muscle force and their effect on agonist muscle and intersegmental forces during isokinetic eccentric and concentric efforts of the knee extensors. Ten males performed maximum isokinetic eccentric and concentric efforts of the knee extensors at 30 degrees s(-1). The muscular and tibiofemoral joint forces were then estimated using a two-dimensional model with and without including the antagonist muscle forces. The antagonist moment was predicted using an IEMG-moment model. The predicted antagonist force reached a maximum of 2.55 times body weight (BW) and 1.16 BW under concentric and eccentric conditions respectively. Paired t-tests indicated that these were significantly different (p<0.05). A one-way analysis of variance indicated that when antagonist forces are included in the calculations the patella tendon, compressive and posterior shear joint forces are significantly higher compared to those calculated without including the antagonist forces. The anterior shear force was not affected by antagonist activity. The antagonists produce considerable force throughout the range of motion and affect the joint forces exerted at the knee joint. Further, it appears that the antagonist effect depends on the type of muscle action examined as it is higher during concentric compared to eccentric efforts of the knee extensors.
The purpose of this study was to compare the effects of static and dynamic stretching on quadriceps muscle activation during maximal soccer instep kicking. The kicking motion of twelve male college soccer players (body height: 174.66 ±... more
The purpose of this study was to compare the effects of static and dynamic stretching on quadriceps muscle activation during maximal soccer instep kicking. The kicking motion of twelve male college soccer players (body height: 174.66 ± 5.01 cm; body mass: 72.83 ± 4.83 kg; age: 18.83 ± 0.75 years) was captured using six synchronized high-speed infra-red cameras whilst electromyography (EMG) signals from vastus medialis (VM), lateralis (VL) and rectus femoris (RF) were recorded before and after static or dynamic stretching. Analysis of variance designs showed a higher increase in knee extension angular velocity (9.65% vs. -1.45%, p < 0.001), RF (37.5% vs. -8.33%, p < 0.001), VM (12% vs. -12%, p < 0.018), and VL EMG activity (20% vs. -6.67%, p < 0.001) after dynamic stretching exercises. Based on these results, it could be suggested that dynamic stretching is probably more effective in increasing quadriceps muscle activity and knee extension angular velocity during the final swing phase of a maximal soccer instep kick than static stretching.
Cutting in soccer is a common skill used to avoid the opponent's pressure but the potential effects of such a skill on instep kicking performance have not been previously investigated. The purpose of this... more
Cutting in soccer is a common skill used to avoid the opponent's pressure but the potential effects of such a skill on instep kicking performance have not been previously investigated. The purpose of this study was to examine the differences in lower limb biomechanics between straight approach soccer kicks and kicks performed following a cutting maneuver task. Ten young amateur soccer players performed, in a random order, instep kicks after a two-step straight approach run and kicks after a double "faking" cutting maneuver task. The results showed that kicking after a cutting maneuver task displayed significantly lower ball speed values compared with the straight approach instep kicking (16.73 vs. 19.78 m/s, respectively; p < 0.05). Moreover, analysis of variance showed significant differences between the two kicking conditions in ankle, knee and hip joint displacements. The present study indicated that performing instep kicks after a double-cutting maneuver reduces ball and foot speed probably due to increasing joint frontal and transverse plane rotations. Improvements in the performance of the cutting maneuver task through training might result in better transfer of energy and speed to the kicking task thus permitting players to perform more powerful kicks under realistic game conditions.
The purpose of the study was to examine the effects of a resistance exercise program on soccer kick biomechanics. Twenty male amateur soccer players were divided in the experimental group (EG) and the control group (CG), each consisting... more
The purpose of the study was to examine the effects of a resistance exercise program on soccer kick biomechanics. Twenty male amateur soccer players were divided in the experimental group (EG) and the control group (CG), each consisting of 10 players. The EG followed a 10-week resistance exercise program mainly for the lower limb muscles. Maximal instep kick kinematics, electromyography, and ground reaction forces (GRFs) as well as maximum isometric leg strength were recorded before and after training. A 2-way analysis of variance showed significantly higher ball speed values only for the EG (26.14 ± 1.17 m·s vs. 27.59 ± 1.49 m·s before and after training, respectively), whereas no significant differences were observed for the CG. The EG showed a decline in joint angular velocities and an increase in biceps femoris electromyography of the swinging leg during the backswing phase followed by a significant increase in segmental and joint velocities and muscle activation of the same leg during the forward swing phase (p < 0.05). The EG also showed significantly higher vertical GRFs and rectus femoris and gastrocnemius activation of the support leg (p < 0.05). Similarly, maximum and explosive isometric force significantly increased after training only for the EG (p < 0.05). These results suggest that increases in soccer kicking performance after a 10-week resistance training program were accompanied by increases in maximum strength and an altered soccer kick movement pattern, characterized by a more explosive backward-forward swinging movement and higher muscle activation during the final kicking phase.
The purpose of the present study was to compare the three-dimensional kinematics of the lower extremities and ground reaction forces between the instep kick and the kick with the outside area of the foot (outstep kick) in pubertal soccer... more
The purpose of the present study was to compare the three-dimensional kinematics of the lower extremities and ground reaction forces between the instep kick and the kick with the outside area of the foot (outstep kick) in pubertal soccer players. Ten pubertal soccer players performed consecutive kicking trials in random order after a two-step angled approach with the instep and the outstep portion of the foot. Three-dimensional data and ground reaction forces were measured during kicking. Paired t-tests indicated significantly higher (P < 0.05) ball speeds and ball/foot speed ratios for the instep kick compared with the outstep kick. Non-significant differences in angular and linear sagittal plane kinematic parameters, temporal characteristics, and ground reaction forces between the instep and outstep soccer kicks were observed (P > 0.05). In contrast, analysis of variance indicated that the outstep kick displayed higher hip internal rotation and abduction, knee internal rotation, and ankle inversion than the instep kick (P < 0.05). Our results suggest that the instep kick is more powerful than the outstep kick and that different types of kick require different types of skill training.
The semitendinosus (ST) consists of a long distal tendon and it is divided in two parts by a tendinous inscription (TI). The purpose of this study was to quantify strain and elongation of the TI and the distal tendon of ST. Fourteen... more
The semitendinosus (ST) consists of a long distal tendon and it is divided in two parts by a tendinous inscription (TI). The purpose of this study was to quantify strain and elongation of the TI and the distal tendon of ST. Fourteen subjects performed ramp isometric contractions of the knee flexors at 0°, 45° and 90° of knee flexion. Two ultrasound probes were used to visualize the displacement of the distal tendon and selected points across the TI and aponeuroses. Three-way analysis of variance designs indicated that: (a) strain and elongation of the ST distal muscle-tendon junction were higher than that of the aponeurosis - TI junction points (p < 0.05) (b) the long arm of the TI reach strain of 49.86 ± 7.77% which was significantly (p < 0.05) higher than that displayed by the short arm (28.35 ± 0.59%) (c) Strain of tendinous and TI-aponeuroses segments significantly increased from 90° to 0° of knee flexion while the inverse was observed for the TI arm length (p < 0.05). (d) Tendon strain was significantly higher than strain of the TI-aponeuroses segments at 45° and 90° of knee flexion while the opposite was observed at 0° of knee flexion. The arrangement of TI along ST length results in differential local strains, indicating that the mechanical properties of the ST muscle are affected by tendon, aponeuroses and tendinous inscription interactions.
The purpose of this study was to understand the detailed architectural properties of the human hamstring muscles. The long (BFlh) and short (BFsh) head of biceps femoris, semimembranosus (SM) and semitendinosus (ST) muscles were dissected... more
The purpose of this study was to understand the detailed architectural properties of the human hamstring muscles. The long (BFlh) and short (BFsh) head of biceps femoris, semimembranosus (SM) and semitendinosus (ST) muscles were dissected and removed from their origins in eight cadaveric specimens (age 67.8±4.3 years). Mean fiber length, sarcomere length, physiological cross-section area and pennation angle were measured. These data were then used to calculate a similarity index (δ) between pairs of muscles. The results indicated moderate similarity between BFlh and BFsh (δ=0.54) and between BFlh and SM (δ=0.35). In contrast, similarity was low between SM and ST (δ=0.98) and between BFlh and SM (δ=1.17). The fascicle length/muscle length ratio was higher for the ST (0.58) and BFsh (0.50) compared with the BFlh (0.27) and SM (0.22). There were, however, high inter-correlations between individual muscle architecture values, especially for muscle thickness and fascicle length data sets. Prediction of the whole hamstring architecture was achieved by combining data from all four muscles. These data show different designs of the hamstring muscles, especially between the SM and ST (medial) and BFlh and BFsh (lateral) muscles. Modeling the hamstrings as one muscle group by assuming uniform inter-muscular architecture yields less accurate representation of human hamstring muscle function.
Appropriate reliability is a necessary condition for the use of surface EMG for evaluation of hamstring muscle function in cases of knee joint pathologies or ligament injuries. The aim of the study was to investigate the test-retest... more
Appropriate reliability is a necessary condition for the use of surface EMG for evaluation of hamstring muscle function in cases of knee joint pathologies or ligament injuries. The aim of the study was to investigate the test-retest reliability of power spectrum and amplitude of surface electromyographic (EMG) measurements of semitendinosus (ST) and biceps femoris (BF) during ramp isometric contractions. Eleven males performed maximum isometric contractions (MVC) of the knee flexors in two sessions, a week apart with simultaneous recording of surface EMG of the BF and ST. Intra class correlation (ICC) and standard error measurements (SEM) were applied to assess test-retest reliability of the averaged EMG (aEMG) and the median frequency (MF) over 10 levels of force, from 0% to 100% of the maximum. The ICC values ranged from 0.38 to 0.96 for the aEMG with SEM values reaching 11.37% of MVC. For the MF, the ICCs ranged from 0.44 to 0.98 (SEM range 4.49-18.19Hz). In our set up, ramp contractions can be used to examine hamstring EMG patterns with acceptable reliability.
Hamstrings activation when acting as antagonists is considered very important for knee joint stability. However, the effect of hamstring antagonist activity on knee joint loading in vivo is not clear. Therefore, the purpose of this study... more
Hamstrings activation when acting as antagonists is considered very important for knee joint stability. However, the effect of hamstring antagonist activity on knee joint loading in vivo is not clear. Therefore, the purpose of this study was to examine the differences in antagonistic muscle force and their effect on agonist muscle and intersegmental forces during isokinetic eccentric and concentric efforts of the knee extensors. Ten males performed maximum isokinetic eccentric and concentric efforts of the knee extensors at 30 degrees s(-1). The muscular and tibiofemoral joint forces were then estimated using a two-dimensional model with and without including the antagonist muscle forces. The antagonist moment was predicted using an IEMG-moment model. The predicted antagonist force reached a maximum of 2.55 times body weight (BW) and 1.16 BW under concentric and eccentric conditions respectively. Paired t-tests indicated that these were significantly different (p<0.05). A one-way analysis of variance indicated that when antagonist forces are included in the calculations the patella tendon, compressive and posterior shear joint forces are significantly higher compared to those calculated without including the antagonist forces. The anterior shear force was not affected by antagonist activity. The antagonists produce considerable force throughout the range of motion and affect the joint forces exerted at the knee joint. Further, it appears that the antagonist effect depends on the type of muscle action examined as it is higher during concentric compared to eccentric efforts of the knee extensors.
The purpose of this study was to examine the differences in electromyographic activity of agonist and antagonist knee musculature between a maximal and a submaximal isokinetic fatigue protocol. Fourteen healthy males (age: 24.3+/-2.5... more
The purpose of this study was to examine the differences in electromyographic activity of agonist and antagonist knee musculature between a maximal and a submaximal isokinetic fatigue protocol. Fourteen healthy males (age: 24.3+/-2.5 years) performed 25 maximal (MIFP) and 60 submaximal (SIFP) isokinetic concentric efforts of the knee extensors at 60 degrees s(-1), across a 90 degrees range of motion. The two protocols were performed a week apart. The EMG activity of vastus medialis (VM), vastus lateralis (VL) and biceps femoris (BF) were recorded using surface electrodes. The peak torque (PT) and average EMG (aEMG) were expressed as percentages of pre-fatigue maximal value. One-way analysis of variance indicated a significant (p<0.05) decline of PT during the maximal (45.7%) and submaximal (46.8%) protocols. During the maximal test, the VM and VL aEMG initially increased and then decreased. In contrast, VM and VL aEMG continuously increased during submaximal testing (p<0.05). ...
This study examined the maturation pattern of fatigue resistance (FR) from childhood to adulthood in females and males during high-intensity intermittent exercise and compared FR between females and males in childhood and adolescence.... more
This study examined the maturation pattern of fatigue resistance (FR) from childhood to adulthood in females and males during high-intensity intermittent exercise and compared FR between females and males in childhood and adolescence. Thirty males (boys 11.3 +/- 0.5 years, teen-males 14.7 +/- 0.3 years, men 24.0 +/- 2.1 years) and 30 females (girls 10.9 +/- 0.6 years, teen-females 14.4 +/- 0.7 years, women 25.2 +/- 1.4) participated in this study. They performed high-intensity intermittent exercise (4 x 18 maximal knee flexions and extensions with 1-min rest) on an isokinetic dynamometer at 120 degrees s(-1). Peak torque of flexors (PTFL) and extensors (PTEX), and total work (TW) were measured. FR was calculated as % of PTEX, PTFL, and TW in 4th versus 1st set. FR was greater (P < 0.05) in boys versus teen-males and men, and in teen-males versus men. In females, FR was greater (P < 0.05) in girls versus teen-females and women, but not different between teen-females and women. FR was not different in boys versus girls and in teen-males versus teen-females. FR for PTFL, PTEX, and TW correlated negatively (P < 0.001) with the respective peak values (r = -0.68 to -0.84), and FR for TW with peak lactate (r = -0.58 to -0.69). In addition, age correlated (P < 0.01) with FR for males (r = -0.75) and females (r = -0.55). In conclusion, FR during high-intensity intermittent exercise undergoes a gradual decline from childhood to adulthood in males, while in females the adult profile establishes at mid-puberty (14-15 years). The maturation profile of FR in males and females during development appears to reflect the maturation profiles of peak torque, short-term muscle power, and lactate concentration after exercise.
This study examined fatigue profile during intermittent exercise in 10 men with mild to moderate mental retardation (MR) and 10 men without mental retardation (C). They performed 4×30s maximal knee extensions and flexions with 1-min rest... more
This study examined fatigue profile during intermittent exercise in 10 men with mild to moderate mental retardation (MR) and 10 men without mental retardation (C). They performed 4×30s maximal knee extensions and flexions with 1-min rest on an isokinetic dynamometer. Peak torque of flexors (PTFL) and extensors (PTEX), total work (TW), and lactate were measured. Fatigue was calculated as the