Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2702123.2702581acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Tactum: A Skin-Centric Approach to Digital Design and Fabrication

Published: 18 April 2015 Publication History

Abstract

Skin-based input has become an increasingly viable interaction model for user interfaces, however it has yet to be explored outside the domain of mobile computing. In this paper, we examine skin as an interactive input surface for gestural 3D modeling-to-fabrication systems. When used as both the input surface and base canvas for digital design, skin-input can enable non-experts users to intuitively create precise forms around highly complex physical contexts: our own bodies. In this paper, we outline design considerations when creating interfaces for such systems. We then discuss interaction techniques for three different modes of skin-centric modeling: direct, parametric, and generative. We also present Tactum, a new fabrication-aware design system that captures a user's skin-centric gestures for 3D modeling directly on the body. Lastly, we show sample artifacts generated with our system, and share a set of observations from design professionals.

Supplementary Material

MP4 File (p1779-gannon.mp4)

References

[1]
Braitenberg, V. Vehicles: Experiments in synthetic psychology. Cambridge, MA: MIT Press. 1984.
[2]
Chan, L., Liang, R-H., Tsai M-C., Cheng K-Y., Su, CH., Chen, M.Y., Cheng, W-H., and Chen, B-Y. FingerPad: private and subtle interaction using fingertips. UIST '13. 255--260.
[3]
Chen, K., Lyons, K., White, S., Patel, S. uTrack: 3D input using two magnetic sensors. UIST'13. 237--244.
[4]
Coros, S,. Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R., Matusik, W., and Bickel, B. Computational design of mechanical characters. ACM Trans. Graph. 32, 4 (July), 83:1--83:12.
[5]
Follmer, S., Carr, D., Lovell, E., and Ishii, H. CopyCAD: remixing physical objects with copy and paste from the real world. UIST '10, 381--382.
[6]
Follmer, S., and Ishii, H. KidCAD: digitally remixing toys through tangible tools. CHI '12, 2401--2410.
[7]
Gershenfeld, N. Fab: The Coming of Revolution on Your Desktop-from Personal Computers to Personal Fabrication. Basic Books, New York, 2005.
[8]
Gross, M., and Kemp, A. Gesture Modeling: Using Video to Capture Freehand Modeling Commands. CAAD Futures '01, 33--46.
[9]
Grossman, T., Wigdor, D., and Balakrishnan, R. Multifinger gestural interaction with 3d volumetric displays. UIST '04, 61--70.
[10]
Gustafson, S., Holz, C., and Baudisch, P. Imaginary phone. UIST '11, 283--292.
[11]
Harrison, C., Benko, H., and Wilson, A.D. OmniTouch: wearable multitouch interaction everywhere. UIST '11, 441--450.
[12]
Harrison, C., Ramamurthy, S., Hudson, S.E. Onbody interaction: armed and dangerous. TEI'12, 69--76.
[13]
Harrison, C., Tan, D., Morris, D. Skinput: appropriating the body as an input surface. CHI'10. 453--462.
[14]
Hincapie-Ramos, J-D,. Guo, X., Moghadasian, P. and Irani, P. 2014. Consumed Endurance: a metric to quantify arm fatigue of mid-air interactions. CHI'14, 1063--1072.
[15]
Hinckley, K., Pausch, R., Goble, J. C., and Kassell, N. F. A survey of design issues in spatial input. UIST '94, 213--222.
[16]
Holz, C., Grossman, T., Fitzmaurice, G., and Agur, A. Implanted user interfaces. CHI '12, 503--512.
[17]
Holz, C., Wilson, A.D. Data Miming: inferring spatial object descriptions from human gesture. CHI '11, 811--820.
[18]
Johnson, G., Gross, M., Do, E. Y.-L., and Hong, J. 2012. Sketch it, make it: sketching precise drawings for laser cutting. CHI'12, 1079--1082.
[19]
Kim, D., Hilliges, O., Izadi, S., et al. Digits: freehand 3D interactions anywhere using a wrist-worn gloveless sensor. In UIST '12, ACM Press (2012), 167--176.
[20]
Kim, H., Albuquerque, G., Havemann, S., and Fellner, D. W. Tangible 3D: hand gesture interaction for immersive 3D modeling. EGVE '05, 191--199.
[21]
Lau, M., Hirose, M., Ohgawara, A., Mitani, J., and Igarashi, T. Situated modeling: a shape-stamping interface with tangible primitives. TEI '12, 275--282.
[22]
Leithinger, D., Lakatos, D., DeVincenzi, A., Blackshaw, M., Ishii, H. 2011. Direct and gestural interaction with relief: a 2.5D shape display. UIST '11, 541--548.
[23]
Lin, S.-Y., Su, C.-H., Cheng, K.-Y., Liang, R.-H., Kuo, T.-H., and Chen, B.-Y. Pub - point upon body: exploring eyes-free interaction and methods on an arm. UIST '11, ACM Press (2011), 481--488.
[24]
Liu, Y-J., Zhang, D-L., Yuen, M-F. A survey on CAD methods in 3D garment design. Computers in Industry, 61:6, August 2010, 576--593.
[25]
Llamas, I., Kim, B., Gargus, J., Rossignac, J., and Shaw, C. D. Twister: a space-warp operator for the two-handed editing of 3D shapes. ACM Trans. Graph 22 (3), 2003. 663--668.
[26]
Mori, Y., and Igarashi, T. Plushie: an interactive design system for plush toys. In ACM SIGGRAPH (2007).
[27]
Mueller, S., Lopes, P., and Baudisch, P. Interactive construction: interactive fabrication of functional mechanical devices. UIST (2012), 599--606.
[28]
Mujibiya, A., Cao, X., Tan, D.S., Morris, D., Patel, S.N., and Rekimoto, J. The sound of touch: on-body touch and gesture sensing based on transdermal ultrasound propagation. ITS '13, 189--198.
[29]
Ni, T., Karlson, A.K., and Wigdor, D. AnatOnMe: facilitating doctor-patient communication using a projection-based handheld device. CHI '11, 3333--3342.
[30]
Ogata, M., Sugiura, Y., Makino, Y., Inami, M., and Imai, M. SenSkin: Adapting Skin as a Soft Interface. UIST'13, ACM Press (2013), 539--544.
[31]
Olberding, S., Yeo, K.P., Nanayakkara, S., and Steimle, J. AugmentedForearm: exploring the design space of a display-enhanced forearm. AH '13, 9--12.
[32]
Pottmann, H. Architectural Geometry and FabricationAware Design. Nexus Network Journal, 15:2, August 2013, Springer, Basel. 195--208.
[33]
Saul, G., Lau, M., Mitani, J., and Igarashi, T. Sketchchair: an all-in-one chair design system for end users. TEI (2011), 73--80.
[34]
Schkolne, S., Pruett, M., and Schröder, P. Surface drawing: creating organic 3D shapes with the hand and tangible tools. Proc. CHI '01, 261--268.
[35]
Sheng, J., Balakrishnan, R., and Singh, K. An interface for virtual 3d sculpting via physical proxy. GRAPHITE (2006), 213--220.
[36]
Smith, R.T., Thomas, B.H., and Piekarski, W. Digital foam interaction techniques for 3D modeling. VRST '08, 61--68.
[37]
Umetani N., Danny M., Igarashi T., and Grinspun E. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph., 30:90:1--90:12, 2011.
[38]
Volino, P., Cordier, F., and Magnenat-Thalmann, N. From early virtual garment simulation to interactive fashion design. Computer-Aided Design, 37:6, May 2005, 593--608.
[39]
Wagner, J., Nancel, M., Gustafson, S.G., Huot, S., and Mackay, W.E. Body-centric design space for multisurface interaction. CHI'13, 1299--1308.
[40]
Wang, J., Lu, G., Li, W., Chen, L., and Sakaguti, Y. Interactive 3D garment design with constrained contour curves and style curves. Computer-Aided Design, 41:9, September 2009, 614--625.
[41]
Wang, R., Paris, S., and Popovíc, J. 6D hands: markerless hand-tracking for computer aided design. UIST'11, 549--558.
[42]
Weichel, C., Lau, M., Kim, D., Villar, N., and Gellersen, H.W. MixFab: a mixed-reality environment for personal fabrication. CHI '14, 3855--3864.
[43]
Weigel, M., Mehta, V., Steimle, J. More Than Touch: Understanding How People Use Skin as an Input Surface for Mobile Computing CHI '14.
[44]
Wibowo, A., Sakamoto, D., Mitani, J., and Igarashi, T. DressUp: a 3D interface for clothing design with a physical mannequin. Proc. TEI '12, 99--102.
[45]
Willis, K.D.D., Xu, C., Wu, J.K., Levin, G., and Gross, M.D. Interactive fabrication: new interfaces for digital fabrication. TEI '11, 69--72.
[46]
Wilson, A. D. Using a depth camera as a touch sensor. ITS (2010), 69--72.
[47]
Yamashita, M. M., Yamaoka, J., and Kakehi, Y. Enchanted Scissors: a scissor interface for support in cutting and interactive fabrication. In ACM SIGGRAPH 2013 Posters. SIGGRAPH '13.
[48]
Yang, X.-D., Grossman, T., Wigdor, D., and Fitzmaurice, G. Magic finger: always-available input through finger instrumentation. ACM UIST'12, 147--156.
[49]
Zhang. Y., Han, T., Ren, Z., Umetani, N., Tong, X., Liu, Y., Shiratori, T., and Cao, X. BodyAvatar: creating freeform 3D avatars using first-person body gestures. UIST '13, 387--396.
[50]
Zoran, A., Shilkrot, R., and Paradiso, J. (2013) Humancomputer interaction for hybrid carving. UIST '13, 433440.

Cited By

View all
  • (2024)SweatSkinProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36314257:4(1-30)Online publication date: 12-Jan-2024
  • (2023)SkinLinkProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/35962417:2(1-27)Online publication date: 12-Jun-2023
  • (2022)p5.fab: Direct Control of Digital Fabrication Machines from a Creative Coding EnvironmentProceedings of the 2022 ACM Designing Interactive Systems Conference10.1145/3532106.3533496(1148-1161)Online publication date: 13-Jun-2022
  • Show More Cited By

Index Terms

  1. Tactum: A Skin-Centric Approach to Digital Design and Fabrication

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CHI '15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
    April 2015
    4290 pages
    ISBN:9781450331456
    DOI:10.1145/2702123
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 18 April 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. 3d modeling
    2. 3d printing
    3. fabrication-aware design
    4. skin input

    Qualifiers

    • Research-article

    Conference

    CHI '15
    Sponsor:
    CHI '15: CHI Conference on Human Factors in Computing Systems
    April 18 - 23, 2015
    Seoul, Republic of Korea

    Acceptance Rates

    CHI '15 Paper Acceptance Rate 486 of 2,120 submissions, 23%;
    Overall Acceptance Rate 6,199 of 26,314 submissions, 24%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)47
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 26 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)SweatSkinProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36314257:4(1-30)Online publication date: 12-Jan-2024
    • (2023)SkinLinkProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/35962417:2(1-27)Online publication date: 12-Jun-2023
    • (2022)p5.fab: Direct Control of Digital Fabrication Machines from a Creative Coding EnvironmentProceedings of the 2022 ACM Designing Interactive Systems Conference10.1145/3532106.3533496(1148-1161)Online publication date: 13-Jun-2022
    • (2022)Print-A-Sketch: A Handheld Printer for Physical Sketching of Circuits and Sensors on Everyday SurfacesProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3502074(1-17)Online publication date: 29-Apr-2022
    • (2022)ANISMA: A Prototyping Toolkit to Explore Haptic Skin Deformation Applications Using Shape-Memory AlloysACM Transactions on Computer-Human Interaction10.1145/349049729:3(1-34)Online publication date: 14-Jan-2022
    • (2022)Ephemeral Fabrication: Exploring a Ubiquitous Fabrication Scenario of Low-Effort, In-Situ Creation of Short-Lived Physical ArtifactsProceedings of the Sixteenth International Conference on Tangible, Embedded, and Embodied Interaction10.1145/3490149.3501331(1-17)Online publication date: 13-Feb-2022
    • (2022)Gestural interaction in the kitchen: Insights into designing an interactive display controlled by hand specific on-skin gesturesThe Design Journal10.1080/14606925.2022.205844425:3(353-373)Online publication date: 14-Apr-2022
    • (2021)High-Speed Dynamic Projection Mapping onto Human Arm with Realistic Skin DeformationApplied Sciences10.3390/app1109375311:9(3753)Online publication date: 21-Apr-2021
    • (2021)FabHandWearProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/34635185:2(1-22)Online publication date: 24-Jun-2021
    • (2021)Polymerized TapeProceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction10.1145/3430524.3444706(1-4)Online publication date: 14-Feb-2021
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media