Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3470496.3527394acmconferencesArticle/Chapter ViewAbstractPublication PagesiscaConference Proceedingsconference-collections
research-article

2QAN: a quantum compiler for 2-local qubit hamiltonian simulation algorithms

Published: 11 June 2022 Publication History

Abstract

Simulating quantum systems is one of the most important potential applications of quantum computers. The high-level circuit defining the simulation needs to be compiled into one that complies with hardware limitations such as qubit architecture (connectivity) and instruction (gate) set. General-purpose quantum compilers work at the gate level and have little knowledge of the mathematical properties of quantum applications, missing further optimization opportunities. Existing application-specific compilers only apply advanced optimizations in the scheduling procedure and are restricted to the CNOT or CZ gate set. In this work, we develop a compiler, named 2QAN, to optimize quantum circuits for 2-local qubit Hamiltonian simulation problems, a framework which includes the important quantum approximate optimization algorithm (QAOA). In particular, we exploit the flexibility of permuting different operators in the Hamiltonian (no matter whether they commute) and propose permutation-aware techniques for qubit routing, gate optimization and scheduling to minimize compilation overhead. 2QAN can target different architectures and different instruction sets. Compilation results on four applications (up to 50 qubits) and three quantum computers (namely, Google Sycamore, IBMQ Montreal and Rigetti Aspen) show that 2QAN outperforms state-of-the-art general-purpose compilers and application-specific compilers. Specifically, 2QAN can reduce the number of inserted SWAP gates by 11.5X, reduce overhead in hardware gate count by 68.5X, and reduce overhead in circuit depth by 21X. Experimental results on the Montreal device demonstrate that benchmarks compiled by 2QAN achieve the highest fidelity.

References

[1]
P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124--134, 1994.
[2]
Joe O'Gorman and Earl T. Campbell. Quantum computation with realistic magic-state factories. Phys. Rev. A, 95:032338, Mar 2017.
[3]
Richard P Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6/7), 1982.
[4]
D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 81:3108--3111, Oct 1998.
[5]
Tim Byrnes and Yoshihisa Yamamoto. Simulating lattice gauge theories on a quantum computer. Phys. Rev. A, 73:022328, Feb 2006.
[6]
P. D. Nation, M. P. Blencowe, A. J. Rimberg, and E. Buks. Analogue hawking radiation in a dc-squid array transmission line. Phys. Rev. Lett., 103:087004, Aug 2009.
[7]
David Poulin, Matthew B Hastings, Dave Wecker, Nathan Wiebe, Andrew C Doherty, and Matthias Troyer. The Trotter step size required for accurate quantum simulation of quantum chemistry. arXiv preprint arXiv:1406.4920, 2014.
[8]
Stephen P Jordan, Keith SM Lee, and John Preskill. Quantum algorithms for quantum field theories. Science, 336(6085):1130--1133, 2012.
[9]
Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian F. Roos. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X, 8:031022, Jul 2018.
[10]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Andreas Bengtsson, Sergio Boixo, Michael Broughton, Bob B Buckley, David A Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Yu-An Chen, Ben Chiaro, Roberto Collins, Stephen J Cotton, William Courtney, Sean Demura, Alan Derk, Andrew Dunsworth, Daniel Eppens, Thomas Eckl, Catherine Erickson, Edward Farhi, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Jonathan A Gross, Steve Habegger, Matthew P Harrigan, Alan Ho, Sabrina Hong, Trent Huang, William Huggins, Lev B Ioffe, Sergei V Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V Klimov, Alexander N Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark, Erik Lucero, Michael Marthaler, Orion Martin, John M Martinis, Anika Marusczyk, Sam McArdle, Jarrod R McClean, Trevor McCourt, Matt McEwen, Anthony Megrant, Carlos Mejuto-Zaera, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Hartmut Neven, Michael Newman, Murphy Yuezhen Niu, Thomas E O'Brien, Eric Ostby, Bálint Pató, Andre Petukhov, Harald Putterman, Chris Quintana, Jan-Michael Reiner, Pedram Roushan, Nicholas C Rubin, Daniel Sank, Kevin J Satzinger, Vadim Smelyanskiy, Doug Strain, Kevin J Sung, Peter Schmitteckert, Marco Szalay, Norm M Tubman, Amit Vainsencher, Theodore White, Nicolas Vogt, Z Jamie Yao, Ping Yeh, Adam Zalcman, and Sebastian Zanker. Observation of separated dynamics of charge and spin in the Fermi-Hubbard model. arXiv preprint arXiv:2010.07965, October 2020.
[11]
I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys., 86:153--185, Mar 2014.
[12]
Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 103:150502, Oct 2009.
[13]
Fernando GSL Brandao and Krysta M Svore. Quantum speed-ups for solving semidefinite programs. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 415--426. IEEE, 2017.
[14]
Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and Daniel A Spielman. Exponential algorithmic speedup by a quantum walk. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 59--68, 2003.
[15]
Hale F Trotter. On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4):545--551, 1959.
[16]
Seth Lloyd. Universal quantum simulators. Science, pages 1073--1078, 1996.
[17]
Masuo Suzuki. General theory of fractal path integrals with applications to many-body theories and statistical physics. Journal of Mathematical Physics, 32(2):400--407, 1991.
[18]
Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, and Nathan Wiebe. Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation. Phys. Rev. A, 91:022311, Feb 2015.
[19]
Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su. Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences, 115(38):9456--9461, 2018.
[20]
John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018.
[21]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gid-ney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505--510, 2019.
[22]
IBM. IBM Quantum Experience Devices. https://quantum-computing.ibm.com/, 2020.
[23]
Rigetti. Rigetti computing. https://www.rigetti.com/, 2020.
[24]
Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(7):1226--1236, 2018.
[25]
Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons, and Seyon Sivarajah. On the qubit routing problem. arXiv preprint arXiv:1902.08091, 2019.
[26]
Lingling Lao, Hans van Someren, Imran Ashraf, and Carmen G. Almudever. Timing and resource-aware mapping of quantum circuits to superconducting processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pages 1--1, 2021.
[27]
Andrew M Childs, Eddie Schoute, and Cem M Unsal. Circuit transformations for quantum architectures. arXiv preprint arXiv:1902.09102, 2019.
[28]
Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pages 1001--1014. ACM, 2019.
[29]
Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and Margaret Martonosi. Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pages 1015--1029, 2019.
[30]
Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan. t|ket>: a retargetable compiler for NISQ devices. Quantum Science and Technology, 6(1):014003, 2020.
[31]
Héctor Abraham, AduOffei, Rochisha Agarwal, et al., Qiskit: An open-source framework for quantum computing, 2019.
[32]
Pierre-Luc Dallaire-Demers and Frank K. Wilhelm. Quantum gates and architecture for the quantum simulation of the Fermi-Hubbard model. Phys. Rev. A, 94:062304, Dec 2016.
[33]
Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. Compiling quantum circuits to realistic hardware architectures using temporal planners. Quantum Science and Technology, 3(2):025004, 2018.
[34]
Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I Schuster, Henry Hoffmann, and Frederic T Chong. Optimized compilation of aggregated instructions for realistic quantum computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pages 1031--1044, 2019.
[35]
Pranav Gokhale, Yongshan Ding, Thomas Propson, Christopher Winkler, Nelson Leung, Yunong Shi, David I Schuster, Henry Hoffmann, and Frederic T Chong. Partial compilation of variational algorithms for noisy intermediate-scale quantum machines. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 266--278, 2019.
[36]
Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. Circuit compilation methodologies for quantum approximate optimization algorithm. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 215--228. IEEE, 2020.
[37]
Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. An efficient circuit compilation flow for quantum approximate optimization algorithm. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1--6. IEEE, 2020.
[38]
Mahabubul Alam, Abdullah Ash-Saki, Junde Li, Anupam Chattopadhyay, and Swaroop Ghosh. Noise resilient compilation policies for quantum approximate optimization algorithm. In Proceedings of the 39th International Conference on Computer-Aided Design, pages 1--7, 2020.
[39]
Gushu Li, Yunong Shi, and Ali Javadi-Abhari. Software-hardware co-optimization for computational chemistry on superconducting quantum processors. arXiv preprint arXiv:2105.07127, 2021.
[40]
Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan Xie. Paulihedral: A generalized block-wise compiler optimization framework for quantum simulation kernels. arXiv preprint arXiv:2109.03371, 2021.
[41]
Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. arXiv:1411.4028, 2014.
[42]
Andrew M Childs, Aaron Ostrander, and Yuan Su. Faster quantum simulation by randomization. Quantum, 3:182, 2019.
[43]
Earl Campbell. Random compiler for fast hamiltonian simulation. Phys. Rev. Lett., 123:070503, Aug 2019.
[44]
Joonho Lee, William J Huggins, Martin Head-Gordon, and K Birgitta Whaley. Generalized unitary coupled cluster wave functions for quantum computation. Journal of chemical theory and computation, 15(1):311--324, 2018.
[45]
Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242--246, 2017.
[46]
Werner Heisenberg. Zur theorie des ferromagnetismus. In Original Scientific Papers Wissenschaftliche Originalarbeiten, pages 580--597. Springer, 1985.
[47]
RKManojkumar Singh, Nishith Kumar Pal, Mandira Banerjee, Soma Sarkar, and Manideepa SenGupta. Surveillance on extended spectrum [beta]-lactamase and ampc [beta]-lactamase producing gram negative isolates from nosocomial infections. Archives of clinical microbiology, 3(3), 2012.
[48]
John J Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8):2554--2558, 1982.
[49]
J-S Wang, W Selke, VI S Dotsenko, and VB Andreichenko. The critical behaviour of the two-dimensional dilute ising magnet. Physica A: Statistical Mechanics and its Applications, 164(2):221--239, 1990.
[50]
Deanna M Abrams, Nicolas Didier, Blake R Johnson, Marcus P da Silva, and Colm A Ryan. Implementation of the XY interaction family with calibration of a single pulse. arXiv preprint arXiv:1912.04424, 2019.
[51]
B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro, A. Megrant, J. Kelly, Zijun Chen, K. Satzinger, R. Barends, F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, S. Boixo, D. Buell, B. Burkett, Yu Chen, R. Collins, E. Farhi, A. Fowler, C. Gidney, M. Giustina, R. Graff, M. Harrigan, T. Huang, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, P. Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, E. Lucero, J. McClean, M. McEwen, X. Mi, M. Mohseni, J. Y. Mutus, O. Naaman, M. Neeley, M. Niu, A. Petukhov, C. Quintana, N. Rubin, D. Sank, V. Smelyanskiy, A. Vainsencher, T. C. White, Z. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis. Demonstrating a Continuous Set of Two-Qubit Gates for Near-Term Quantum Algorithms. Phys. Rev. Lett., 125:120504, Sep 2020.
[52]
B. Kraus and J. I. Cirac. Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A, 63:062309, May 2001.
[53]
Navin Khaneja, Roger Brockett, and Steffen J. Glaser. Time optimal control in spin systems. Phys. Rev. A, 63:032308, Feb 2001.
[54]
Marc Grau Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi, and Costin Iancu. Heuristics for quantum compiling with a continuous gate set. arXiv preprint arXiv:1912.02727, 2019.
[55]
Lingling Lao, Prakash Murali, Margaret Martonosi, and Dan Browne. Designing calibration and expressivity-efficient instruction sets for quantum computing. In ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pages 846--859, 2021.
[56]
Mohammad Javad Dousti, Alireza Shafaei, and Massoud Pedram. Squash: a scalable quantum mapper considering ancilla sharing. In Proceedings of the 24th edition of the great lakes symposium on VLSI, pages 117--122, 2014.
[57]
Tayebeh Bahreini and Naser Mohammadzadeh. An minlp model for scheduling and placement of quantum circuits with a heuristic solution approach. ACM Journal on Emerging Technologies in Computing Systems (JETC), 12(3):1--20, 2015.
[58]
Lingling Lao, Bas van Wee, Imran Ashraf, J van Someren, Nader Khammassi, Koen Bertels, and Carmen G Almudever. Mapping of lattice surgery-based quantum circuits on surface code architectures. Quantum Science and Technology, 4(1):015005, 2018.
[59]
Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. J. ACM, 23(3):555--565, July 1976.
[60]
Fred Glover. Tabu search---part I. ORSA Journal on computing, 1(3):190--206, 1989.
[61]
Fred Glover. Tabu search---part II. ORSA Journal on computing, 2(1):4--32, 1990.
[62]
Rainer E Burkard and Franz Rendl. A thermodynamically motivated simulation procedure for combinatorial optimization problems. European Journal of Operational Research, 17(2):169--174, 1984.
[63]
Yong Li, Panos M Pardalos, and Mauricio GC Resende. A greedy randomized adaptive search procedure for the quadratic assignment problem. Quadratic assignment and related problems, 16:237--261, 1993.
[64]
Swamit S Tannu and Moinuddin K Qureshi. Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pages 987--999. ACM, 2019.
[65]
Yongshan Ding, Xin-Chuan Wu, Adam Holmes, Ash Wiseth, Diana Franklin, Margaret Martonosi, and Frederic T Chong. SQUARE: strategic quantum ancilla reuse for modular quantum programs via cost-effective uncomputation. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pages 570--583. IEEE, 2020.
[66]
Farrokh Vatan and Colin Williams. Optimal quantum circuits for general two-qubit gates. Phys. Rev. A, 69:032315, Mar 2004.
[67]
G. Vidal and C. M. Dawson. Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys. Rev. A, 69:010301, Jan 2004.
[68]
Tommy R Jensen and Bjarne Toft. Graph coloring problems, volume 39. John Wiley & Sons, 2011.
[69]
Nathan Lacroix, Christoph Hellings, Christian Kraglund Andersen, Agustin Di Paolo, Ants Remm, Stefania Lazar, Sebastian Krinner, Graham J. Norris, Mihai Gabureac, Johannes Heinsoo, Alexandre Blais, Christopher Eichler, and Andreas Wallraff. Improving the performance of deep quantum optimization algorithms with continuous gate sets. PRX Quantum, 1(2):110304, 2020.
[70]
Matthew P Harrigan, Kevin J Sung, Matthew Neeley, Kevin J Satzinger, Frank Arute, Kunal Arya, Juan Atalaya, Joseph C Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B Buckley, David A Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Daniel Eppens, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Alan Ho, Sabrina Hong, Trent Huang, L B Ioffe, Sergei V Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V Klimov, Alexander N Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark, Martin Leib, Orion Martin, John M Martinis, Jarrod R McClean, Matt McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Charles Neill, Florian Neukart, Murphy Yuezhen Niu, Thomas E O'Brien, Bryan O'Gorman, Eric Ostby, Andre Petukhov, Harald Putterman, Chris Quintana, Pedram Roushan, Nicholas C Rubin, Daniel Sank, Andrea Skolik, Vadim Smelyanskiy, Doug Strain, Michael Streif, Marco Szalay, Amit Vainsencher, Theodore White, Z Jamie Yao, Ping Yeh, Adam Zalcman, Leo Zhou, Hartmut Neven, Dave Bacon, Erik Lucero, Edward Farhi, and Ryan Babbush. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nature physics, 17(3):332--336, February 2021.
[71]
Quantum AI team and collaborators. ReCirq, October 2020.
[72]
Cirq Developers. Cirq, May 2021. See full list of authors on Github: https://github.com/quantumlib/Cirq/graphs/contributors.
[73]
Rainer E Burkard, Eranda Cela, Panos M Pardalos, and Leonidas S Pitsoulis. The quadratic assignment problem. In Handbook of combinatorial optimization, pages 1713--1809. Springer, 1998.
[74]
Chi-Fang Chen, Hsin-Yuan Huang, Richard Kueng, and Joel A Tropp. Quantum simulation via randomized product formulas: Low gate complexity with accuracy guarantees. arXiv preprint arXiv:2008.11751, 2020.
[75]
Yingkai Ouyang, David R White, and Earl T Campbell. Compilation by stochastic Hamiltonian sparsification. Quantum, 4:235, 2020.
[76]
Paul K Faehrmann, Mark Steudtner, Richard Kueng, Maria Kieferova, and Jens Eisert. Randomizing multi-product formulas for improved Hamiltonian simulation. arXiv preprint arXiv:2101.07808, 2021.
[77]
Ewout van den Berg and Kristan Temme. Circuit optimization of Hamiltonian simulation by simultaneous diagonalization of Pauli clusters. Quantum, 4:322, 2020.
[78]
Alexander Cowtan, Will Simmons, and Ross Duncan. A generic compilation strategy for the unitary coupled cluster ansatz. arXiv preprint arXiv:2007.10515, 2020.
[79]
Matthew B Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer. Improving quantum algorithms for quantum chemistry. arXiv preprint arXiv:1403.1539, 2014.
[80]
Kaiwen Gui, Teague Tomesh, Pranav Gokhale, Yunong Shi, Frederic T Chong, Margaret Martonosi, and Martin Suchara. Term grouping and travelling salesperson for digital quantum simulation. arXiv preprint arXiv:2001.05983, 2020.
[81]
Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon Sivarajah. Phase gadget synthesis for shallow circuits. arXiv preprint arXiv:1906.01734, 2019.
[82]
Arianne Meijer-van de Griend and Ross Duncan. Architecture-aware synthesis of phase polynomials for NISQ devices. arXiv preprint arXiv:2004.06052, 2020.
[83]
Prakash Murali, David C McKay, Margaret Martonosi, and Ali Javadi-Abhari. Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, pages 1001--1016, 2020.
[84]
Ian D. Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-Guzik, Garnet Kin-Lic Chan, and Ryan Babbush. Quantum simulation of electronic structure with linear depth and connectivity. Phys. Rev. Lett., 120:110501, Mar 2018.
[85]
Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 119:180509, Nov 2017.
[86]
Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 7:021050, Jun 2017.
[87]
Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C. Mckay, and Jay M. Gambetta. Mitigating measurement errors in multiqubit experiments. Phys. Rev. A, 103:042605, Apr 2021.
[88]
Swamit S Tannu and Moinuddin K Qureshi. Mitigating measurement errors in quantum computers by exploiting state-dependent bias. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 279--290, 2019.

Cited By

View all
  • (2024)Atomique: A Quantum Compiler for Reconfigurable Neutral Atom Arrays2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00030(293-309)Online publication date: 29-Jun-2024
  • (2024)Tetris: A Compilation Framework for VQA Applications in Quantum Computing2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00029(277-292)Online publication date: 29-Jun-2024
  • (2024)Quafu-Qcover: Explore combinatorial optimization problems on cloud-based quantum computersChinese Physics B10.1088/1674-1056/ad18ab33:5(050302)Online publication date: 1-Apr-2024
  • Show More Cited By

Index Terms

  1. 2QAN: a quantum compiler for 2-local qubit hamiltonian simulation algorithms

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ISCA '22: Proceedings of the 49th Annual International Symposium on Computer Architecture
      June 2022
      1097 pages
      ISBN:9781450386104
      DOI:10.1145/3470496
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      In-Cooperation

      • IEEE CS TCAA: IEEE CS technical committee on architectural acoustics

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 11 June 2022

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. quantum compilation
      2. quantum computing
      3. quantum simulation

      Qualifiers

      • Research-article

      Funding Sources

      • EPSRC Prosperity Partnership in Quantum Software for Modelling and Simulation

      Conference

      ISCA '22
      Sponsor:

      Acceptance Rates

      ISCA '22 Paper Acceptance Rate 67 of 400 submissions, 17%;
      Overall Acceptance Rate 543 of 3,203 submissions, 17%

      Upcoming Conference

      ISCA '25

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)168
      • Downloads (Last 6 weeks)12
      Reflects downloads up to 01 Sep 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Atomique: A Quantum Compiler for Reconfigurable Neutral Atom Arrays2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00030(293-309)Online publication date: 29-Jun-2024
      • (2024)Tetris: A Compilation Framework for VQA Applications in Quantum Computing2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00029(277-292)Online publication date: 29-Jun-2024
      • (2024)Quafu-Qcover: Explore combinatorial optimization problems on cloud-based quantum computersChinese Physics B10.1088/1674-1056/ad18ab33:5(050302)Online publication date: 1-Apr-2024
      • (2024)Protecting expressive circuits with a quantum error detection codeNature Physics10.1038/s41567-023-02282-220:2(219-224)Online publication date: 5-Jan-2024
      • (2024)Towards near-term quantum simulation of materialsNature Communications10.1038/s41467-023-43479-615:1Online publication date: 24-Jan-2024
      • (2024)Practical circuit optimization algorithm for quantum simulation based on template matchingQuantum Information Processing10.1007/s11128-023-04252-223:2Online publication date: 1-Feb-2024
      • (2023)A SAT Approach to the Initial Mapping Problem in SWAP Gate Insertion for Commuting GatesIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences10.1587/transfun.2022EAP1159E106.A:11(1424-1431)Online publication date: 1-Nov-2023
      • (2023)SpinQ: Compilation Strategies for Scalable Spin-Qubit ArchitecturesACM Transactions on Quantum Computing10.1145/36244845:1(1-36)Online publication date: 16-Dec-2023
      • (2023)Q-BEEP: Quantum Bayesian Error Mitigation Employing Poisson Modeling over the Hamming SpectrumProceedings of the 50th Annual International Symposium on Computer Architecture10.1145/3579371.3589043(1-13)Online publication date: 17-Jun-2023
      • (2023)FrozenQubits: Boosting Fidelity of QAOA by Skipping Hotspot NodesProceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 210.1145/3575693.3575741(311-324)Online publication date: 27-Jan-2023
      • Show More Cited By

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media