Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1109/ISCA52012.2021.00071acmconferencesArticle/Chapter ViewAbstractPublication PagesiscaConference Proceedingsconference-collections
research-article

Designing calibration and expressivity-efficient instruction sets for quantum computing

Published: 25 November 2021 Publication History

Abstract

Near-term quantum computing (QC) systems have limited qubit counts, high gate (instruction) error rates, and typically support a minimal instruction set having one type of two-qubit gate (2Q). To reduce program instruction counts and improve application expressivity, vendors have proposed, and shown proof-of-concept demonstrations of richer instruction sets such as XY gates (Rigetti) and fSim gates (Google). These instruction sets comprise of families of 2Q gate types parameterized by continuous qubit rotation angles. That is, it allows a large set of different physical operations to be realized on the qubits, based on the input angles. However, having such a large number of gate types is problematic because each gate type has to be calibrated periodically, across the full system, to obtain high fidelity implementations. This results in substantial recurring calibration overheads even on current systems which use only a few gate types. Our work aims to navigate this tradeoff between application expressivity and calibration overhead, and identify what instructions vendors should implement to get the best expressivity with acceptable calibration time.
Studying this tradeoff is challenging because of the diversity in QC application requirements, the need to optimize applications for widely different hardware gate types and noise variations across gate types. Therefore, our work develops NuOp, a flexible compilation pass based on numerical optimization, to efficiently decompose application operations into arbitrary hardware gate types. Using NuOp and four important quantum applications, we study the instruction set proposals of Rigetti and Google, with realistic noise simulations and a calibration model. Our experiments show that implementing 4--8 types of 2Q gates is sufficient to attain nearly the same expressivity as a full continuous gate family, while reducing the calibration overhead by two orders of magnitude. With several vendors proposing rich gate families as means to higher fidelity, our work has potential to provide valuable instruction set design guidance for near-term QC systems.

References

[1]
Rigetti, "Rigetti Aspen-8," https://medium.com/rigetti/rigetti-aspen-8-on-aws-236d9dc11613, 2020.
[2]
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, "Quantum supremacy using a programmable superconducting processor," Nature, vol. 574, no. 7779, pp. 505--510, 2019.
[3]
D. M. Abrams, N. Didier, B. R. Johnson, M. P. da Silva, and C. A. Ryan, "Implementation of the XY interaction family with calibration of a single pulse," arXiv:1912.04424, 2019.
[4]
B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro, A. Megrant, J. Kelly, Z. Chen, K. Satzinger, R. Barends, F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, S. Boixo, D. Buell, B. Burkett, Y. Chen, R. Collins, E. Farhi, A. Fowler, C. Gidney, M. Giustina, R. Graff, M. Harrigan, T. Huang, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, P. Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, E. Lucero, J. McClean, M. McEwen, X. Mi, M. Mohseni, J. Y. Mutus, O. Naaman, M. Neeley, M. Niu, A. Petukhov, C. Quintana, N. Rubin, D. Sank, V. Smelyanskiy, A. Vainsencher, T. C. White, Z. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, "Demonstrating a Continuous Set of Two-Qubit Gates for Near-Term Quantum Algorithms," Phys. Rev. Lett., vol. 125, p. 120504, Sep 2020.
[5]
J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, "Quantum machine learning," Nature, vol. 549, Sep 2017.
[6]
A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O'Brien, "A variational eigenvalue solver on a photonic quantum processor," Nature Communications, vol. 5, Jul 2014.
[7]
B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan, "Quantum algorithms for quantum chemistry and quantum materials science," arXiv:2001.03685, 2020.
[8]
J. Preskill, "Quantum Computing in the NISQ era and beyond," Quantum, vol. 2, p. 79, Aug. 2018.
[9]
Y. Nam, J.-S. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov, K. R. Brown, S. Allen, J. M. Amini, J. Apisdorf, K. M. Beck, A. Blinov, V. Chaplin, M. Chmielewski, C. Collins, S. Debnath, K. M. Hudek, A. M. Ducore, M. Keesan, S. M. Kreikemeier, J. Mizrahi, P. Solomon, M. Williams, J. D. Wong-Campos, D. Moehring, C. Monroe, and J. Kim, "Ground-state energy estimation of the water molecule on a trapped-ion quantum computer," npj Quantum Information, vol. 6, no. 1, p. 33, Apr 2020.
[10]
J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Caldwell, N. Didier, E. S. Fried, S. Hong, P. Karalekas, C. B. Osborn, A. Papageorge, E. C. Peterson, G. Prawiroatmodjo, N. Rubin, C. A. Ryan, D. Scarabelli, M. Scheer, E. A. Sete, P. Sivarajah, R. S. Smith, A. Staley, N. Tezak, W. J. Zeng, A. Hudson, B. R. Johnson, M. Reagor, M. P. da Silva, and C. Rigetti, "Unsupervised machine learning on a hybrid quantum computer," arXiv:1712.05771, 2017.
[11]
J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O'Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, "State preservation by repetitive error detection in a superconducting quantum circuit," Nature, vol. 519, no. 7541, pp. 66--69, Mar 2015.
[12]
S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, "Characterizing quantum supremacy in near-term devices," Nature Physics, vol. 14, no. 6, pp. 595--600, Jun 2018.
[13]
N. Lacroix, C. Hellings, C. K. Andersen, A. Di Paolo, A. Remm, S. Lazar, S. Krinner, G. J. Norris, M. Gabureac, J. Heinsoo, A. Blais, C. Eichler, and A. Wallraff, "Improving the performance of deep quantum optimization algorithms with continuous gate sets," PRX Quantum, vol. 1, no. 2, p. 110304, 2020.
[14]
IBM, "IBM Quantum Experience Devices," https://quantum-computing.ibm.com/, 2020.
[15]
P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi, "Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers," in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, 2019, pp. 1015--1029.
[16]
P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen, and C. H. Alderete, "Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights," in Proceedings of the 46th International Symposium on Computer Architecture, ser. ISCA '19. New York, NY, USA: Association for Computing Machinery, 2019, p. 527--540. [Online].
[17]
S. S. Tannu and M. K. Qureshi, "Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers," in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 2019, pp. 987--999.
[18]
S. Nishio, Y. Pan, T. Satoh, H. Amano, and R. V. Meter, "Extracting Success from IBM's 20-Qubit Machines Using Error-Aware Compilation," ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 16, no. 3, pp. 1--25, 2020.
[19]
R. S. Smith, M. J. Curtis, and W. J. Zeng, "A practical quantum instruction set architecture," arXiv:1608.03355, 2016.
[20]
A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, "Open quantum assembly language," arXiv:1707.03429, 2017.
[21]
X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, "eQASM: An Executable Quantum Instruction Set Architecture," in 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 224--237.
[22]
K. Bertels, A. Sarkar, T. Hubregtsen, M. Serrao, A. A. Mouedenne, A. Yadav, A. Krol, I. Ashraf, and C. G. Almudever, "Quantum computer architecture toward full-stack quantum accelerators," IEEE Transactions on Quantum Engineering, vol. 1, pp. 1--17, 2020.
[23]
M. Kjaergaard, M. E. Schwartz, A. Greene, G. O. Samach, A. Bengtsson, M. O'Keeffe, C. M. McNally, J. Braumüller, D. K. Kim, P. Krantz, M. Marvian, A. Melville, B. M. Niedzielski, Y. Sung, R. Winik, J. Yoder, D. Rosenberg, K. Obenland, S. Lloyd, T. P. Orlando, I. Marvian, S. Gustavsson, and W. D. Oliver, "A quantum instruction set implemented on a superconducting quantum processor," 2020, arXiv:2001.08838.
[24]
X. Zou, S. P. Premaratne, M. A. Rol, S. Johri, V. Ostroukh, D. J. Michalak, R. Caudillo, J. S. Clarke, L. DiCarlo, and A. Y. Matsuura, "Enhancing a near-term quantum accelerator's instruction set architecture for materials science applications," IEEE Transactions on Quantum Engineering, vol. 1, pp. 1--7, 2020.
[25]
D. Maslov, S. M. Falconer, and M. Mosca, "Quantum circuit placement," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 4, pp. 752--763, 2008.
[26]
M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira, "Qubit allocation," in Proceedings ofthe 2018 International Symposium on Code Generation and Optimization. ACM, 2018, pp. 113--125.
[27]
D. Venturelli, M. Do, E. Rieffel, and J. Frank, "Compiling quantum circuits to realistic hardware architectures using temporal planners," Quantum Science and Technology, vol. 3, no. 2, p. 025004, 2018.
[28]
A. Zulehner and R. Wille, "Compiling SU (4) quantum circuits to IBM QX architectures," in Proceedings of the 24th Asia and South Pacific Design Automation Conference. ACM, 2019, pp. 185--190.
[29]
G. Li, Y. Ding, and Y. Xie, "Tackling the qubit mapping problem for NISQ-era quantum devices," in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 2019, pp. 1001--1014.
[30]
P. Murali, D. C. McKay, M. Martonosi, and A. Javadi-Abhari, "Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers," in Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, 2020, pp. 1001--1016.
[31]
H. Abraham, AduOffei, R. Agarwal, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, E. Arbel, A. Asfaw, C. Azaustre, AzizNgoueya, A. Bansal, P. Barkoutsos, G. Barron, L. Bello, Y. Ben-Haim, D. Bevenius, L. S. Bishop, S. Bolos, S. Bosch, S. Bravyi, D. Bucher, A. Burov, F. Cabrera, P. Calpin, L. Capelluto, J. Carballo, G. Carrascal, A. Chen, C.-F. Chen, E. Chen, J. C. Chen, R. Chen, J. M. Chow, S. Churchill, C. Claus, C. Clauss, R. Cocking, A. J. Cross, A. W. Cross, S. Cross, J. Cruz-Benito, C. Culver, A. D. Córcoles-Gonzales, S. Dague, T. E. Dandachi, M. Daniels, M. Dartiailh, DavideFrr, A. R. Davila, A. Dekusar, D. Ding, J. Doi, E. Drechsler, Drew, E. Dumitrescu, K. Dumon, I. Duran, K. EL-Safty, E. Eastman, P. Eendebak, D. Egger, M. Everitt, P. M. Fernández, A. H. Ferrera, R. Fouilland, FranckChevallier, A. Frisch, A. Fuhrer, M. GEORGE, J. Gacon, B. G. Gago, C. Gambella, J. M. Gambetta, A. Gammanpila, L. Garcia, S. Garion, A. Gilliam, A. Giridharan, J. Gomez-Mosquera, S. de la Puente González, J. Gorzinski, I. Gould, D. Greenberg, D. Grinko, W. Guan, J. A. Gunnels, M. Haglund, I. Haide, I. Hamamura, O. C. Hamido, V. Havlicek, J. Hellmers, Ł. Herok, S. Hillmich, H. Horii, C. Howington, S. Hu, W. Hu, R. Huisman, H. Imai, T. Imamichi, K. Ishizaki, R. Iten, T. Itoko, JamesSeaward, A. Javadi, A. Javadi-Abhari, Jessica, M. Jivrajani, K. Johns, Jonathan-Shoemaker, T. Kachmann, N. Kanazawa, Kang-Bae, A. Karazeev, P. Kassebaum, S. King, Knabberjoe, Y. Kobayashi, A. Kovyrshin, R. Krishnakumar, V. Krishnan, K. Krsulich, G. Kus, R. LaRose, E. Lacal, R. Lambert, J. Lapeyre, J. Latone, S. Lawrence, C. Lee, G. Li, D. Liu, P. Liu, Y. Maeng, A. Malyshev, J. Manela, J. Marecek, M. Marques, D. Maslov, D. Mathews, A. Matsuo, D. T. McClure, C. McGarry, D. McKay, D. McPherson, S. Meesala, T. Metcalfe, M. Mevissen, A. Mezzacapo, R. Midha, Z. Minev, A. Mitchell, N. Moll, M. D. Mooring, R. Morales, N. Moran, MrF, P. Murali, J. Müggenburg, D. Nadlinger, K. Nakanishi, G. Nannicini, P. Nation, E. Navarro, Y. Naveh, S. W. Neagle, P. Neuweiler, P. Niroula, H. Norlen, L. J. O'Riordan, O. Ogunbayo, P. Ollitrault, S. Oud, D. Padilha, H. Paik, Y. Pang, S. Perriello, A. Phan, F. Piro, M. Pistoia, C. Piveteau, A. Pozas-iKerstjens, V. Prutyanov, D. Puzzuoli, J. Pérez, Quintiii, R. I. Rahman, A. Raja, N. Ramagiri, A. Rao, R. Raymond, R. M.-C. Redondo, M. Reuter, J. Rice, D. M. Rodríguez, RohithKarur, M. Rossmannek, M. Ryu, T. SAPV, SamFerracin, M. Sandberg, R. Sapra, H. Sargsyan, A. Sarkar, N. Sathaye, B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L. Scholten, E. Schoute, J. Schwarm, I. F. Sertage, K. Setia, N. Shammah, Y. Shi, A. Silva, A. Simonetto, N. Singstock, Y. Siraichi, I. Sitdikov, S. Sivarajah, M. B. Sletfjerding, J. A. Smolin, M. Soeken, I. O. Sokolov, SooluThomas, Starfish, D. Steenken, M. Stypulkoski, S. Sun, K. J. Sung, H. Takahashi, I. Tavernelli, C. Taylor, P. Taylour, S. Thomas, M. Tillet, M. Tod, M. Tomasik, E. de la Torre, K. Trabing, M. Treinish, TrishaPe, W. Turner, Y. Vaknin, C. R. Valcarce, F. Varchon, A. C. Vazquez, V. Villar, D. Vogt-Lee, C. Vuillot, J. Weaver, R. Wieczorek, J. A. Wildstrom, E. Winston, J. J. Woehr, S. Woerner, R. Woo, C. J. Wood, R. Wood, S. Wood, S. Wood, J. Wootton, D. Yeralin, D. Yonge-Mallo, R. Young, J. Yu, C. Zachow, L. Zdanski, H. Zhang, C. Zoufal, and Zoufalc, "Qiskit: An open-source framework for quantum computing," 2019.
[32]
A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, "Validating quantum computers using randomized model circuits," Phys. Rev. A, vol. 100, no. 3, p. 032328, 2019.
[33]
Rigetti, "Rigetti quantum computing service," https://www.qcs.rigetti.com/, 2020.
[34]
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, S. Boixo, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. Dunsworth, D. Eppens, E. Farhi, A. Fowler, B. Foxen, C. Gidney, M. Giustina, R. Graff, S. Habegger, M. P. Harrigan, A. Ho, S. Hong, T. Huang, L. B. Ioffe, S. V. Isakov, E. Jeffrey, Z. Jiang, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly, S. Kim, P. V. Klimov, A. N. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, M. Lindmark, M. Leib, E. Lucero, O. Martin, J. M. Martinis, J. R. McClean, M. McEwen, A. Megrant, X. Mi, M. Mohseni, W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley, C. Neill, F. Neukart, H. Neven, M. Y. Niu, T. E. O'Brien, B. O'Gorman, E. Ostby, A. Petukhov, H. Putterman, C. Quintana, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, A. Skolik, V. Smelyanskiy, D. Strain, M. Streif, K. J. Sung, M. Szalay, A. Vainsencher, T. White, Z. J. Yao, P. Yeh, A. Zalcman, and L. Zhou, "Quantum approximate optimization of non-planar graph problems on a planar superconducting processor," arXiv:2004.04197, 2020.
[35]
D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta, "Efficient Z gates for quantum computing," Phys. Rev. A, vol. 96, p. 022330, Aug 2017.
[36]
A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets," Nature, vol. 549, Sep 2017.
[37]
E. Farhi, J. Goldstone, and S. Gutmann, "A quantum approximate optimization algorithm," arXiv:1411.4028, 2014.
[38]
E. C. Peterson, G. E. Crooks, and R. S. Smith, "Two-qubit circuit depth and the monodromy polytope," Quantum, vol. 4, p. 247, 2020.
[39]
P. V. Klimov, J. Kelly, J. M. Martinis, and H. Neven, "The snake optimizer for learning quantum processor control parameters," arXiv:2006.04594, 2020.
[40]
R. R. Tucci, "A rudimentary quantum compiler (2cnd ed.)," arXiv:9902062, 1999.
[41]
N. Khaneja, R. Brockett, and S. J. Glaser, "Time optimal control in spin systems," Phys. Rev. A, vol. 63, no. 3, p. 032308, 2001.
[42]
B. Kraus and J. Cirac, "Optimal creation of entanglement using a two-qubit gate," Phys. Rev. A, vol. 63, no. 6, p. 062309, 2001.
[43]
F. Vatan and C. Williams, "Optimal quantum circuits for general two-qubit gates," Phys. Rev. A, vol. 69, no. 3, p. 032315, 2004.
[44]
M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, "Quantum circuits for general multiqubit gates," Phys. Rev. Lett., vol. 93, no. 13, p. 130502, 2004.
[45]
R. Iten, R. Colbeck, and M. Christandl, "Quantum circuits for quantum channels," Phys. Rev. A, vol. 95, no. 5, p. 052316, 2017.
[46]
D. Maslov, C. Young, D. M. Miller, and G. W. Dueck, "Quantum circuit simplification using templates," in Design, Automation and Test in Europe, 2005, pp. 1208--1213 Vol. 2.
[47]
R. S. Smith, E. C. Peterson, M. Skilbeck, and E. Davis, "An open-source, industrial-strength optimizing compiler for quantum programs," Quantum Science and Technology, 2020.
[48]
T. Jones and S. C. Benjamin, "Quantum compilation and circuit optimisation via energy dissipation," arXiv:1811.03147, 2018.
[49]
S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, and P. J. Coles, "Quantum-assisted quantum compiling," Quantum, vol. 3, p. 140, 2019.
[50]
M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, and C. Iancu, "Heuristics for quantum compiling with a continuous gate set," arXiv:1912.02727, 2019.
[51]
H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, "An adaptive variational algorithm for exact molecular simulations on a quantum computer," Nature communications, vol. 10, no. 1, pp. 1--9, 2019.
[52]
R. Fletcher, Practical Methods of Optimization, 2nd ed. New York, NY, USA: John Wiley & Sons, 1987.
[53]
J. Liu and H. Zhou, "Reliability Modeling of NISQ-Era Quantum Computers," in 2020 IEEE International Symposium on Workload Characterization, ser. IISWC, 2020.
[54]
N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe, "Experimental comparison of two quantum computing architectures," Proceedings of the National Academy of Sciences, vol. 114, no. 13, pp. 3305--3310, 2017. [Online]. Available: https://www.pnas.org/content/114/13/3305
[55]
K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J.-S. Chen, N. C. Pisenti, M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi, J. D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon, M. Williams, A. M. Ducore, A. Blinov, S. M. Kreikemeier, V. Chaplin, M. Keesan, C. Monroe, and J. Kim, "Benchmarking an 11-qubit quantum computer," Nature Communications, vol. 10, no. 1, p. 5464, Nov 2019.
[56]
Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, "Quantum approximate optimization algorithm for MaxCut: A fermionic view," Phys. Rev. A, vol. 97, no. 2, p. 022304, 2018.
[57]
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, A. Bengtsson, S. Boixo, M. Broughton, B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, Y. Chen, Z. Chen, B. Chiaro, R. Collins, S. Cotton, W. Courtney, S. Demura, A. Derk, A. Dunsworth, D. Eppens, T. Eckl, C. Erickson, E. Farhi, A. Fowler, B. Foxen, C. Gidney, M. Giustina, R. Graff, J. A. Gross, S. Habegger, M. P. Harrigan, A. Ho, S. Hong, T. Huang, W. Huggins, L. Ioffe, S. V. Isakov, E. Jeffrey, Z. Jiang, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly, S. Kim, P. Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, M. Lindmark, E. Lucero, M. Marthaler, O. Martin, J. M. Martinis, A. Marusczyk, S. McArdle, J. McClean, T. McCourt, M. McEwen, A. Megrant, C. Mejuto-Zaera, X. Mi, M. Mohseni, W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley, C. Neill, H. Neven, M. Newman, M. Y. Niu, T. E. O'brien, E. Ostby, B. Pat'o, A. Petukhov, H. Putterman, C. Quintana, J. Reiner, P. Roushan, N. Rubin, D. Sank, K. Satzinger, V. Smelyanskiy, D. Strain, K. J. Sung, P. Schmitteckert, M. Szalay, N. M. Tubman, A. Vainsencher, T. White, N. Vogt, Z. Yao, P. Yeh, A. Zalcman, and S. Zanker, "Observation of separated dynamics of charge and spin in the fermi-hubbard model," arXiv:2010.07965, 2020.
[58]
P. W. Shor, "Algorithms for quantum computation: Discrete logarithms and factoring," in Proceedings 35th annual symposium on foundations of computer science. Ieee, 1994, pp. 124--134.
[59]
M. A. Nielsen and I. Chuang, "Quantum computation and quantum information," 2002.
[60]
Google, "Recirq," https://github.com/quantumlib/ReCirq, 2020.
[61]
S. Aaronson and L. Chen, "Complexity-theoretic foundations of quantum supremacy experiments," arXiv:1612.05903, 2016.
[62]
C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett, Y. Chen, Z. Chen, A. Fowler, B. Foxen, M. Giustina, R. Graff, E. Jeffrey, T. Huang, J. Kelly, P. Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, H. Neven, and J. M. Martinis, "A blueprint for demonstrating quantum supremacy with superconducting qubits," Science, vol. 360, no. 6385, pp. 195--199, 2018. [Online]. Available: https://science.sciencemag.org/content/360/6385/195
[63]
C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde, J. M. Chow, A. D. Córcoles, J. A. Smolin, S. T. Merkel, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen, and M. Steffen, "Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms," Phys. Rev. B, vol. 86, p. 100506, Sep 2012. [Online].

Cited By

View all
  • (2024)One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum ComputingProceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 210.1145/3620665.3640386(779-796)Online publication date: 27-Apr-2024
  • (2023)Exploiting the Regular Structure of Modern Quantum Architectures for Compiling and Optimizing Programs with Permutable OperatorsProceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 410.1145/3623278.3624751(108-124)Online publication date: 25-Mar-2023
  • (2023)Parallel Driving for Fast Quantum Computing Under Speed LimitsProceedings of the 50th Annual International Symposium on Computer Architecture10.1145/3579371.3589075(1-13)Online publication date: 17-Jun-2023
  • Show More Cited By

Index Terms

  1. Designing calibration and expressivity-efficient instruction sets for quantum computing
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        ISCA '21: Proceedings of the 48th Annual International Symposium on Computer Architecture
        June 2021
        1168 pages
        ISBN:9781450390866

        Sponsors

        In-Cooperation

        • IEEE

        Publisher

        IEEE Press

        Publication History

        Published: 25 November 2021

        Check for updates

        Author Tags

        1. compilation
        2. instruction set architecture
        3. quantum computing

        Qualifiers

        • Research-article

        Conference

        ISCA '21
        Sponsor:

        Acceptance Rates

        Overall Acceptance Rate 543 of 3,203 submissions, 17%

        Upcoming Conference

        ISCA '25

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)31
        • Downloads (Last 6 weeks)3
        Reflects downloads up to 01 Sep 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum ComputingProceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 210.1145/3620665.3640386(779-796)Online publication date: 27-Apr-2024
        • (2023)Exploiting the Regular Structure of Modern Quantum Architectures for Compiling and Optimizing Programs with Permutable OperatorsProceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 410.1145/3623278.3624751(108-124)Online publication date: 25-Mar-2023
        • (2023)Parallel Driving for Fast Quantum Computing Under Speed LimitsProceedings of the 50th Annual International Symposium on Computer Architecture10.1145/3579371.3589075(1-13)Online publication date: 17-Jun-2023
        • (2022)2QANProceedings of the 49th Annual International Symposium on Computer Architecture10.1145/3470496.3527394(351-365)Online publication date: 18-Jun-2022

        View Options

        Get Access

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media