Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Design of tangent vector fields

Published: 29 July 2007 Publication History

Abstract

Tangent vector fields are an essential ingredient in controlling surface appearance for applications ranging from anisotropic shading to texture synthesis and non-photorealistic rendering. To achieve a desired effect one is typically interested in smoothly varying fields that satisfy a sparse set of user-provided constraints. Using tools from Discrete Exterior Calculus, we present a simple and efficient algorithm for designing such fields over arbitrary triangle meshes. By representing the field as scalars over mesh edges (i.e., discrete 1-forms), we obtain an intrinsic, coordinate-free formulation in which field smoothness is enforced through discrete Laplace operators. Unlike previous methods, such a formulation leads to a linear system whose sparsity permits efficient pre-factorization. Constraints are incorporated through weighted least squares and can be updated rapidly enough to enable interactive design, as we demonstrate in the context of anisotropic texture synthesis.

Supplementary Material

JPG File (pps056.jpg)
MP4 File (pps056.mp4)

References

[1]
Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, D. 2000. Discontinuous Galerkin Methods for Elliptic Problems. In Discontinuous Galerkin Methods: Theory, Comp. and Appl., vol. 11 of LNCSE. Springer Verlag, 101--89.
[2]
Arnold, D. N., Falk, R. S., and Winther, R. 2006. Finite Element Exterior Calculus, Homological Techniques, and Applications. Acta Numerica 15, 1--155.
[3]
Bobenko, A. I., and Springborn, B. A. A Discrete Laplace-Beltrami Operator for Simplicial Surfaces. Preprint (2005) http://www.arxiv.org/math/0503219; to appear in Discr. & Comp. Geom.
[4]
Bossavit, A., and Kettunen, L. 1999. Yee-Schemes on a Tetrahedral Mesh, with Diagonal Lumping. Int. J. Num. Model. 12, 129--142.
[5]
Botsch, M., and Kobbelt, L. 2004. An Intuitive Framework for Real-Time Freeform Modeling. ACM Trans. Graph. 23, 3, 630--634.
[6]
Botsch, M., Bommes, D., and Kobbelt, L. 2005. Efficient Linear System Solvers for Mesh Processing. In Mathematics of Surfaces XI, vol. 3604 of LNCS. Springer Verlag, 62--83.
[7]
Cabral, B., and Leedom, L. C. 1993. Imaging Vector Fields Using Line Integral Convolution. In Proc. ACM/SIGGRAPH Conf., 263--270.
[8]
Cook, R. L., and DeRose, T. 2005. Wavelet Noise. ACM Trans. Graph. 24, 3, 803--811.
[9]
Davis, T. A., and Hager, W. M. 1999. Modifying a Sparse Cholesky Factorization. SIAM J. Matr. Anal. Appl. 20, 3, 606--627.
[10]
Davis, T. A., and Hager, W. M. 2001. Multiple-Rank Modifications of a Sparse Cholesky Factorization. SIAM J. Matr. Anal. Appl. 22, 4, 997--1013.
[11]
Desbrun, M., Kanso, E., and Tong, Y. 2006. Discrete Differential Forms for Computational Modeling. In Grainspun et al. {2006}.
[12]
Dodziuk, J., and Patodi, V. K. 1976. Riemannian Structures and Triangulations of Manifolds. J. Ind. Math. Soc. 40, 1--4, 1--52.
[13]
Elcott, S., and Schröder, P. 2006. Building Your Own DEC at Home. In Grinspun et al. {2006}.
[14]
Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, Circulation-Preserving, Simplicial Fluids. ACM Trans. Graph. 26, 1.
[15]
Fisher, M., Springborn, B., Bobenko, A. I., and Schröder, P. 2006. An Algorithm for the Construction of Intrinsic Delaunay Triangulations with Applications to Digital Geometry Processing. In Grinspun et al. {2006}.
[16]
Gortler, S. J., Gotsman, C., and Thurston, D. 2006. Discrete One-Forms on Meshes and Applications to 3D Mesh Parameterization. Comput. Aided Geom. Des. 33, 2, 83--112.
[17]
Grinspun, E., Schröder, P., and Desbrun, M., Eds. 2006. Discrete Differential Geometry. Course Notes. ACM SIGGRAPH.
[18]
Gu, X., and Yau, S.-T. 2003. Global Conformal Surface Parameterization. In Proc. Symp. Geom. Proc., 127--137.
[19]
Hertzmann, A., and Zorin, D. 2000. Illustrating Smooth Surfaces. In Proc. ACM/SIGGRAPH Conf., 517--526.
[20]
Hildebrandt, K., Polthier, K., and Wardetzky, M. 2006. On the Convergence of Metric and Geometric Properties of Polyhedral Surfaces. Tech. Rep. ZR-05-24, Konrad-Zuse-Zentrum für Informationstechnik, Berlin.
[21]
Hirani, A. N. 2003. Discrete Exterior Calculus. PhD thesis, Caltech.
[22]
Lefebvre, S., and Hoppe, H. 2006. Appearance-Space Texture Synthesis. ACM Trans. Graph. 25, 3, 541--548.
[23]
Mebarki, A., Alliez, P., and Devillers, O. 2005. Farthest Point Seeding for Efficient Placement of Streamlines. In IEEE Visualization, 479--486.
[24]
Mercat, C. 2001. Discrete Riemann Surfaces and the Ising Model. Comm. in Math. Physics 218, 1, 177--216.
[25]
Meyer, M., Desbrun, M., Schröder, P., and Barr, A. 2002. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In Vis. and Math. III, H.-C. Hege and K. Polthier, Eds. Springer Verlag, 35--57.
[26]
Pedersen, H. K. 1995. Decorating Implicit Surfaces. In Proc. ACM/SIGGRAPH Conf., 291--300.
[27]
Polthier, K., and Preuß, E. 2003. Identifying Vector Field Singularities using a Discrete Hodge Decomposition. In Vis. and Math. III, H. C. Hege and K. Polthier, Eds. Springer Verlag, 113--134.
[28]
Praun, E., Finkelstein, A., and Hoppe, H. 2000. Lapped Textures. In Proc. ACM/SIGGRAPH Conf., 465--470.
[29]
Schlick, C. 1994. An Inexpensive BRDF Model for Physically-Based Rendering. Comp. Graph. Forum 13, 3, 233--246.
[30]
Sorkine, O., Cohen-Or, D., Irony, D., and Toledo, S. 2005. Geometry-Aware Bases for Shape Approximation. IEEE Trans. Vis. Comp. Graph. 11, 2, 171--180.
[31]
Theisel, H. 2002. Designing 2D Vector Fields of Arbitrary Topology. Comp. Graph. Forum 21, 3, 595--604.
[32]
Toledo, S., 2003. TAUCS. Software at http://www.tau.ac.il/~stoledo/taucs/.
[33]
Tong, Y., Lombeyda, S., Hirani, A. N., and Desbrun, M. 2003. Discrete Multiscale Vector Field Decomposition. ACM Trans. Graph. 22, 3, 445--452.
[34]
Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing Quadrangulations with Discrete Harmonic Forms. In Proc. Symp. Geom. Proc., 201--210.
[35]
Turk, G. 2001. Texture Synthesis on Surfaces. In Proc. ACM/SIGGRAPH Conf., 347--354.
[36]
van Wijk, J. J. 1991. Spot Noise Texture Synthesis for Data Visualization. Comp. Graph. (Proc. of ACM/SIGGRAPH Conf.) 25, 4, 309--318.
[37]
Wang, K., Weiwei, Tong, Y., Desbrun, M., and Schröder, P. 2006. Edge Subdivision Schemes and the Construction of Smooth Vector Fields. ACM Trans. Graph. 25, 3, 1041--1048.
[38]
Wei, L.-Y., and Levoy, M. 2001. Texture Synthesis over Arbitrary Manifold Surfaces. In Proc. ACM/SIGGRAPH Conf., 355--360.
[39]
Whitney, H. 1957. Geometric Integration Theory. Princeton University Press.
[40]
Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector Field Design on Surfaces. ACM Trans. Graph. 25, 4, 1294--1326.

Cited By

View all
  • (2024)Surface‐aware Mesh Texture Synthesis with Pre‐trained 2D CNNsComputer Graphics Forum10.1111/cgf.1501643:2Online publication date: 23-Apr-2024
  • (2024)Practical Integer-Constrained Cone Construction for Conformal ParameterizationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.328730330:8(5227-5239)Online publication date: Aug-2024
  • (2023)Mixed-Integer QuadrangulationSeminal Graphics Papers: Pushing the Boundaries, Volume 210.1145/3596711.3596740(249-258)Online publication date: 1-Aug-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 26, Issue 3
July 2007
976 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1276377
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 July 2007
Published in TOG Volume 26, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. constrained Laplace and Poisson problems for 1-forms
  2. discrete differential 1-forms
  3. discrete exterior calculus
  4. texture synthesis

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)46
  • Downloads (Last 6 weeks)3
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Surface‐aware Mesh Texture Synthesis with Pre‐trained 2D CNNsComputer Graphics Forum10.1111/cgf.1501643:2Online publication date: 23-Apr-2024
  • (2024)Practical Integer-Constrained Cone Construction for Conformal ParameterizationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.328730330:8(5227-5239)Online publication date: Aug-2024
  • (2023)Mixed-Integer QuadrangulationSeminal Graphics Papers: Pushing the Boundaries, Volume 210.1145/3596711.3596740(249-258)Online publication date: 1-Aug-2023
  • (2023)Complex Wrinkle Field EvolutionACM Transactions on Graphics10.1145/359239742:4(1-19)Online publication date: 26-Jul-2023
  • (2023)Computing discrete harmonic differential forms in a given cohomology class using finite element exterior calculusComputational Geometry: Theory and Applications10.1016/j.comgeo.2022.101937109:COnline publication date: 1-Feb-2023
  • (2023)Nodal Auxiliary Space Preconditioning for the Surface de Rham ComplexFoundations of Computational Mathematics10.1007/s10208-023-09611-0Online publication date: 19-Apr-2023
  • (2023)Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the ScalesAdvanced Materials10.1002/adma.20220611035:13Online publication date: 15-Feb-2023
  • (2022)Fast Editing of Singularities in Field-Aligned Stripe PatternsSIGGRAPH Asia 2022 Conference Papers10.1145/3550469.3555387(1-8)Online publication date: 29-Nov-2022
  • (2022)Stroke Transfer: Example-based Synthesis of Animatable Stroke StylesACM SIGGRAPH 2022 Conference Proceedings10.1145/3528233.3530703(1-10)Online publication date: 27-Jul-2022
  • (2021)Mid-Air Drawing of Curves on 3D Surfaces in Virtual RealityACM Transactions on Graphics10.1145/345909040:3(1-17)Online publication date: 15-Jul-2021
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media