Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Aerophones in flatland: interactive wave simulation of wind instruments

Published: 27 July 2015 Publication History

Abstract

We present the first real-time technique to synthesize full-bandwidth sounds for 2D virtual wind instruments. A novel interactive wave solver is proposed that synthesizes audio at 128,000Hz on commodity graphics cards. Simulating the wave equation captures the resonant and radiative properties of the instrument body automatically. We show that a variety of existing non-linear excitation mechanisms such as reed or lips can be successfully coupled to the instrument's 2D wave field. Virtual musical performances can be created by mapping user inputs to control geometric features of the instrument body, such as tone holes, and modifying parameters of the excitation model, such as blowing pressure. Field visualizations are also produced. Our technique promotes experimentation by providing instant audio-visual feedback from interactive virtual designs. To allow artifact-free audio despite dynamic geometric modification, we present a novel time-varying Perfectly Matched Layer formulation that yields smooth, natural-sounding transitions between notes. We find that visco-thermal wall losses are crucial for musical sound in 2D simulations and propose a practical approximation. Weak non-linearity at high amplitudes is incorporated to improve the sound quality of brass instruments.

Supplementary Material

ZIP File (a134-allen.zip)
Supplemental files
MP4 File (a134.mp4)

References

[1]
Abel, J., Smyth, T., and Smith, J. O. 2003. A simple, accurate wall loss filter for acoustic tubes. DAFX 2003 Proceedings, 53--57.
[2]
Adachi, S., and Sato, M. 1996. Trumpet sound simulation using a two-dimensional lip vibration model. The Journal of the Acoustical Society of America 99, 2 (Feb.), 1200--1209.
[3]
Bader, R. 2013. Damping in turbulent Navier-Stokes finite element model simulations of wind instruments. The Journal of the Acoustical Society of America 134, 5 (Nov.), 4219.
[4]
Baines, A. 1967. Woodwind Instruments and Their History, third ed. Faber & Faber, London.
[5]
Bilbao, S., and Chick, J. 2013. Finite difference time domain simulation for the brass instrument bore. The Journal of the Acoustical Society of America 134, 5 (Nov.), 3860--3871.
[6]
Bilbao, S., Hamilton, B., Torin, A., Webb, C., Graham, P., Gray, A., Kavoussanakis, K., and Perry, J. 2013. Large scale physical modeling sound synthesis. In Proc. Stockholm Music Acoustics Conference. 593--600.
[7]
Bilbao, S. 2009. Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics, 1 ed. Wiley, Dec.
[8]
Bossart, R., Joly, N., and Bruneau, M. 2003. Hybrid numerical and analytical solutions for acoustic boundary problems in thermo-viscous fluids. Journal of Sound and Vibration 263, 1 (May), 69--84.
[9]
Campbell, M. 2004. Brass Instruments As We Know Them Today. Acta Acustica united with Acustica 90, 600--610.
[10]
Chadwick, J. N., and James, D. L. 2011. Animating Fire with Sound. ACM Trans. Graph. 30, 4 (July).
[11]
Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic shells: a practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28 (Dec.).
[12]
Chadwick, J. N., Zheng, C., and James, D. L. 2012. Precomputed Acceleration Noise for Improved Rigid-body Sound. ACM Trans. Graph. 31, 4 (July).
[13]
Chandak, A., Lauterbach, C., Taylor, M., Ren, Z., and Manocha, D. 2008. AD-Frustum: Adaptive Frustum Tracing for Interactive Sound Propagation. IEEE Transactions on Visualization and Computer Graphics 14, 6, 1707--1722.
[14]
Cook, P. R. 2002. Real Sound Synthesis for Interactive Applications (Book & CD-ROM), 1st ed. AK Peters, Ltd.
[15]
Cooper, C. M., and Abel, J. S. 2010. Digital simulation of "brassiness" and amplitude-dependent propagation speed in wind instruments. In Proc. 13th Int. Conf. on Digital Audio Effects (DAFx-10), 1--6.
[16]
Copley, D. C., and Strong, W. J. 1996. A stroboscopic study of lip vibrations in a trombone. The Journal of the Acoustical Society of America 99, 2 (Feb.), 1219--1226.
[17]
Dalmont, J.-P., Gilbert, J., and Ollivier, S. 2003. Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements. The Journal of the Acoustical Society of America 114, 4 (Oct.), 2253--2262.
[18]
de La Cuadra, P. 2006. The sound of oscillating air jets: Physics, modeling and simulation in flute-like instruments. PhD thesis, Stanford University.
[19]
Fabre, B., Gilbert, J., Hirschberg, A., and Pelorson, X. 2012. Aeroacoustics of Musical Instruments. Annual Review of Fluid Mechanics 44, 1, 1--25.
[20]
Fletcher, N. H., and Rossing, T. 1998. The Physics of Musical Instruments, 2nd ed. corr. 5th printing ed. Springer, Dec.
[21]
Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., and West, J. 1998. A Beam Tracing Approach to Acoustic Modeling for Interactive Virtual Environments. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH '98, 21--32.
[22]
Gedney, S. D. 1996. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. Antennas and Propagation, IEEE Transactions on 44, 12 (Dec.), 1630--1639.
[23]
Giordano, N. 2014. Simulation studies of a recorder in three dimensions. The Journal of the Acoustical Society of America 135, 2 (Feb.), 906--916.
[24]
Hamilton, B., and Webb, C. J. 2013. Room acoustics modelling using GPU-accelerated finite difference and finite volume methods on a face-centered cubic grid. Proc. Digital Audio Effects (DAFx), Maynooth, Ireland.
[25]
Harrison, R., and Chick, J. 2014. A Single Valve Brass Instrument Model using Finite-Difference Time-Domain Methods. In International Symposium on Musical Acoustics.
[26]
Helmholtz, H. 1885. On the Sensations of Tone, second ed. Longmans, Berlin.
[27]
Hsu, B., and Pérez, M. S. 2013. Realtime GPU Audio. Queue 11, 4 (Apr.).
[28]
Huopaniemi, J., Karjalainen, M., Vaelimaeki, V., and Huotilainen, T. 1994. Virtual instruments in virtual rooms - a real-time binaural room simulation environment for physical models of musical instruments. In Proceedings of the International Computer Music Conference, 455.
[29]
James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July), 987--995.
[30]
Keefe, D. H. 1984. Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions. The Journal of the Acoustical Society of America 75, 1, 58--62.
[31]
Langlois, T. R., An, S. S., Jin, K. K., and James, D. L. 2014. Eigenmode Compression for Modal Sound Models. ACM Trans. Graph. 33, 4 (July).
[32]
Lefebvre, A., and Scavone, G. P. 2012. Characterization of woodwind instrument toneholes with the finite element method. The Journal of the Acoustical Society of America 131, 4 (Apr.), 3153--3163.
[33]
Macaluso, C. A., and Dalmont, J.-P. 2011. Trumpet with near-perfect harmonicity: Design and acoustic results. The Journal of the Acoustical Society of America 129, 1 (Jan.), 404--414.
[34]
McIntyre, M. E., Schumacher, R. T., and Woodhouse, J. 1983. On the oscillations of musical instruments. The Journal of the Acoustical Society of America 74, 5 (Nov.), 1325--1345.
[35]
Mehra, R., Raghuvanshi, N., Antani, L., Chandak, A., Curtis, S., and Manocha, D. 2013. Wave-based Sound Propagation in Large Open Scenes Using an Equivalent Source Formulation. ACM Trans. Graph. 32, 2 (Apr.).
[36]
Myers, A., Pyle, R. W., Gilbert, J., Campbell, D. M., Chick, J. P., and Logie, S. 2012. Effects of nonlinear sound propagation on the characteristic timbres of brass instruments. The Journal of the Acoustical Society of America 131, 1 (Jan.), 678--688.
[37]
Noreland, D., Kergomard, J., Laloe, F., Vergez, C., and Guillemain, P. 2013. The logical clarinet: numerical optimization of the geometry of woodwind instruments. Acta Acustica united with Acustica 99, 615--628.
[38]
O'Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In SCA '02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, New York, NY, USA, 175--181.
[39]
Raghuvanshi, N., and Snyder, J. 2014. Parametric Wave Field Coding for Precomputed Sound Propagation. ACM Trans. Graph. 33, 4 (July).
[40]
Ren, Z., Mehra, R., Coposky, J., and Lin, M. C. 2012. Tabletop Ensemble: Touch-enabled Virtual Percussion Instruments. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D '12, 7--14.
[41]
Ricardo, A., Scavone, G. P., and van Walstijn, M. 2007. Numerical simulations of fluid-structure interactions in single-reed mouthpieces. The Journal of the Acoustical Society of America 122, 3 (Sept.).
[42]
Rossing, T. D., Moore, F. R., and Wheeler, P. A. 2001. The Science of Sound, 3rd Edition, 3rd ed. Addison-Wesley, Dec.
[43]
Savioja, L., Manocha, D., and Lin, M. 2010. Use of GPUs in room acoustic modeling and auralization. In Proc. Int. Symp. Room Acoustics.
[44]
Savioja, L. 2010. Real-Time 3D Finite-Difference Time-Domain Simulation of Mid-Frequency Room Acoustics. In 13th International Conference on Digital Audio Effects (DAFx-10).
[45]
Scavone, G. P., and Smith, J. O. 1996. Digital waveguide modeling of woodwind toneholes. The Journal of the Acoustical Society of America 100, 4 (Oct.), 2812.
[46]
Schissler, C., Mehra, R., and Manocha, D. 2014. High-order Diffraction and Diffuse Reflections for Interactive Sound Propagation in Large Environments. ACM Trans. Graph. 33, 4 (July).
[47]
Smith, J. O. 1986. Efficient simulation of the reed-bore and bowstring mechanisms. In Proc. Int. Computer Music Conf., 275--280.
[48]
Smith, J. O. 1996. Physical Modeling Synthesis Update. Computer Music Journal 20, 2, 44--56.
[49]
Smith, J. O. 2004. Virtual Acoustic Musical Instruments: Review and Update. Journal of New Music Research 33, 3, 283--304.
[50]
Smith, J. O. 2010. Physical Audio Signal Processing. http://ccrma.stanford.edu/~jos/pasp/ (online book, accessed Jan 2014).
[51]
Tsingos, N., Jiang, W., and Williams, I. 2011. Using Programmable Graphics Hardware for Acoustics and Audio Rendering. J. Audio Eng. Soc 59, 9, 628--646.
[52]
Välimäki, V., Pakarinen, J., Erkut, C., and Karjalainen, M. 2006. Discrete-time modelling of musical instruments. Reports on Progress in Physics 69, 1 (Jan.), 1--78.
[53]
van Walstijn, M., and Campbell, M. 2003. Discrete-time modeling of woodwind instrument bores using wave variables. The Journal of the Acoustical Society of America 113, 1 (Jan.), 575--585.
[54]
van Walstijn, M. 2007. Wave-based Simulation of Wind Instrument Resonators. Signal Processing Magazine, IEEE 24, 2 (Mar.), 21--31.
[55]
Verge, M.-P. 1995. Aeroacoustics of confined jets: with applications to the physical modeling of recorder-like instruments. PhD thesis, Technische Universiteit Eindhoven.
[56]
Webb, C. J. 2014. Parallel computation techniques for virtual acoustics and physical modelling synthesis. PhD thesis, Acoustics and Audio Group, University of Edinburgh.
[57]
Zheng, C., and James, D. L. 2009. Harmonic Fluids. In ACM SIGGRAPH 2009 Papers, ACM, New York, NY, USA, SIGGRAPH '09, 1--12.

Cited By

View all
  • (2023)Improved Water Sound Synthesis using Coupled BubblesACM Transactions on Graphics10.1145/359242442:4(1-13)Online publication date: 26-Jul-2023
  • (2022)SoundSpaces 2.0Proceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3600917(8896-8911)Online publication date: 28-Nov-2022
  • (2022)Sound Synthesis, Propagation, and RenderingSynthesis Lectures on Visual Computing10.2200/S01162ED1V01Y202201VCP03311:2(1-110)Online publication date: 24-Mar-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 34, Issue 4
August 2015
1307 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2809654
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2015
Published in TOG Volume 34, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. graphics processor (GPU)
  2. radiation
  3. scattering
  4. sound synthesis
  5. wave equation
  6. wind instruments

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)28
  • Downloads (Last 6 weeks)5
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Improved Water Sound Synthesis using Coupled BubblesACM Transactions on Graphics10.1145/359242442:4(1-13)Online publication date: 26-Jul-2023
  • (2022)SoundSpaces 2.0Proceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3600917(8896-8911)Online publication date: 28-Nov-2022
  • (2022)Sound Synthesis, Propagation, and RenderingSynthesis Lectures on Visual Computing10.2200/S01162ED1V01Y202201VCP03311:2(1-110)Online publication date: 24-Mar-2022
  • (2022)The Hyper Drumhead: A Musical Instrument For The Audio/Visual Manipulation Of Sound WavesACM SIGGRAPH 2022 Real-Time Live!10.1145/3532833.3538686(1-2)Online publication date: 27-Jul-2022
  • (2022)GWA: A Large High-Quality Acoustic Dataset for Audio ProcessingACM SIGGRAPH 2022 Conference Proceedings10.1145/3528233.3530731(1-9)Online publication date: 27-Jul-2022
  • (2022)TipTrap: A Co-located Direct Manipulation Technique for Acoustically Levitated Content.Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology10.1145/3526113.3545675(1-11)Online publication date: 29-Oct-2022
  • (2022)Interactive and Immersive AuralizationSonic Interactions in Virtual Environments10.1007/978-3-031-04021-4_3(77-113)Online publication date: 14-Oct-2022
  • (2021)Audio Enhancement of Physical Models of Musical Instruments Using Optimal Correction Factors: The Recorder CaseApplied Sciences10.3390/app1114642611:14(6426)Online publication date: 12-Jul-2021
  • (2021)Layout Estimation for Layered Ink of 3D Printer to Reproduce the Desired Line Spread Function of Skin using Simulated Data1Journal of Imaging Science and Technology10.2352/J.ImagingSci.Technol.2021.65.5.05050165:5(050501-1-050501-12)Online publication date: 1-Sep-2021
  • (2021)Binaural audio generation via multi-task learningACM Transactions on Graphics10.1145/3478513.348056040:6(1-13)Online publication date: 10-Dec-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media