Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3372780.3378175acmconferencesArticle/Chapter ViewAbstractPublication PagesispdConference Proceedingsconference-collections
research-article

Hardware Security For and Beyond CMOS Technology: An Overview on Fundamentals, Applications, and Challenges

Published: 30 March 2020 Publication History

Abstract

As with most aspects of electronic systems and integrated circuits, hardware security has traditionally evolved around the dominant CMOS technology. However, with the rise of various emerging technologies, whose main purpose is to overcome the fundamental limitations for scaling and power consumption of CMOS technology, unique opportunities arise also to advance the notion of hardware security. In this paper, I first provide an overview on hardware security in general. Next, I review selected emerging technologies, namely (i) spintronics, (ii) memristors, (iii) carbon nanotubes and related transistors, (iv) nanowires and related transistors, and (v) 3D and 2.5D integration. I then discuss their application to advance hardware security and also outline related challenges.

References

[1]
BIBentryALTinterwordspacingB. Krebs. (2019) First american financial corp. leaked hundreds of millions of title insurance records. https://krebsonsecurity.com/2019/05/first-american-financial-corp-leaked-hundreds-of-millions-of-title-insurance-records/BIBentrySTDinterwordspacing
[2]
P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling, and I. Verbauwhede, “Hardware-based trusted computing architectures for isolation and attestation,” Trans. Comp., vol. 67, no. 3, pp. 361--374, 2018. https://doi.org/10.1109/TC.2017.2647955
[3]
H. Zhang et al., “Architectural support for containment-based security,” in Proc. Arch. Supp. Programm. Lang. Op. Sys., 2019, pp. 361--377. https://doi.org/10.1145/3297858.3304020
[4]
BIBentryALTinterwordspacingM. Nabeel, M. Ashraf, S. Patnaik, V. Soteriou, O. Sinanoglu, and J. Knechtel, “An interposer-based root of trust: Seize the opportunity for secure system-level integration of untrusted chiplets,” Comp. Research Rep., 2019. https://arxiv.org/abs/1906.02044BIBentrySTDinterwordspacing
[5]
H. Jiang et al., “A provable key destruction scheme based on memristive crossbar arrays,” Nature Electronics, vol. 1, no. 10, pp. 548--554, 2018. https://doi.org/10.1038/s41928-018-0146--5
[6]
I. Verbauwhede, Ed., Secure Integrated Circuits and Systems, ser. Integrated Circuits and Systems.hskip 1em plus 0.5em minus 0.4emrelax Springer, 2010. https://doi.org/10.1007/978-0--387--71829--3
[7]
E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage model,” in Proc. Cryptogr. Hardw. Embed. Sys., 2004. https://doi.org/10.1007/978--3--540--28632--5_2
[8]
P. Bayon, L. Bossuet, A. Aubert, and V. Fischer, “Fault model of electromagnetic attacks targeting ring oscillator-based true random number generators,” J. Cryptogr. Eng., vol. 6, no. 1, pp. 61--74, 2016. https://doi.org/10.1007/s13389-015-0113--2
[9]
P. Qiu, D. Wang, Y. Lyu, and G. Qu, “VoltJockey: Breaching TrustZone by software-controlled voltage manipulation over multi-core frequencies,” in Proc. Comp. Comm. Sec., 2019, pp. 195--209. https://doi.org/10.1145/3319535.3354201
[10]
C. O'Flynn and A. Dewar, “On-device power analysis across hardware security domains.” Trans. Cryptogr. Hardw. Embed. Sys., vol. 2019, no. 4, pp. 126--153, 2019. https://doi.org/10.13154/tches.v2019.i4.126--153
[11]
BIBentryALTinterwordspacingA. Cui and R. Housley, “BADFET: Defeating modern secure boot using second-order pulsed electromagnetic fault injection,” in Proc. Worksh. Off. Tech., 2017. https://www.usenix.org/conference/woot17/workshop-program/presentation/cuiBIBentrySTDinterwordspacing
[12]
BIBentryALTinterwordspacingY. Zhou and D. Feng, “Side-channel attacks: Ten years after its publication and the impacts on cryptographic module security testing,” in IACR Crypt. ePrint Arch., no. 388, 2005. http://eprint.iacr.org/2005/388BIBentrySTDinterwordspacing
[13]
BIBentryALTinterwordspacingD. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: the case of AES,” in IACR Crypt. ePrint Arch., 2005. https://eprint.iacr.org/2005/271BIBentrySTDinterwordspacing
[14]
BIBentryALTinterwordspacingM. Lipp et al., “Meltdown,” Comp. Research Rep., 2018. https://arxiv.org/abs/1801.01207BIBentrySTDinterwordspacing
[15]
BIBentryALTinterwordspacingM. Schwarz et al., “ZombieLoad: Cross-privilege-boundary data sampling,” Comp. Research Rep., 2019. https://arxiv.org/abs/1905.05726BIBentrySTDinterwordspacing
[16]
H. Groß, S. Mangard, and T. Korak, “Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order,” in Proc. Comp. Comm. Sec., 2016. https://doi.org/10.1145/2996366.2996426
[17]
D. Bellizia, S. Bongiovanni, P. Monsurrò, G. Scotti, A. Trifiletti, and F. B. Trotta, “Secure double rate registers as an RTL countermeasure against power analysis attacks,” Trans. VLSI Syst., vol. 26, no. 7, pp. 1368--1376, 2018. https://doi.org/10.1109/TVLSI.2018.2816914
[18]
B. Selmke, J. Heyszl, and G. Sigl, “Attack on a DFA protected AES by simultaneous laser fault injections,” in Proc. Worksh. Fault Diag. Tol. Cryptogr., 2016, pp. 36--46. https://doi.org/10.1109/FDTC.2016.16
[19]
V. van der Veen et al., “Drammer: Deterministic rowhammer attacks on mobile platforms,” in Proc. Comp. Comm. Sec., 2016, pp. 1675--1689. https://doi.org/10.1145/2976749.2978406
[20]
G. D. Natale, E. I. Vatajelu, K. S. Kannan, and L. Anghel, “Hidden-delay-fault sensor for test, reliability and security,” in Proc. Des. Autom. Test Europe, 2019, pp. 316--319. https://doi.org/10.23919/DATE.2019.8714891
[21]
B. Karp, M. Gay, O. Keren, and I. Polian, “Security-oriented code-based architectures for mitigating fault attacks,” in Proc. DCIS, 2018, pp. 1--6. https://doi.org/10.1109/DCIS.2018.8681476
[22]
J. Dutertre et al., “Laser fault injection at the CMOS 28 nm technology node: an analysis of the fault model,” in Proc. Worksh. Fault Diag. Tol. Cryptogr., 2018. https://doi.org/10.1109/FDTC.2018.00009
[23]
BIBentryALTinterwordspacingB. Karp, M. Gay, O. Keren, and I. Polian, “Detection and correction of malicious and natural faults in cryptographic modules,” in Proc. PROOFS@CHES, 2018, pp. 68--82. https://easychair.org/publications/download/zMjhBIBentrySTDinterwordspacing
[24]
BIBentryALTinterwordspacingE. L. Principe et al., “Plasma FIB deprocessing of integrated circuits from the backside,” Elec. Dev. Fail. Analysis, vol. 19, no. 4, pp. 36--44, 2017. https://www.researchgate.net/profile/Robert_Chivas/publication/322264562_Plasma_FIB_deprocessing_of_integrated_circuits_from_the_backside/links/5a54f88e45851547b1bd55f2/Plasma-FIB-deprocessing-of-integrated-circuits-from-the-backside.pdfBIBentrySTDinterwordspacing
[25]
H. Wang, Q. Shi, D. Forte, and M. M. Tehranipoor, “Probing attacks on integrated circuits: Challenges and research opportunities,” Des. Test, vol. 34, no. 5, pp. 63--71, 2017. https://doi.org/10.1109/MDAT.2017.2729398
[26]
C. Helfmeier, D. Nedospasov, C. Tarnovsky, J. S. Krissler, C. Boit, and J.-P. Seifert, “Breaking and entering through the silicon,” in Proc. Comp. Comm. Sec., 2013, pp. 733--744. https://doi.org/10.1145/2508859.2516717
[27]
S. Tajik, H. Lohrke, J.-P. Seifert, and C. Boit, “On the power of optical contactless probing: Attacking bitstream encryption of FPGAs,” in Proc. Comp. Comm. Sec., 2017, pp. 1661--1674. https://doi.org/10.1145/3133956.3134039
[28]
BIBentryALTinterwordspacingF. Courbon, S. Skorobogatov, and C. Woods, “Direct charge measurement in floating gate transistors of flash EEPROM using scanning electron microscopy,” in Proc. Int. Symp. Test. Failure Analys., 2016, pp. 1--9. https://pdfs.semanticscholar.org/992a/20c0a8bb71642fc44fa65f053b3524113b99.pdfBIBentrySTDinterwordspacing
[29]
H. Wang, Q. Shi, D. Forte, and M. M. Tehranipoor, “Probing assessment framework and evaluation of antiprobing solutions,” Trans. VLSI Syst., vol. 27, no. 6, pp. 1239--1252, 2019. https://doi.org/10.1109/TVLSI.2019.2901449
[30]
Y. Lee, H. Lim, Y. Lee, and S. Kang, “Robust secure shield architecture for detection and protection against invasive attacks,” Trans. Comp.-Aided Des. Integ. Circ. Sys., 2019. https://doi.org/10.1109/TCAD.2019.2944580
[31]
K. Yi, M. Park, and S. Kim, “Practical silicon-surface-protection method using metal layer,” J. Semicond. Tech. Sci., vol. 16, no. 4, pp. 470--480, 2016. https://doi.org/10.5573/JSTS.2016.16.4.470
[32]
BIBentryALTinterwordspacingH. Shen, N. Asadizanjani, M. Tehranipoor, and D. Forte, “Nanopyramid: An optical scrambler against backside probing attacks,” in Proc. Int. Symp. Test. Failure Analys., 2018. https://pdfs.semanticscholar.org/453a/ce0749c374d59c4193cc26d06ac38e22c500.pdfBIBentrySTDinterwordspacing
[33]
M. Weiner, S. Manich, R. Rodríguez-Montañés, and G. Sigl, “The low area probing detector as a countermeasure against invasive attacks,” Trans. VLSI Syst., vol. 26, no. 2, pp. 392--403, 2018. https://doi.org/10.1109/TVLSI.2017.2762630
[34]
Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing hardware against probing attacks,” in Advances in Cryptology, 2003, pp. 463--481. https://doi.org/10.1007/978--3--540--45146--4_27
[35]
M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware security: Models, methods, and metrics,” Proc. IEEE, vol. 102, no. 8, pp. 1283--1295, 2014. https://doi.org/10.1109/JPROC.2014.2335155
[36]
J. Knechtel, S. Patnaik, and O. Sinanoglu, “Protect your chip design intellectual property: An overview,” in Proc. Conf. Omni-Layer Intell. Sys., 2019, pp. 211--216. https://doi.org/10.1145/3312614.3312657
[37]
M. Yasin, J. J. Rajendran, and O. Sinanoglu, Trustworthy Hardware Design: Combinational Logic Locking Techniques. hskip 1em plus 0.5em minus 0.4emrelax Springer, 2020. https://doi.org/10.1007/978--3-030--15334--2
[38]
BIBentryALTinterwordspacingM. Yasin, S. M. Saeed, J. Rajendran, and O. Sinanoglu, “Activation of logic encrypted chips: Pre-test or post-test?” in Proc. Des. Autom. Test Europe, 2016, pp. 139--144. https://ieeexplore.ieee.org/abstract/document/7459294BIBentrySTDinterwordspacing
[39]
S. Anceau, P. Bleuet, J. Clédière, L. Maingault, J.-l. Rainard, and R. Tucoulou, “Nanofocused X-ray beam to reprogram secure circuits,” in Proc. Cryptogr. Hardw. Embed. Sys., 2017, pp. 175--188. https://doi.org/10.1007/978--3--319--66787--4_9
[40]
J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending piracy of integrated circuits,” Computer, vol. 43, no. 10, pp. 30--38, 2010. https://doi.org/10.1109/MC.2010.284
[41]
M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving the security of logic locking,” Trans. Comp.-Aided Des. Integ. Circ. Sys., vol. 35, no. 9, pp. 1411--1424, 2016. https://doi.org/10.1109/TCAD.2015.2511144
[42]
P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic encryption algorithms,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2015, pp. 137--143. https://doi.org/10.1109/HST.2015.7140252
[43]
Y. Xie and A. Srivastava, “Mitigating SAT attack on logic locking,” in Proc. Cryptogr. Hardw. Embed. Sys., 2016, pp. 127--146. https://doi.org/10.1007/978--3--662--53140--2_7
[44]
M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran, and O. Sinanoglu, “Provably-secure logic locking: From theory to practice,” in Proc. Comp. Comm. Sec., 2017, pp. 1601--1618. https://doi.org/10.1145/3133956.3133985
[45]
Y. Shen and H. Zhou, “Double DIP: Re-evaluating security of logic encryption algorithms,” in Proc. Great Lakes Symp. VLSI, 2017, pp. 179--184. https://doi.org/10.1145/3060403.3060469
[46]
K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT: Approximately deobfuscating integrated circuits,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2017, pp. 95--100. https://doi.org/10.1109/HST.2017.7951805
[47]
BIBentryALTinterwordspacingM. E. Massad, J. Zhang, S. Garg, and M. V. Tripunitara, “Logic locking for secure outsourced chip fabrication: A new attack and provably secure defense mechanism,” Comp. Research Rep., 2017. http://arxiv.org/abs/1703.10187BIBentrySTDinterwordspacing
[48]
L. Li and A. Orailoglu, “Piercing logic locking keys through redundancy identification,” in Proc. Des. Autom. Test Europe, 2019. https://doi.org/10.23919/DATE.2019.8714955
[49]
P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: Machine learning guided structural analysis attack on hardware obfuscation,” in Proc. Asian Hardw.-Orient. Sec. Trust Symp., 2018, pp. 56--61. https://doi.org/10.1109/AsianHOST.2018.8607163
[50]
J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis of integrated circuit camouflaging,” in Proc. Comp. Comm. Sec., 2013, pp. 709--720. https://doi.org/10.1145/2508859.2516656
[51]
B. Erbagci, C. Erbagci, N. E. C. Akkaya, and K. Mai, “A secure camouflaged threshold voltage defined logic family,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2016, pp. 229--235. https://doi.org/10.1109/HST.2016.7495587
[52]
M. Li et al., “Provably secure camouflaging strategy for IC protection,” in Proc. Int. Conf. Comp.-Aided Des., 2016, pp. 28:1--28:8. https://doi.org/10.1145/2966986.2967065
[53]
S. Patnaik, M. Ashraf, J. Knechtel, and O. Sinanoglu, “Obfuscating the interconnects: Low-cost and resilient full-chip layout camouflaging,” in Proc. Int. Conf. Comp.-Aided Des., 2017, pp. 41--48. https://doi.org/10.1109/ICCAD.2017.8203758
[54]
BIBentryALTinterwordspacing(2019) Circuit camouflage technology. Rambus Inc. https://www.rambus.com/security/cryptofirewall-cores/circuit-camouflage-technology/BIBentrySTDinterwordspacing
[55]
Y. Lao and K. K. Parhi, “Obfuscating DSP circuits via high-level transformations,” Trans. VLSI Syst., vol. 23, no. 5, pp. 819--830, 2015. https://doi.org/10.1109/TVLSI.2014.2323976
[56]
C. Yu, X. Zhang, D. Liu, M. Ciesielski, and D. Holcomb, “Incremental SAT-based reverse engineering of camouflaged logic circuits,” Trans. Comp.-Aided Des. Integ. Circ. Sys., vol. 36, no. 10, pp. 1647--1659, 2017. https://doi.org/10.1109/TCAD.2017.2652220
[57]
J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing secure?” in Proc. Des. Autom. Test Europe, 2013, pp. 1259--1264. https://doi.org/10.7873/DATE.2013.261
[58]
A. Sengupta, S. Patnaik, J. Knechtel, M. Ashraf, S. Garg, and O. Sinanoglu, “Rethinking split manufacturing: An information-theoretic approach with secure layout techniques,” in Proc. Int. Conf. Comp.-Aided Des., 2017, pp. 329--336. https://doi.org/10.1109/ICCAD.2017.8203796
[59]
S. Patnaik, J. Knechtel, M. Ashraf, and O. Sinanoglu, “Concerted wire lifting: Enabling secure and cost-effective split manufacturing,” in Proc. Asia South Pac. Des. Autom. Conf., 2018, pp. 251--258. https://doi.org/10.1109/ASPDAC.2018.8297314
[60]
S. Patnaik, M. Ashraf, J. Knechtel, and O. Sinanoglu, “Raise your game for split manufacturing: Restoring the true functionality through BEOL,” in Proc. Des. Autom. Conf., 2018, pp. 140:1--140:6. https://doi.org/10.1145/3195970.3196100
[61]
BIBentryALTinterwordspacingC. McCants. (2016) Trusted integrated chips (TIC) program. https://www.ndia.org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/past-events/trusted-micro/2016-august/mccants-carl.ashxBIBentrySTDinterwordspacing
[62]
K. Vaidyanathan, B. P. Das, E. Sumbul, R. Liu, and L. Pileggi, “Building trusted ICs using split fabrication,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2014, pp. 1--6. https://doi.org/10.1109/HST.2014.6855559
[63]
Y. Wang, P. Chen, J. Hu, and J. J. Rajendran, “The cat and mouse in split manufacturing,” in Proc. Des. Autom. Conf., 2016, pp. 165:1--165:6. https://doi.org/10.1145/2897937.2898104
[64]
H. Li et al., “Attacking split manufacturing from a deep learning perspective,” in Proc. Des. Autom. Conf., 2019, pp. 135:1--135:6. https://doi.org/10.1145/3316781.3317780
[65]
S. Bhunia and M. M. Tehranipoor, Eds., The Hardware Trojan War: Attacks, Myths, and Defenses. hskip 1em plus 0.5em minus 0.4emrelax Springer, 2018. https://doi.org/10.1007/978--3--319--68511--3
[66]
K. Basu et al., “CAD-Base: An attack vector into the electronics supply chain,” Trans. Des. Autom. Elec. Sys., vol. 24, no. 4, pp. 38:1--38:30, 2019. https://doi.org/10.1145/3315574
[67]
P. Swierczynski, M. Fyrbiak, P. Koppe, A. Moradi, and C. Paar, “Interdiction in practice--hardware trojan against a high-security USB flash drive,” J. Cryptogr. Eng., vol. 7, no. 3, pp. 199--211, 2017. https://doi.org/10.1007/s13389-016-0132--7
[68]
R. S. Chakraborty, F. G. Wolff, S. Paul, C. A. Papachristou, and S. Bhunia, “MERO: A statistical approach for hardware trojan detection,” in Proc. Cryptogr. Hardw. Embed. Sys., 2009, pp. 396--410. https://doi.org/10.1007/978--3--642-04138--9_28
[69]
J. Aarestad, D. Acharyya, R. M. Rad, and J. Plusquellic, “Detecting trojans through leakage current analysis using multiple supply pad IDDQS,” Trans. Inf. Forens. Sec., vol. 5, no. 4, pp. 893--904, 2010. https://doi.org/10.1109/TIFS.2010.2061228
[70]
Y. Jin and Y. Makris, “Hardware trojan detection using path delay fingerprint,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2008, pp. 51--57. https://doi.org/10.1109/HST.2008.4559049
[71]
E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware intellectual property: A pathway to trusted module acquisition,” Trans. Inf. Forens. Sec., vol. 7, no. 1, pp. 25--40, 2012. https://doi.org/10.1109/TIFS.2011.2160627
[72]
X. Guo, R. G. Dutta, J. He, M. M. Tehranipoor, and Y. Jin, “QIF-Verilog: Quantitative information-flow based hardware description languages for pre-silicon security assessment,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2019, pp. 91--100. https://doi.org/10.1109/HST.2019.8740840
[73]
T. Sugawara et al., “Reversing stealthy dopant-level circuits,” J. Cryptogr. Eng., vol. 5, no. 2, pp. 85--94, 2015. https://doi.org/10.1007/s13389-015-0102--5
[74]
BIBentryALTinterwordspacingN. Vashistha et al., “Trojan scanner: Detecting hardware trojans with rapid SEM imaging combined with image processing and machine learning,” in Proc. Int. Symp. Test. Failure Analys., 2018. https://pdfs.semanticscholar.org/7b7d/582034c19096c28c47bd1452e8becf287abc.pdfBIBentrySTDinterwordspacing
[75]
A. Chandrasekharan, K. Schmitz, U. Kuhne, and R. Drechsler, “Ensuring safety and reliability of IP-based system design -- a container approach,” in Proc. Int. Symp. Rapid System Prototyping, 2015, pp. 76--82. https://doi.org/10.1109/RSP.2015.7416550
[76]
K. Xiao, D. Forte, and M. Tehranipoor, “A novel built-in self-authentication technique to prevent inserting hardware trojans,” Trans. Comp.-Aided Des. Integ. Circ. Sys., vol. 33, no. 12, pp. 1778--1791, 2014. https://doi.org/10.1109/TCAD.2014.2356453
[77]
L. W. Kim and J. D. Villasenor, “A system-on-chip bus architecture for thwarting integrated circuit trojan horses,” Trans. VLSI Syst., vol. 19, no. 10, pp. 1921--1926, 2011. https://doi.org/10.1109/TVLSI.2010.2060375
[78]
S. Bhunia et al., “Protection against hardware trojan attacks: Towards a comprehensive solution,” Des. Test, vol. 30, no. 3, pp. 6--17, 2013. https://doi.org/10.1109/MDT.2012.2196252
[79]
A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance for system-on-chip designs with untrusted IPs,” Trans. Inf. Forens. Sec., vol. 12, no. 7, pp. 1515--1528, 2017. https://doi.org/10.1109/TIFS.2017.2658544
[80]
T. F. Wu, K. Ganesan, Y. A. Hu, H. S. P. Wong, S. Wong, and S. Mitra, “TPAD: Hardware trojan prevention and detection for trusted integrated circuits,” Trans. Comp.-Aided Des. Integ. Circ. Sys., vol. 35, no. 4, pp. 521--534, 2016. https://doi.org/10.1109/TCAD.2015.2474373
[81]
R. S. Wahby, M. Howald, S. Garg, and M. Walfish, “Verifiable ASICs,” Proc. Symp. Sec. Priv., pp. 759--778, 2016. https://doi.org/10.1109/SP.2016.51
[82]
BIBentryALTinterwordspacingF. Imeson, A. Emtenan, S. Garg, and M. V. Tripunitara, “Securing computer hardware using 3D integrated circuit (IC) technology and split manufacturing for obfuscation,” in Proc. USENIX Sec. Symp., 2013, pp. 495--510. https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/imesonBIBentrySTDinterwordspacing
[83]
C. Herder, M. D. Yu, F. Koushanfar, and S. Devadas, “Physical unclonable functions and applications: A tutorial,” Proc. IEEE, vol. 102, no. 8, pp. 1126--1141, 2014. https://doi.org/10.1109/JPROC.2014.2320516
[84]
R. Maes and I. Verbauwhede, Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions. hskip 1em plus 0.5em minus 0.4emrelax Springer, 2010, pp. 3--37. https://doi.org/10.1007/978--3--642--14452--3_1
[85]
C. H. Chang, Y. Zheng, and L. Zhang, “A retrospective and a look forward: Fifteen years of physical unclonable function advancement,” IEEE Circuits and Systems Magazine, vol. 17, no. 3, pp. 32--62, 2017. https://doi.org/10.1109/MCAS.2017.2713305
[86]
F. Ganji, “On the learnability of physically unclonable functions,” Ph.D. dissertation, Technische Universität Berlin, 2017. https://doi.org/10.14279/depositonce-6174
[87]
U. Rührmair et al., “PUF modeling attacks on simulated and silicon data,” Trans. Inf. Forens. Sec., vol. 8, no. 11, pp. 1876--1891, 2013. https://doi.org/10.1109/TIFS.2013.2279798
[88]
Y. Liu, Y. Xie, C. Bao, and A. Srivastava, “A combined optimization-theoretic and side-channel approach for attacking strong physical unclonable functions,” Trans. VLSI Syst., vol. 26, no. 1, pp. 73--81, 2018. https://doi.org/10.1109/TVLSI.2017.2759731
[89]
R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science, vol. 297, no. 5589, pp. 2026--2030, 2002. https://doi.org/10.1126/science.1074376
[90]
BIBentryALTinterwordspacingU. Rührmair et al., “Optical PUFs reloaded,” in IACR Crypt. ePrint Arch., 2013. https://eprint.iacr.org/2013/215BIBentrySTDinterwordspacing
[91]
P. Tuyls and B. vS korić, Strong Authentication with Physical Unclonable Functions. hskip 1em plus 0.5em minus 0.4emrelax Springer, 2007, pp. 133--148. https://doi.org/10.1007/978--3--540--69861--6_10
[92]
B. C. Grubel et al., “Silicon photonic physical unclonable function,” Opt. Express, vol. 25, no. 11, pp. 12,710--12,721, 2017. https://doi.org/10.1364/OE.25.012710
[93]
J. Knechtel, J. Gosciniak, A. Bojesomo, S. Patnaik, O. Sinanoglu, and M. Rasras, “Toward physically unclonable functions from plasmonics-enhanced silicon disc resonators,” J. Lightwave Tech., vol. 37, pp. 3805--3814, 2019. https://doi.org/10.1109/JLT.2019.2920949
[94]
H. Amrouch, G. Pahwa, A. D. Gaidhane, J. Henkel, and Y. S. Chauhan, “Negative capacitance transistor to address the fundamental limitations in technology scaling: Processor performance,” IEEE Access, vol. 6, pp. 52,754--52,765, 2018. https://doi.org/10.1109/ACCESS.2018.2870916
[95]
D. Perez et al., “Multipurpose silicon photonics signal processor core,” Nature Communications, vol. 8, no. 1, p. 636, Sep. 2017. https://doi.org/10.1038/s41467-017-00714--1
[96]
J. S. Orcutt et al., “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express, vol. 20, no. 11, pp. 12,222--12,232, 2012. https://doi.org/10.1364/OE.20.012222
[97]
M. M. Sabry Aly et al., “The N3XT approach to energy-efficient abundant-data computing,” Proc. IEEE, vol. 107, no. 1, pp. 19--48, 2019. https://doi.org/10.1109/JPROC.2018.2882603
[98]
S.-h. C. Baek et al., “Complementary logic operation based on electric-field controlled spin-orbit torques,” Nature Electronics, vol. 1, no. 7, pp. 398--403, 2018. https://doi.org/10.1038/s41928-018-0099--8
[99]
S. Manipatruni et al., “Scalable energy-efficient magnetoelectric spin-orbit logic,” Nature, vol. 565, no. 7737, pp. 35--42, 2018. https://doi.org/10.1038/s41586-018-0770--2
[100]
D. E. Nikonov and I. A. Young, “Overview of beyond-CMOS devices and a uniform methodology for their benchmarking,” Proc. IEEE, vol. 101, no. 12, pp. 2498--2533, 2013. https://doi.org/10.1109/JPROC.2013.2252317
[101]
A. Makarov, T. Windbacher, V. Sverdlov, and S. Selberherr, “CMOS-compatible spintronic devices: a review,” Semiconductor Science and Technology, vol. 31, no. 11, p. 113006, 2016. https://doi.org/10.1088/0268--1242/31/11/113006
[102]
X. Fong et al., “Spin-transfer torque devices for logic and memory: Prospects and perspectives,” Trans. Comp.-Aided Des. Integ. Circ. Sys., vol. 35, no. 1, pp. 1--22, 2016. https://doi.org/10.1109/TCAD.2015.2481793
[103]
N. Rangarajan, S. Patnaik, J. Knechtel, O. Sinanoglu, and S. Rakheja, “Spin-based reconfigurable logic for power- and area-efficient applications,” Des. Test, vol. 36, no. 3, pp. 22--30, 2019. https://doi.org/10.1109/MDAT.2019.2895021
[104]
W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, “Graphene spintronics,” Nature Nanotechnology, vol. 9, no. 10, pp. 794--807, 2014. https://doi.org/10.1038/nnano.2014.214
[105]
J. Linder and J. W. A. Robinson, “Superconducting spintronics,” Nature Physics, vol. 11, no. 4, pp. 307--315, 2015. https://doi.org/10.1038/nphys3242
[106]
A. R. Rocha, V. M. García-suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, “Towards molecular spintronics,” Nature Materials, vol. 4, no. 4, pp. 335--339, 2005. https://doi.org/10.1038/nmat1349
[107]
S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. Piramanayagam, “Spintronics based random access memory: a review,” Materials Today, vol. 20, no. 9, pp. 530--548, 2017. https://doi.org/10.1016/j.mattod.2017.07.007
[108]
N. Rangarajan, A. Parthasarathy, N. Kani, and S. Rakheja, “Energy-efficient computing with probabilistic magnetic bits -- performance modeling and comparison against probabilistic CMOS logic,” Trans. Magnetics, vol. 53, no. 11, pp. 1--10, 2017. https://doi.org/10.1109/TMAG.2017.2696041
[109]
S. Matsunaga et al., “Fabrication of a nonvolatile full adder based on logic-in-memory architecture using magnetic tunnel junctions,” Applied Physics Express, vol. 1, no. 9, p. 091301, 2008. https://doi.org/10.1143/APEX.1.091301
[110]
L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on Circuit Theory, vol. 18, no. 5, pp. 507--519, 1971. https://doi.org/10.1109/TCT.1971.1083337
[111]
A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, “Sub-nanosecond switching of a tantalum oxide memristor,” Nanotechnology, vol. 22, no. 48, p. 485203, 2011. https://doi.org/10.1088/0957--4484/22/48/485203
[112]
X. Wang and Y. Chen, “Spintronic memristor devices and application,” in Proc. Des. Autom. Test Europe, 2010, pp. 667--672. https://doi.org/10.1109/DATE.2010.5457118
[113]
M. V. Il'ina et al., “Memristive switching mechanism of vertically aligned carbon nanotubes,” Carbon, vol. 123, pp. 514--524, 2017. https://doi.org/10.1016/j.carbon.2017.07.090
[114]
L. Chua, “Resistance switching memories are memristors,” Applied Physics A, vol. 102, no. 4, pp. 765--783, 2011. https://doi.org/10.1007/s00339-011--6264--9
[115]
S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “The desired memristor for circuit designers,” IEEE Circuits and Systems Magazine, vol. 13, no. 2, pp. 17--22, 2013. https://doi.org/10.1109/MCAS.2013.2256257
[116]
M. D. Ventra and Y. V. Pershin, “On the physical properties of memristive, memcapacitive and meminductive systems,” Nanotechnology, vol. 24, no. 25, p. 255201, 2013. https://doi.org/10.1088/0957--4484/24/25/255201
[117]
BIBentryALTinterwordspacingP. Meuffels and R. Soni, “Fundamental issues and problems in the realization of memristors,” Comp. Research Rep., 2012. https://arxiv.org/abs/1207.7319BIBentrySTDinterwordspacing
[118]
J. Yang-Scharlotta, M. Fazio, M. Amrbar, M. White, and D. Sheldon, “Reliability characterization of a commercial TaOx-based ReRAM,” in Proc. Int. Integ. Rel. Worksh., 2014, pp. 131--134. https://doi.org/10.1109/IIRW.2014.7049528
[119]
J. Zahurak et al., “Process integration of a 27nm, 16Gb Cu ReRAM,” in Proc. Int. Elec. Devices Meeting, 2014, pp. 6.2.1--6.2.4. https://doi.org/10.1109/IEDM.2014.7046994
[120]
R. Tetzlaff, Memristors and memristive systems. hskip 1em plus 0.5em minus 0.4emrelax Springer, 2013. https://doi.org/10.1007/978--1--4614--9068--5
[121]
F. Cai et al., “A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations,” Nature Electronics, vol. 2, no. 7, pp. 290--299, 2019. https://doi.org/10.1038/s41928-019-0270-x
[122]
A. Todri-Sanial, J. Dijon, and A. Maffucci, Eds., Carbon Nanotubes for Interconnects. hskip 1em plus 0.5em minus 0.4emrelax Springer, 2017. https://doi.org/10.1007/978--3--319--29746-0
[123]
M. P. Anantram and F. Lé onard, “Physics of carbon nanotube electronic devices,” Reports on Progress in Physics, vol. 69, no. 3, pp. 507--561, 2006. https://doi.org/10.1088/0034--4885/69/3/r01
[124]
J. Lienig and M. Thiele, “Mitigating electromigration in physical design,” in Fundamentals of Electromigration-Aware Integrated Circuit Design. hskip 1em plus 0.5em minus 0.4emrelax Springer, 2018, pp. 99--148. https://doi.org/10.1007/978--3--319--73558-0_4
[125]
A. D. Franklin et al., “Sub-10 nm carbon nanotube transistor,” Nano Letters, vol. 12, no. 2, pp. 758--762, 2012. https://doi.org/10.1021/nl203701g
[126]
B. Uhlig et al., “Challenges and progress on carbon nanotube integration for beol interconnects,” in Proc. Int. Interconn. Tech. Conf., 2018, pp. 16--18. https://doi.org/10.1109/IITC.2018.8454842
[127]
C. Subramaniam et al., “Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics,” Nanoscale, vol. 6, pp. 2669--2674, 2014. https://doi.org/10.1039/C3NR05290G
[128]
M. M. Shulaker et al., “Carbon nanotube computer,” Nature, vol. 501, pp. 526--530, 2013. https://doi.org/10.1038/nature12502
[129]
T. F. Wu et al., “Hyperdimensional computing exploiting carbon nanotube FETs, resistive RAM, and their monolithic 3D integration,” J. Sol.-St. Circ., vol. 53, no. 11, pp. 3183--3196, 2018. https://doi.org/10.1109/JSSC.2018.2870560
[130]
Z. Chen, D. Farmer, S. Xu, R. Gordon, P. Avouris, and J. Appenzeller, “Externally assembled gate-all-around carbon nanotube field-effect transistor,” Electron Device Letters, vol. 29, no. 2, pp. 183--185, 2008. https://doi.org/10.1109/LED.2007.914069
[131]
J. Zhang et al., “Robust digital VLSI using carbon nanotubes,” Trans. Comp.-Aided Des. Integ. Circ. Sys., vol. 31, no. 4, pp. 453--471, 2012. https://doi.org/10.1109/TCAD.2012.2187527
[132]
T. Mikolajick, A. Heinzig, J. Trommer, T. Baldauf, and W. M. Weber, “The RFET--a reconfigurable nanowire transistor and its application to novel electronic circuits and systems,” Semiconductor Science and Technology, vol. 32, no. 4, p. 043001, 2017. https://doi.org/10.1088/1361--6641/aa5581
[133]
T. Bryllert, L. Wernersson, L. E. Froberg, and L. Samuelson, “Vertical high-mobility wrap-gated inas nanowire transistor,” IEEE Electron Device Letters, vol. 27, no. 5, pp. 323--325, 2006. https://doi.org/10.1109/LED.2006.873371
[134]
A. L. Briseno, S. C. Mannsfeld, S. A. Jenekhe, Z. Bao, and Y. Xia, “Introducing organic nanowire transistors,” Materials Today, vol. 11, no. 4, pp. 38--47, 2008. https://doi.org/10.1016/S1369--7021(08)70055--5
[135]
W. Lu, P. Xie, and C. M. Lieber, “Nanowire transistor performance limits and applications,” Trans. Electron Dev., vol. 55, no. 11, pp. 2859--2876, 2008. https://doi.org/10.1109/TED.2008.2005158
[136]
J. Colinge et al., “Junctionless nanowire transistor (JNT): Properties and design guidelines,” Solid-State Electronics, vol. 65--66, pp. 33--37, 2011. https://doi.org/10.1016/j.sse.2011.06.004
[137]
A. Singh, M. Khosla, and B. Raj, “Comparative analysis of carbon nanotube field effect transistor and nanowire transistor for low power circuit design,” Journal of Nanoelectronics and Optoelectronics, vol. 11, no. 3, pp. 388--393, 2016. https://doi.org/10.1166/jno.2016.1913
[138]
T. B. Hook, “Power and technology scaling into the 5 nm node with stacked nanosheets,” Joule, vol. 2, no. 1, pp. 1--4, 2018. https://doi.org/10.1016/j.joule.2017.10.014
[139]
X. Vu, R. GhoshMoulick, J. Eschermann, R. Stockmann, A. Offenhäusser, and S. Ingebrandt, “Fabrication and application of silicon nanowire transistor arrays for biomolecular detection,” Sensors and Actuators B: Chemical, vol. 144, no. 2, pp. 354--360, 2010. https://doi.org/10.1016/j.snb.2008.11.048
[140]
J. Knechtel, O. Sinanoglu, I. A. M. Elfadel, J. Lienig, and C. C. N. Sze, “Large-scale 3D chips: Challenges and solutions for design automation, testing, and trustworthy integration,” Trans. Sys. LSI Des. Method., vol. 10, pp. 45--62, 2017. https://doi.org/10.2197/ipsjtsldm.10.45
[141]
R. Radojcic, More-than-Moore 2.5D and 3D SiP Integration. hskip 1em plus 0.5em minus 0.4emrelax Springer, 2017. https://doi.org/10.1007/978--3--319--52548--8
[142]
I. A. M. Elfadel and G. Fettweis, Eds., 3D Stacked Chips -- From Emerging Processes to Heterogeneous Systems. hskip 1em plus 0.5em minus 0.4emrelax Springer, 2016. https://doi.org/10.1007/978--3--319--20481--9
[143]
S. S. Iyer, “Three-dimensional integration: An industry perspective,” MRS Bulletin, vol. 40, no. 3, pp. 225--232, 2015. https://doi.org/10.1557/mrs.2015.32
[144]
D. Fick et al., “Centip3De: A cluster-based NTC architecture with 64 ARM Cortex-M3 cores in 3D stacked 130 nm CMOS,” J. Sol.-St. Circ., vol. 48, no. 1, pp. 104--117, 2013. https://doi.org/10.1109/JSSC.2012.2222814
[145]
D. H. Kim et al., “3D-MAPS: 3D massively parallel processor with stacked memory,” in Proc. Int. Sol.-St. Circ. Conf., 2012, pp. 188--190. https://doi.org/10.1109/ISSCC.2012.6176969
[146]
BIBentryALTinterwordspacingA. Shilov. (2018) AMD previews EPYC rome processor: Up to 64 Zen 2 cores. https://www.anandtech.com/show/13561/amd-previews-epyc-rome-processor-up-to-64-zen-2-coresBIBentrySTDinterwordspacing
[147]
BIBentryALTinterwordspacingV. F. Pavlidis, I. Savidis, and E. G. Friedman, Three-dimensional Integrated Circuit Design, 2nd ed.hskip 1em plus 0.5em minus 0.4emrelax Morgan Kaufmann Publishers Inc., 2017. https://www.sciencedirect.com/book/9780124105010/three-dimensional-integrated-circuit-designBIBentrySTDinterwordspacing
[148]
S. M. P. D. et al., “A scalable network-on-chip microprocessor with 2.5D integrated memory and accelerator,” Trans. Circ. Sys., vol. 64, no. 6, pp. 1432--1443, 2017. https://doi.org/10.1109/TCSI.2016.2647322
[149]
J. Kim et al., “Architecture, chip, and package co-design flow for 2.5D IC design enabling heterogeneous IP reuse,” in Proc. Des. Autom. Conf., 2019. https://doi.org/10.1145/3316781.3317775
[150]
D. Stow, Y. Xie, T. Siddiqua, and G. H. Loh, “Cost-effective design of scalable high-performance systems using active and passive interposers,” in Proc. Int. Conf. Comp.-Aided Des., 2017. https://doi.org/10.1109/ICCAD.2017.8203849
[151]
F. Clermidy et al., “New perspectives for multicore architectures using advanced technologies,” in Proc. Int. Elec. Devices Meeting, 2016, pp. 35.1.1--35.1.4. https://doi.org/10.1109/IEDM.2016.7838545
[152]
S. Takaya et al., “A 100GB/s wide I/O with 4096b TSVs through an active silicon interposer with in-place waveform capturing,” in Proc. Int. Sol.-St. Circ. Conf., 2013, pp. 434--435. https://doi.org/10.1109/ISSCC.2013.6487803
[153]
J. H. Lau, “The most cost-effective integrator (TSV interposer) for 3D IC integration system-in-package (SiP), ” in Proc. ASME InterPACK, 2011, pp. 53--63. https://doi.org/10.1115/IPACK2011--52189
[154]
C. C. Lee et al., “An overview of the development of a GPU with integrated HBM on silicon interposer,” in Proc. Elec. Compon. Tech. Conf., 2016, pp. 1439--1444. https://doi.org/10.1109/ECTC.2016.348
[155]
J. Rajendran et al., “Nano meets security: Exploring nanoelectronic devices for security applications,” Proc. IEEE, vol. 103, no. 5, pp. 829--849, 2015. https://doi.org/10.1109/JPROC.2014.2387353
[156]
S. Ghosh, “Spintronics and security: Prospects, vulnerabilities, attack models, and preventions,” Proc. IEEE, vol. 104, no. 10, pp. 1864--1893, 2016. https://doi.org/10.1109/JPROC.2016.2583419
[157]
F. Rahman, B. Shakya, X. Xu, D. Forte, and M. Tehranipoor, “Security beyond CMOS: Fundamentals, applications, and roadmap,” Trans. VLSI Syst., vol. PP, no. 99, pp. 1--14, 2017. https://doi.org/10.1109/TVLSI.2017.2742943
[158]
Q. Alasad, J. Yuan, and D. Fan, “Leveraging all-spin logic to improve hardware security,” in Proc. Great Lakes Symp. VLSI, 2017, pp. 491--494. https://doi.org/10.1145/3060403.3060471
[159]
T. Winograd, H. Salmani, H. Mahmoodi, K. Gaj, and H. Homayoun, “Hybrid STT-CMOS designs for reverse-engineering prevention,” in Proc. Des. Autom. Conf., 2016, pp. 88--93. https://doi.org/10.1145/2897937.2898099
[160]
J. Yang et al., “Exploiting spin-orbit torque devices as reconfigurable logic for circuit obfuscation,” Trans. Comp.-Aided Des. Integ. Circ. Sys., 2018. https://doi.org/10.1109/TCAD.2018.2802870
[161]
S. Patnaik, N. Rangarajan, J. Knechtel, O. Sinanoglu, and S. Rakheja, “Spin-orbit torque devices for hardware security: From deterministic to probabilistic regime,” Trans. Comp.-Aided Des. Integ. Circ. Sys., vol. Early Access, 2019. https://doi.org/10.1109/TCAD.2019.2917856
[162]
F. Parveen, Z. He, S. Angizi, and D. Fan, “Hybrid polymorphic logic gate with 5-terminal magnetic domain wall motion device,” in Proc. Comp. Soc. Symp. VLSI, 2017, pp. 152--157. https://doi.org/10.1109/ISVLSI.2017.35
[163]
S. Patnaik, N. Rangarajan, J. Knechtel, O. Sinanoglu, and S. Rakheja, “Advancing hardware security using polymorphic and stochastic spin-hall effect devices,” in Proc. Des. Autom. Test Europe, 2018, pp. 97--102. https://doi.org/10.23919/DATE.2018.8341986
[164]
BIBentryALTinterwordspacingN. Rangarajan, S. Patnaik, J. Knechtel, R. Karri, O. Sinanoglu, and S. Rakheja, “Opening the doors to dynamic camouflaging: Harnessing the power of polymorphic devices,” Comp. Research Rep., 2018. https://arxiv.org/abs/1811.06012BIBentrySTDinterwordspacing
[165]
A. Roohi and R. F. DeMara, “PARC: A novel design methodology for power analysis resilient circuits using spintronics,” Trans. Nanotech., vol. 18, pp. 885--889, 2019. https://doi.org/10.1109/TNANO.2019.2934887
[166]
A. S. Iyengar, S. Ghosh, and K. Ramclam, “Domain wall magnets for embedded memory and hardware security,” J. Emerg. Sel. Topics Circ. Sys., vol. 5, no. 1, pp. 40--50, 2015. https://doi.org/10.1109/JETCAS.2015.2398232
[167]
N. Rangarajan, A. Parthasarathy, and S. Rakheja, “A spin-based true random number generator exploiting the stochastic precessional switching of nanomagnets,” J. Appl. Phys., vol. 121, no. 22, p. 223905, 2017. https://doi.org/10.1063/1.4985702
[168]
BIBentryALTinterwordspacingN. Rangarajan, S. Patnaik, J. Knechtel, O. Sinanoglu, and S. Rakheja, “SMART: Secure magnetoelectric antiferromagnet-based tamper-proof non-volatile memory,” Comp. Research Rep., 2019. https://arxiv.org/abs/1902.07792BIBentrySTDinterwordspacing
[169]
G. S. Rose, J. Rajendran, N. McDonald, R. Karri, M. Potkonjak, and B. Wysocki, “Hardware security strategies exploiting nanoelectronic circuits,” in Proc. Asia South Pac. Des. Autom. Conf., 2013, pp. 368--372. https://doi.org/10.1109/ASPDAC.2013.6509623
[170]
H. Nili et al., “Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors,” Nature Electronics, vol. 1, no. 3, pp. 197--202, 2018. https://doi.org/10.1038/s41928-018-0039--7
[171]
A. Rezaei, J. Gu, and H. Zhou, “Hybrid memristor-CMOS obfuscation against untrusted foundries,” in Proc. Comp. Soc. Symp. VLSI, 2019, pp. 535--540. https://doi.org/10.1109/ISVLSI.2019.00102
[172]
L. Guckert and E. E. Swartzlander, “Optimized memristor-based multipliers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 2, pp. 373--385, Feb 2017. https://doi.org/10.1109/TCSI.2016.2606433
[173]
L. Liu, H. Huang, and S. Hu, “Lorenz chaotic system-based carbon nanotube physical unclonable functions,” Trans. Comp.-Aided Des. Integ. Circ. Sys., vol. 37, no. 7, pp. 1408--1421, 2018. https://doi.org/10.1109/TCAD.2017.2762919
[174]
C. K. H. Suresh, B. Mazumdar, S. S. Ali, and O. Sinanoglu, “A comparative security analysis of current and emerging technologies,” Micro, vol. 36, no. 5, pp. 50--61, 2016. https://doi.org/10.1109/MM.2016.87
[175]
Y. Bi et al., “Emerging technology-based design of primitives for hardware security,” J. Emerg. Tech. Comp. Sys., vol. 13, no. 1, pp. 3:1--3:19, 2016. https://doi.org/10.1145/2816818
[176]
Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, “Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications,” Nanoscale, no. 6, pp. 282--288, 2014. https://doi.org/10.1039/C3NR04375D
[177]
K. Park et al., “Plasmonic nanowire-enhanced upconversion luminescence for anticounterfeit devices,” Advanced Functional Materials, vol. 26, no. 43, pp. 7836--7846, 2016. https://doi.org/10.1002/adfm.201603428
[178]
J. Knechtel, S. Patnaik, and O. Sinanoglu, “3D integration: Another dimension toward hardware security,” in Proc. Int. On-Line Test Symp., 2019, pp. 147--150. https://doi.org/10.1109/IOLTS.2019.8854395
[179]
Y. Xie, C. Bao, C. Serafy, T. Lu, A. Srivastava, and M. Tehranipoor, “Security and vulnerability implications of 3D ICs,” Trans. Multi-Scale Comp. Sys., vol. 2, no. 2, pp. 108--122, 2016. https://doi.org/10.1109/TMSCS.2016.2550460
[180]
J. Dofe, P. Gu, D. Stow, Q. Yu, E. Kursun, and Y. Xie, “Security threats and countermeasures in three-dimensional integrated circuits,” in Proc. Great Lakes Symp. VLSI, 2017, pp. 321--326. https://doi.org/10.1145/3060403.3060500
[181]
J. Valamehr et al., “A 3-D split manufacturing approach to trustworthy system development,” Trans. Comp.-Aided Des. Integ. Circ. Sys., vol. 32, no. 4, pp. 611--615, 2013. https://doi.org/10.1109/TCAD.2012.2227257
[182]
Y. Xie, C. Bao, and A. Srivastava, “Security-aware 2.5D integrated circuit design flow against hardware IP piracy,” Computer, vol. 50, no. 5, pp. 62--71, 2017. https://doi.org/10.1109/MC.2017.121
[183]
P. Gu, D. Stow, P. Mukim, S. Li, and Y. Xie, “Cost-efficient 3D integration to hinder reverse engineering during and after manufacturing,” in Proc. Asian Hardw.-Orient. Sec. Trust Symp., 2018, pp. 74--79. https://doi.org/10.1109/AsianHOST.2018.8607176
[184]
C. Yan, J. Dofe, S. Kontak, Q. Yu, and E. Salman, “Hardware-efficient logic camouflaging for monolithic 3D ICs,” Trans. Circ. Sys., vol. 65, no. 6, pp. 799--803, 2018. https://doi.org/10.1109/TCSII.2017.2749523
[185]
S. Patnaik, M. Ashraf, O. Sinanoglu, and J. Knechtel, “A modern approach to IP protection and trojan prevention: Split manufacturing for 3D ICs and obfuscation of vertical interconnects,” Trans. Emerg. Top. Comp., vol. Early Access, 2019. https://doi.org/10.1109/TETC.2019.2933572
[186]
J. M. Cioranesco et al., “Cryptographically secure shields,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2014, pp. 25--31. https://doi.org/10.1109/HST.2014.6855563
[187]
J. Knechtel and O. Sinanoglu, “On mitigation of side-channel attacks in 3D ICs: Decorrelating thermal patterns from power and activity,” in Proc. Des. Autom. Conf., 2017, pp. 12:1--12:6. https://doi.org/10.1145/3061639.3062293
[188]
C. Bao and A. Srivastava, “Reducing timing side-channel information leakage using 3D integration,” Trans. Dependable Sec. Comp., vol. 16, no. 4, pp. 665--678, 2019. https://doi.org/10.1109/TDSC.2017.2712156
[189]
A. Sengupta, M. Nabeel, J. Knechtel, and O. Sinanoglu, “A new paradigm in split manufacturing: Lock the FEOL, unlock at the BEOL,” in Proc. Des. Autom. Test Europe, 2019, pp. 414--419. https://doi.org/10.23919/DATE.2019.8715281
[190]
BIBentryALTinterwordspacingTezzaron Semiconductor, “3D-ICs and integrated circuit security,” Tezzaron Semiconductor, Tech. Rep., 2008. http://tezzaron.com/media/3D-ICs_and_Integrated_Circuit_Security.pdfBIBentrySTDinterwordspacing
[191]
J. DeVale, R. Rakvic, and K. Rudd, “Another dimension in integrated circuit trust,” J. Cryptogr. Eng., vol. 8, no. 4, pp. 315--326, 2017. https://doi.org/10.1007/s13389-017-0164--7
[192]
S. Patnaik, M. Ashraf, O. Sinanoglu, and J. Knechtel, “Best of both worlds: Integration of split manufacturing and camouflaging into a security-driven CAD flow for 3D ICs,” in Proc. Int. Conf. Comp.-Aided Des., 2018, pp. 8:1--8:8. https://doi.org/10.1145/3240765.3240784
[193]
J. Dofe, Q. Yu, H. Wang, and E. Salman, “Hardware security threats and potential countermeasures in emerging 3D ICs,” in Proc. Great Lakes Symp. VLSI, 2016, pp. 69--74. https://doi.org/10.1145/2902961.2903014
[194]
S. F. Mossa, S. R. Hasan, and O. Elkeelany, “Self-triggering hardware trojan: Due to NBTI related aging in 3-D ICs,” Integration, vol. 58, no. Supplement C, pp. 116--124, 2017. https://doi.org/10.1016/j.vlsi.2016.12.013
[195]
BIBentryALTinterwordspacingA. “bunnie” Huang, S. “xobs” Cross, and T. Marble. (2019) Open source is insufficient to solve trust problems in hardware. Chaos Computer Club. 36C3, minutes 14:35--16:40. https://media.ccc.de/v/36c3--10690-open_source_is_insufficient_to_solve_trust_problems_in_hardwareBIBentrySTDinterwordspacing
[196]
M. Wang, A. Yates, and I. L. Markov, “SuperPUF: Integrating heterogeneous physically unclonable functions,” in Proc. Int. Conf. Comp.-Aided Des., 2014, pp. 454--461. https://doi.org/10.1109/ICCAD.2014.7001391
[197]
C. Wang, J. Zhou, K. Guruprasad, X. Liu, R. Weerasekera, and T. T. Kim, “TSV-based PUF circuit for 3DIC sensor nodes in IoT applications,” in Proc. Electron. Dev. Solid State Circ., 2015, pp. 313--316. https://doi.org/10.1109/EDSSC.2015.7285113
[198]
S. Mysore, B. Agrawal, N. Srivastava, S.-C. Lin, K. Banerjee, and T. Sherwood, “Introspective 3D chips,” SIGOPS Operat. Sys. Rev., vol. 40, no. 5, pp. 264--273, 2006. https://doi.org/10.1145/1168857.1168890
[199]
J. Dofe and Q. Yu, “Exploiting PDN noise to thwart correlation power analysis attacks in 3D ICs,” in Proc. Int. Worksh. Sys.-Level Interconn. Pred., 2018. https://doi.org/10.1145/3225209.3225212
[200]
P. Gu, D. Stow, R. Barnes, E. Kursun, and Y. Xie, “Thermal-aware 3D design for side-channel information leakage,” in Proc. Int. Conf. Comp. Des., 2016, pp. 520--527. https://doi.org/10.1109/ICCD.2016.7753336
[201]
C. Bao and A. Srivastava, “3D integration: New opportunities in defense against cache-timing side-channel attacks,” in Proc. Int. Conf. Comp. Des., 2015, pp. 273--280. https://doi.org/10.1109/ICCD.2015.7357114
[202]
J. Rodriguez, A. Baldomero, V. Montilla, and J. Mujal, “LLFI: Lateral laser fault injection attack,” in Proc. Worksh. Fault Diag. Tol. Cryptogr., 2019, pp. 41--47. https://doi.org/10.1109/FDTC.2019.00014
[203]
S. Briais et al., “3D hardware canaries,” in Proc. Cryptogr. Hardw. Embed. Sys., E. Prouff and P. Schaumont, Eds.hskip 1em plus 0.5em minus 0.4emrelax Berlin, Heidelberg: Springer, 2012, pp. 1--22. https://doi.org/10.1007/978--3--642--33027--8_1
[204]
BIBentryALTinterwordspacingJ. Knechtel et al., “Towards secure composition of integrated circuits and electronic systems: On the role of EDA,” in Proc. Des. Autom. Test Europe, 2020. https://arxiv.org/abs/2001.09672BIBentrySTDinterwordspacing

Cited By

View all
  • (2024)Physically Unclonable and Reconfigurable Circuits for IP Protection: Opportunities and Challenges2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)10.1109/ISVLSI61997.2024.00162(817-820)Online publication date: 1-Jul-2024
  • (2024)LLMs and the Future of Chip Design: Unveiling Security Risks and Building Trust2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)10.1109/ISVLSI61997.2024.00076(385-390)Online publication date: 1-Jul-2024
  • (2024)Advances in Logic LockingHardware Security10.1007/978-3-031-58687-3_2(53-142)Online publication date: 3-Apr-2024
  • Show More Cited By

Index Terms

  1. Hardware Security For and Beyond CMOS Technology: An Overview on Fundamentals, Applications, and Challenges

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ISPD '20: Proceedings of the 2020 International Symposium on Physical Design
      March 2020
      160 pages
      ISBN:9781450370912
      DOI:10.1145/3372780
      • General Chair:
      • William Swartz,
      • Program Chair:
      • Jens Lienig
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 30 March 2020

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. 2.5d integration
      2. 3d integration
      3. carbon nanotubes (cnts) transistors
      4. counterfeiting
      5. hardware security
      6. hardware trojans
      7. memristors
      8. nanowire transistors
      9. physical read-out attacks
      10. polymorphic behavior
      11. probing attacks
      12. randomness
      13. reconfigurability
      14. reverse engineering
      15. side-channel attacks
      16. spintronics
      17. tampering
      18. theft of intellectual property
      19. variability

      Qualifiers

      • Research-article

      Funding Sources

      • NYUAD REF

      Conference

      ISPD '20
      Sponsor:
      ISPD '20: International Symposium on Physical Design
      September 20 - 23, 2020
      Taipei, Taiwan

      Acceptance Rates

      Overall Acceptance Rate 62 of 172 submissions, 36%

      Upcoming Conference

      ISPD '25
      International Symposium on Physical Design
      March 16 - 19, 2025
      Austin , TX , USA

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)91
      • Downloads (Last 6 weeks)12
      Reflects downloads up to 08 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Physically Unclonable and Reconfigurable Circuits for IP Protection: Opportunities and Challenges2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)10.1109/ISVLSI61997.2024.00162(817-820)Online publication date: 1-Jul-2024
      • (2024)LLMs and the Future of Chip Design: Unveiling Security Risks and Building Trust2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)10.1109/ISVLSI61997.2024.00076(385-390)Online publication date: 1-Jul-2024
      • (2024)Advances in Logic LockingHardware Security10.1007/978-3-031-58687-3_2(53-142)Online publication date: 3-Apr-2024
      • (2023)Design Enablement Flow for Circuits with Inherent Obfuscation based on Reconfigurable Transistors2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE56975.2023.10136918(1-6)Online publication date: Apr-2023
      • (2023)Validating the Redundancy Assumption for HDL from Code Clone's PerspectiveProceedings of the 2023 International Symposium on Physical Design10.1145/3569052.3571872(247-255)Online publication date: 26-Mar-2023
      • (2023)TREEHOUSE: A Secure Asset Management Infrastructure for Protecting 3DIC DesignsIEEE Transactions on Computers10.1109/TC.2023.324826972:8(2306-2320)Online publication date: 1-Aug-2023
      • (2023)Polymorphic Primitives for Hardware SecurityDesign Automation and Applications for Emerging Reconfigurable Nanotechnologies10.1007/978-3-031-37924-6_7(145-174)Online publication date: 20-Jun-2023
      • (2023)Physical Synthesis Flow and Liberty GenerationDesign Automation and Applications for Emerging Reconfigurable Nanotechnologies10.1007/978-3-031-37924-6_6(119-144)Online publication date: 20-Jun-2023
      • (2023)IntroductionDesign Automation and Applications for Emerging Reconfigurable Nanotechnologies10.1007/978-3-031-37924-6_1(1-24)Online publication date: 20-Jun-2023
      • (2022)Molecular-Scale Hardware Encryption Using Tunable Self-Assembled Nanoelectronic NetworksMicro10.3390/micro20300242:3(361-368)Online publication date: 21-Jun-2022
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media