Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Generalized resampled importance sampling: foundations of ReSTIR

Published: 22 July 2022 Publication History

Abstract

As scenes become ever more complex and real-time applications embrace ray tracing, path sampling algorithms that maximize quality at low sample counts become vital. Recent resampling algorithms building on Talbot et al.'s [2005] resampled importance sampling (RIS) reuse paths spatiotemporally to render surprisingly complex light transport with a few samples per pixel. These reservoir-based spatiotemporal importance resamplers (ReSTIR) and their underlying RIS theory make various assumptions, including sample independence. But sample reuse introduces correlation, so ReSTIR-style iterative reuse loses most convergence guarantees that RIS theoretically provides.
We introduce generalized resampled importance sampling (GRIS) to extend the theory, allowing RIS on correlated samples, with unknown PDFs and taken from varied domains. This solidifies the theoretical foundation, allowing us to derive variance bounds and convergence conditions in ReSTIR-based samplers. It also guides practical algorithm design and enables advanced path reuse between pixels via complex shift mappings.
We show a path-traced resampler (ReSTIR PT) running interactively on complex scenes, capturing many-bounce diffuse and specular lighting while shading just one path per pixel. With our new theoretical foundation, we can also modify the algorithm to guarantee convergence for offline renderers.

Supplemental Material

MP4 File
supplemental material
MP4 File
presentation
SRT File
presentation
ZIP File
supplemental material

References

[1]
Pablo Bauszat, Victor Petitjean, and Elmar Eisemann. 2017. Gradient-Domain Path Reusing. ACM Trans. Graph. 36, 6, Article 229 (nov 2017), 9 pages.
[2]
Philippe Bekaert, Mateu Sbert, and John H Halton. 2002. Accelerating Path Tracing by Re-Using Paths. In Rendering Techniques. 125--134.
[3]
Nikolaus Binder, Sascha Fricke, and Alexander Keller. 2019. Massively parallel path space filtering. arXiv preprint arXiv:1902.05942 (2019).
[4]
Benedikt Bitterli. 2021. Correlations and reuse for fast and accurate physically based light transport. Ph.D. Dissertation. Dartmouth College. http://benedikt-bitterli.me/Data/dissertation.pdf
[5]
Benedikt Bitterli, Wenzel Jakob, Jan Novák, and Wojciech Jarosz. 2017. Reversible jump Metropolis light transport using inverse mappings. ACM Transactions on Graphics (TOG) 37, 1 (2017), 1--12.
[6]
Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Transactions on Graphics (TOG) 39, 4 (2020), 148--1.
[7]
Guillaume Boissé. 2021. World-Space Spatiotemporal Reservoir Reuse for Ray-Traced Global Illumination. In SIGGRAPH Asia 2021 Technical Communications (Tokyo, Japan) (SA '21 Technical Communications). Association for Computing Machinery, New York, NY, USA, Article 22, 4 pages.
[8]
Jakub Boksansky, Paula Jukarainen, and Chris Wyman. 2021. Rendering Many Lights with Grid-Based Reservoirs. In Ray Tracing Gems II. Springer, 351--365.
[9]
Olivier Cappé, Arnaud Guillin, Jean-Michel Marin, and Christian P Robert. 2004. Population monte carlo. Journal of Computational and Graphical Statistics 13, 4 (2004), 907--929.
[10]
Chakravarty R. Alla Chaitanya, Laurent Belcour, Toshiya Hachisuka, Simon Premoze, Jacopo Pantaleoni, and Derek Nowrouzezahrai. 2018. Matrix Bidirectional Path Tracing. In Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations (Karlsruhe, Germany) (SR '18). Eurographics Association, Goslar, DEU, 23--32.
[11]
Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder. ACM Trans. Graph. 36, 4, Article 98 (jul 2017), 12 pages.
[12]
Min-Te Chao. 1982. A general purpose unequal probability sampling plan. Biometrika 69, 3 (1982), 653--656.
[13]
Michael Donikian, Bruce Walter, Kavita Bala, Sebastian Fernandez, and Donald P. Greenberg. 2006. Accurate Direct Illumination Using Iterative Adaptive Sampling. IEEE Transactions on Visualization and Computer Graphics 12, 3 (may 2006), 353--364.
[14]
Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019. Sample-Based Monte Carlo Denoising Using a Kernel-Splatting Network. ACM Trans. Graph. 38, 4, Article 125 (jul 2019), 12 pages.
[15]
Abhijeet Ghosh, Arnaud Doucet, and Wolfgang Heidrich. 2006. Sequential Sampling for Dynamic Environment Map Illumination. In Symposium on Rendering, Tomas Akenine-Moeller and Wolfgang Heidrich (Eds.). The Eurographics Association.
[16]
Adrien Gruson, Binh-Son Hua, Nicolas Vibert, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2018. Gradient-domain volumetric photon density estimation. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--13.
[17]
Adam Guetz. 2012. Monte Carlo Methods for Structured Data. Stanford University.
[18]
Henrik Halen, Andreas Brinck, Kyle Hayward, and Xiangshun Bei. 2021. Global Illumination Based on Surfels. In SIGGRAPH Courses; Advances in Real-Time Rendering.
[19]
Jon Hasselgren, Jacob Munkberg, Marco Salvi, Anjul Patney, and Aaron Lefohn. 2020. Neural Temporal Adaptive Sampling and Denoising. Computer Graphics Forum (2020).
[20]
Paul S Heckbert. 1990. Adaptive radiosity textures for bidirectional ray tracing. In Proceedings of the 17th annual conference on Computer graphics and interactive techniques. 145--154.
[21]
E. Heitz and L. Belcour. 2019. Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames. Computer Graphics Forum 38, 4 (2019), 149--158.
[22]
Eric Heitz, Stephen Hill, and Morgan McGuire. 2018. Combining Analytic Direct Illumination and Stochastic Shadows. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. Association for Computing Machinery, New York, NY, USA, Article 2, 11 pages.
[23]
Binh-Son Hua, Adrien Gruson, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2017. Gradient-domain photon density estimation. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 31--38.
[24]
Binh-Son Hua, Adrien Gruson, Victor Petitjean, Matthias Zwicker, Derek Nowrouzezahrai, Elmar Eisemann, and Toshiya Hachisuka. 2019. A Survey on Gradient-Domain Rendering. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 455--472.
[25]
Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: A markov chain monte carlo technique for rendering scenes with difficult specular transport. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--13.
[26]
Henrik Wann Jensen. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., USA.
[27]
Simon Kallweit, Petrik Clarberg, Craig Kolb, Kai-Hwa Yao, Theresa Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Moller, Chris Wyman, Cyril Crassin, and Nir Benty. 2021. The Falcor Rendering Framework. https://github.com/NVIDIAGameWorks/Falcor https://github.com/NVIDIAGameWorks/Falcor.
[28]
Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm. Computer Graphics Forum 21, 3 (2002), 531--540.
[29]
Markus Kettunen. 2020. Gradient-Domain Methods for Realistic Image Synthesis. Ph.D. Dissertation. Aalto University.
[30]
Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-domain path tracing. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--13.
[31]
Emmett Kilgariff, Henry Moreton, Nick Stam, and Brandon Bell. 2018. NVIDIA Turing Architecture In-Depth. https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/. [Online; accessed 9-December-2021].
[32]
Eric P. Lafortune and Yves D. Willems. 1993. Bi-Directional Path Tracing. In Proc. the International Conference on Computational Graphics and Visualization Techniques, Vol. 93. 145--153.
[33]
Yu-Chi Lai, Shao Hua Fan, Stephen Chenney, and Charcle Dyer. 2007. Photorealistic image rendering with population monte carlo energy redistribution. In Proceedings of the 18th Eurographics conference on Rendering Techniques. 287--295.
[34]
Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila. 2013. Gradient-domain metropolis light transport. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--12.
[35]
Faming Liang and Sooyoung Cheon. 2009. Monte Carlo dynamically weighted importance sampling for spatial models with intractable normalizing constants. 197 (dec 2009), 012004.
[36]
Daqi Lin, Chris Wyman, and Cem Yuksel. 2021. Fast Volume Rendering with Spatiotemporal Reservoir Resampling. ACM Transactions on Graphics (TOG) 40, 6 (2021), to appear.
[37]
Jun S Liu and Jun S Liu. 2001. Monte Carlo strategies in scientific computing. Vol. 10. Springer, 36--37.
[38]
Marco Manzi, Markus Kettunen, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-domain bidirectional path tracing. (2015).
[39]
Marco Manzi, Markus Kettunen, Frédo Durand, Matthias Zwicker, and Jaakko Lehtinen. 2016. Temporal gradient-domain path tracing. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1--9.
[40]
Marco Manzi, Fabrice Rousselle, Markus Kettunen, Jaakko Lehtinen, and Matthias Zwicker. 2014. Improved sampling for gradient-domain metropolis light transport. ACM Transactions on Graphics (TOG) 33, 6 (2014), 1--12.
[41]
Pierre Moreau, Matt Pharr, and Petrik Clarberg. 2019. Dynamic Many-Light Sampling for Real-Time Ray Tracing. In High-Performance Graphics - Short Papers, Markus Steinberger and T. Foley (Eds.). The Eurographics Association.
[42]
Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. 2019. Neural Importance Sampling. ACM Trans. Graph. 38, 5, Article 145 (oct 2019), 19 pages.
[43]
Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. Computer Graphics Forum 36, 4 (2017), 91--100.
[44]
Kosuke Nabata, Kei Iwasaki, and Yoshinori Dobashi. 2020. Resampling-Aware Weighting Functions for Bidirectional Path Tracing Using Multiple Light Sub-Paths. ACM Trans. Graph. 39, 2, Article 15 (mar 2020), 11 pages.
[45]
Yaobin Ouyang, Shiqiu Liu, Markus Kettunen, Matt Pharr, and Jacopo Pantaleoni. 2021. ReSTIR GI: Path Resampling for Real-Time Path Tracing. Computer Graphics Forum 40, 8 (2021), 17--29.
[46]
Jacopo Pantaleoni. 2020. Online Path Sampling Control with Progressive Spatiotemporal Filtering. SN Computer Science 279 (aug 2020).
[47]
Christoph Peters. 2021. BRDF Importance Sampling for Polygonal Lights. ACM Trans. Graph. 40, 4, Article 140 (jul 2021), 14 pages.
[48]
Victor Petitjean, Pablo Bauszat, and Elmar Eisemann. 2018. Spectral Gradient Sampling for Path Tracing. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 45--53.
[49]
Stefan Popov, Ravi Ramamoorthi, Fredo Durand, and George Drettakis. 2015. Probabilistic Connections for Bidirectional Path Tracing. Comput. Graph. Forum 34, 4 (jul 2015), 75--86.
[50]
DB Rubin. 1987. A Noniterative Sampling/Importance resampling alternative to data augmentation for creating a few imputations when fractions of missing information are modest: The SIR algorithm. J. Amer. Statist. Assoc. 82 (1987), 544--546.
[51]
Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient Estimation for Real-Time Adaptive Temporal Filtering. Proc. ACM Comput. Graph. Interact. Tech. 1, 2, Article 24 (2018).
[52]
Peter Shirley, Changyaw Wang, and Kurt Zimmerman. 1996. Monte Carlo Techniques for Direct Lighting Calculations. ACM Trans. Graph. 15, 1 (jan 1996), 1--36.
[53]
Tomasz Stachowiak. 2015. Stochastic Screen-Space Reflections. In Advances in Real Time Rendering, (ACM SIGGRAPH Courses).
[54]
Weilun Sun, Xin Sun, Nathan A Carr, Derek Nowrouzezahrai, and Ravi Ramamoorthi. 2017. Gradient-Domain Vertex Connection and Merging. In EGSR (EI&I). 83--92.
[55]
László Szésci, László Szirmay-Kalos, and Csaba Kelemen. 2003. Variance reduction for Russian-roulette. (2003).
[56]
Justin Talbot, David Cline, and Parris Egbert. 2005. Importance Resampling for Global Illumination. In Eurographics Symposium on Rendering (2005), Kavita Bala and Philip Dutre (Eds.). The Eurographics Association.
[57]
Justin F Talbot. 2005. Importance resampling for global illumination. Brigham Young University.
[58]
Lorenzo Tessari, Johannes Hanika, and Carsten Dachsbacher. 2017. Local quasi-monte carlo exploration. In Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations. 71--81.
[59]
Yusuke Tokuyoshi and Takahiro Harada. 2019. Hierarchical Russian Roulette for Vertex Connections. ACM Trans. Graph. 38, 4, Article 36 (jul 2019), 12 pages.
[60]
Joran Van de Woestijne, Roald Frederickx, Niels Billen, and Philip Dutré. 2017. Temporal coherence for metropolis light transport. In Eurographics Symposium on Rendering-Experimental Ideas & Implementations. Eurographics Association, 55--63.
[61]
Eric Veach. 1998. Robust Monte Carlo methods for light transport simulation. Stanford University.
[62]
Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. USA, 65--76.
[63]
Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. 2018. Bayesian Online Regression for Adaptive Direct Illumination Sampling. ACM Trans. Graph. 37, 4, Article 125 (jul 2018), 12 pages.
[64]
Jiří Vorba, Johannes Hanika, Sebastian Herholz, Thomas Müller, Jaroslav Křivánek, and Alexander Keller. 2019. Path Guiding in Production. In ACM SIGGRAPH 2019 Courses (Los Angeles, California) (SIGGRAPH '19). ACM, New York, NY, USA, Article 18, 77 pages.
[65]
Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line learning of parametric mixture models for light transport simulation. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--11.
[66]
Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and Donald P. Greenberg. 2005. Lightcuts: A Scalable Approach to Illumination. 24, 3 (jul 2005), 1098--1107.
[67]
Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance. 2007. Microfacet Models for Refraction through Rough Surfaces. Rendering techniques 2007 (2007), 18th.
[68]
Rex West, Iliyan Georgiev, Adrien Gruson, and Toshiya Hachisuka. 2020. Continuous multiple importance sampling. ACM Transactions on Graphics (TOG) 39, 4 (2020), 136--1.
[69]
Chris Wyman and Alexey Panteleev. 2021. Rearchitecting Spatiotemporal Resampling for Production. In ACM/EG Symposium on High Perfrormance Graphics. 23--41.
[70]
Junqiu Zhu, Yaoyi Bai, Zilin Xu, Steve Bako, Edgar Velázquez-Armendáriz, Lu Wang, Pradeep Sen, Miloš Hašan, and Ling-Qi Yan. 2021. Neural Complex Luminaires: Representation and Rendering. ACM Trans. Graph. 40, 4, Article 57 (jul 2021), 12 pages.

Cited By

View all
  • (2024)Efficient Image-Space Shape Splatting for Monte Carlo RenderingACM Transactions on Graphics10.1145/368794343:6(1-11)Online publication date: 19-Dec-2024
  • (2024)Online Neural Denoising with Cross-Regression for Interactive RenderingACM Transactions on Graphics10.1145/368793843:6(1-12)Online publication date: 19-Dec-2024
  • (2024)Hierarchical Light Sampling with Accurate Spherical Gaussian LightingSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687647(1-11)Online publication date: 3-Dec-2024
  • Show More Cited By

Index Terms

  1. Generalized resampled importance sampling: foundations of ReSTIR

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 41, Issue 4
    July 2022
    1978 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3528223
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 July 2022
    Published in TOG Volume 41, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. MIS
    2. ReSTIR
    3. global illumination
    4. path tracing
    5. real-time rendering
    6. resampled importance sampling

    Qualifiers

    • Research-article

    Funding Sources

    • NVIDIA

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)697
    • Downloads (Last 6 weeks)90
    Reflects downloads up to 13 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Efficient Image-Space Shape Splatting for Monte Carlo RenderingACM Transactions on Graphics10.1145/368794343:6(1-11)Online publication date: 19-Dec-2024
    • (2024)Online Neural Denoising with Cross-Regression for Interactive RenderingACM Transactions on Graphics10.1145/368793843:6(1-12)Online publication date: 19-Dec-2024
    • (2024)Hierarchical Light Sampling with Accurate Spherical Gaussian LightingSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687647(1-11)Online publication date: 3-Dec-2024
    • (2024)Radiance Caching with On-Surface Caches for Real-Time Global IlluminationProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36753827:3(1-17)Online publication date: 9-Aug-2024
    • (2024)Photon-Driven Manifold SamplingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36753757:3(1-16)Online publication date: 9-Aug-2024
    • (2024)ReSTIR Subsurface Scattering for Real-Time Path TracingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36753727:3(1-19)Online publication date: 9-Aug-2024
    • (2024)Cache Points for Production-Scale Occlusion-Aware Many-Lights Sampling and Volumetric ScatteringProceedings of the 2024 Digital Production Symposium10.1145/3665320.3670993(1-19)Online publication date: 24-Jul-2024
    • (2024)Physically-based Path Tracer using WebGPU and OpenPBRProceedings of the 29th International ACM Conference on 3D Web Technology10.1145/3665318.3677158(1-6)Online publication date: 25-Sep-2024
    • (2024)More Than Killmonger Locs: A Style Guide for Black Hair (in Computer Graphics)ACM SIGGRAPH 2024 Courses10.1145/3664475.3664535(1-251)Online publication date: 27-Jul-2024
    • (2024)Area ReSTIR: Resampling for Real-Time Defocus and AntialiasingACM Transactions on Graphics10.1145/365821043:4(1-13)Online publication date: 19-Jul-2024
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media