Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

The Method of Moving Frames for Surface Global Parametrization

Published: 20 September 2023 Publication History

Abstract

This article introduces a new representation of surface global parametrization based on Cartan’s method of moving frames. We show that a system of structure equations, characterizing the local coordinates changes with respect to a local frame system, completely characterizes the set of possible cone parametrizations. The discretization of this system provably provides necessary and sufficient conditions for the existence of a valid mapping. We are able to derive a versatile algorithm for surface parametrization, allowing feature constraints and singularities. As the first structure equation is independent of the global coordinate system, we do not require prior knowledge of cuts or cone positions. So, a single non-linear least-square problem is enough to place quantized cones while minimizing a given distortion energy. We are therefore able to take full advantage of the link between the parametrization geometry and the topology of its cone metric to solve challenging constrained parametrization problems.

Supplementary Material

tog-22-0116-File004 (tog-22-0116-file004.zip)
Supplementary materials
TOG-22-0116-SUPP (tog-22-0116-supp.zip)
Supplementary materials

References

[1]
Noam Aigerman and Yaron Lipman. 2015. Orbifold Tutte embeddings. ACM Trans. Graph. 34, 6 (2015), 190–191.
[2]
Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf Schenk, Jonas Thies, and Gerhard Wellein. 2020. A recursive algebraic coloring technique for hardware-efficient symmetric sparse matrix-vector multiplication. ACM Trans. Parallel Comput. 7, 3, Article 19 (June2020), 37 pages.
[3]
Mirela Ben-Chen, Craig Gotsman, and Guy Bunin. 2008. Conformal flattening by curvature prescription and metric scaling. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 449–458.
[4]
Matthias Bollhöfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019. Large-scale sparse inverse covariance matrix estimation. SIAM J. Sci. Comput. 41, 1 (2019), A380–A401. arXiv:https://doi.org/10.1137/17M1147615
[5]
Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli. 2020. State-of-the-art sparse direct solvers. In Parallel Algorithms in Computational Science and Engineering, Ananth Grama and Ahmed H. Sameh (Eds.). Springer International Publishing, Cham, 3–33.
[6]
David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt. 2013. Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32, 4 (2013), 1–12.
[7]
Alon Bright, Edward Chien, and Ofir Weber. 2017. Harmonic global parametrization with rational holonomy. ACM Trans. Graph. 36, 4 (2017), 1–15.
[8]
Marcel Campen, Hanxiao Shen, Jiaran Zhou, and Denis Zorin. 2019. Seamless parametrization with arbitrary cones for arbitrary genus. ACM Trans. Graph. 39, 1 (Dec.2019), 2:1–2:19.
[9]
Élie Cartan et al. 2001. Riemannian Geometry in an Orthogonal Frame: From Lectures Delivered by Élie Cartan at the Sorbonne in 1926-1927. World Scientific, Singapore.
[10]
David Cohen-Steiner and Jean-Marie Morvan. 2003. Restricted delaunay triangulations and normal cycle. In Proceedings of the 19th Annual Symposium on Computational Geometry (SCG’03). Association for Computing Machinery, New York, NY, 312–321.
[11]
Etienne Corman and Keenan Crane. 2019. Symmetric moving frames. ACM Trans. Graph. 38, 4 (2019).
[12]
Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial connections on discrete surfaces. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1525–1533.
[13]
Fernando de Goes, Mathieu Desbrun, and Yiying Tong. 2016. Vector field processing on triangle meshes. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’16). 1–49.
[14]
David Desobry, François Protais, Nicolas Ray, Etienne Corman, and Dmitry Sokolov. 2021. Frame fields for CAD models. In Proceedings of the International Symposium on Visual Computing. Springer, 421–434.
[15]
Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Integrable polyvector fields. ACM Trans. Graph. 34, 4 (2015), 1–12.
[16]
Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. 2013. QEx: Robust quad mesh extraction. ACM Trans. Graph. 32, 6 (2013), 1–10.
[17]
Qing Fang, Wenqing Ouyang, Mo Li, Ligang Liu, and Xiao-Ming Fu. 2021. Computing sparse cones with bounded distortion for conformal parameterizations. ACM Trans. Graph. 40, 6 (2021), 1–9.
[18]
Xianzhong Fang, Hujun Bao, Yiying Tong, Mathieu Desbrun, and Jin Huang. 2018. Quadrangulation through morse-parameterization hybridization. ACM Trans. Graph. 37, 4 (2018), 1–15.
[19]
Xiao-Ming Fu and Yang Liu. 2016. Computing inversion-free mappings by simplex assembly. ACM Trans. Graph. 35, 6 (2016), 1–12.
[20]
Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, David Desobry, and Dmitry Sokolov. 2022. Practical lowest distortion mapping. Retrieved from https://arXiv:2201.12112.
[21]
Anil Nirmal Hirani. 2003. Discrete exterior calculus. Ph.D. Dissertation. California Institute of Technology.
[22]
Kai Hormann, Konrad Polthier, and Alia Sheffer. 2008. Mesh parameterization: Theory and practice. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques Asia 2008 Courses (SIGGRAPHAsia’08). Association for Computing Machinery, New York, NY, Article 12, 87 pages.
[23]
Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. Quadcover-surface parameterization using branched coverings. In Computer Graphics Forum, Vol. 26. Wiley Online Library, 375–384.
[24]
Michael Kazhdan, Jake Solomon, and Mirela Ben-Chen. 2012. Can mean-curvature flow be modified to be non-singular?. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 1745–1754.
[25]
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4 (2013).
[26]
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe patterns on surfaces. ACM Trans. Graph. 34, 4 (2015).
[27]
Marin Kobilarov, Keenan Crane, and Mathieu Desbrun. 2009. Lie group integrators for animation and control of vehicles. ACM Trans. Graph. 28, 2 (2009), 1–14.
[28]
Steven G. Krantz and Harold R. Parks. 2008. Geometric Integration Theory. Springer Science & Business Media, Cham.
[29]
Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: a LLVM-based Python JIT compiler. In Proceedings of the 2nd Workshop on the LLVM Compiler Infrastructure in HPC. 1–6.
[30]
Zohar Levi. 2021. Direct seamless parametrization. ACM Trans. Graph. 40, 1 (2021), 1–14.
[31]
Zohar Levi. 2022. Seamless parametrization of spheres with controlled singularities. In Computer Graphics Forum, Vol. 41. Wiley Online Library, 57–68.
[32]
Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3 (2002), 362–371.
[33]
Mo Li, Qing Fang, Wenqing Ouyang, Ligang Liu, and Xiao-Ming Fu. 2022. Computing sparse integer-constrained cones for conformal parameterizations. ACM Trans. Graph. 41, 4 (2022), 1–13.
[34]
Yaron Lipman, Daniel Cohen-Or, Ran Gal, and David Levin. 2007. Volume and shape preservation via moving frame manipulation. ACM Trans. Graph. 26, 1 (2007), 5–es.
[35]
Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or. 2005. Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24, 3 (2005), 479–487.
[36]
Beibei Liu, Yiying Tong, Fernando De Goes, and Mathieu Desbrun. 2016. Discrete connection and covariant derivative for vector field analysis and design. ACM Trans. Graph. 35, 3 (2016), 1–17.
[37]
Hao-Yu Liu, Zhong-Yuan Liu, Zheng-Yu Zhao, Ligang Liu, and Xiao-Ming Fu. 2020. Practical fabrication of discrete Chebyshev nets. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 13–26.
[38]
Naoki Marumo, Takayuki Okuno, and Akiko Takeda. 2020. Constrained Levenberg-Marquardt method with global complexity bound. Retrieved from https://arXiv:2004.08259.
[39]
Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust field-aligned global parametrization. ACM Trans. Graph. 33, 4 (2014), 1–14.
[40]
Ashish Myles and Denis Zorin. 2012. Global parametrization by incremental flattening. ACM Trans. Graph. 31, 4 (2012), 1–11.
[41]
Ashish Myles and Denis Zorin. 2013. Controlled-distortion constrained global parametrization. ACM Trans. Graph. 32, 4 (2013), 1–14.
[42]
Jonathan Palacios and Eugene Zhang. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3 (2007), 55–es.
[43]
Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame fields: Anisotropic and non-orthogonal cross fields. ACM Trans. Graph. 33, 4 (2014), 1–11.
[44]
Kacper Pluta, Michal Edelstein, Amir Vaxman, and Mirela Ben-Chen. 2021. PH-CPF: Planar hexagonal meshing using coordinate power fields. ACM Trans. Graph. 40, 4 (2021), 1–19.
[45]
Lenka Ptáčková and Luiz Velho. 2021. A simple and complete discrete exterior calculus on general polygonal meshes. Comput. Aided Geom. Design 88 (2021), 102002.
[46]
Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4 (2006), 1460–1485.
[47]
Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2 (2008), 1–13.
[48]
Andrew O. Sageman-Furnas, Albert Chern, Mirela Ben-Chen, and Amir Vaxman. 2019. Chebyshev nets from commuting polyvector fields. ACM Trans. Graph. 38, 6 (2019), 1–16.
[49]
Rohan Sawhney and Keenan Crane. 2018. Boundary first flattening. ACM Trans. Graph. 37, 1 (2018), 5.
[50]
R. W. Sharpe. 1997. Cartans generalization of Kleins Erlangen program. Differential Geometry, Graduate Texts in Mathematics 166 (1997).
[51]
Hanxiao Shen, Leyi Zhu, Ryan Capouellez, Daniele Panozzo, Marcel Campen, and Denis Zorin. 2022. Which cross fields can be quadrangulated? Global parameterization from prescribed holonomy signatures. ACM Trans. Graph. 41, 4 (2022), 1–12.
[52]
Yousuf Soliman, Albert Chern, Olga Diamanti, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2021. Constrained willmore surfaces. ACM Trans. Graph. 40, 4 (2021), 1–17.
[53]
Yousuf Soliman, Dejan Slepčev, and Keenan Crane. 2018. Optimal cone singularities for conformal flattening. ACM Trans. Graph. 37, 4 (2018), 1–17.
[54]
Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Proceedings of the Symposium on Geometry Processing, Vol. 4. 109–116.
[55]
Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008. Conformal equivalence of triangle meshes. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’08). 1–11.
[56]
B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. 2020. OSQP: An operator splitting solver for quadratic programs. Math. Program. Comput. 12, 4 (2020), 637–672.
[57]
William Thomas Tutte. 1963. How to draw a graph. Proc. London Math. Soc. 3, 1 (1963), 743–767.
[58]
Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional field synthesis, design, and processing. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 545–572.
[59]
Ryan Viertel and Braxton Osting. 2019. An approach to quad meshing based on harmonic cross-valued maps and the Ginzburg–Landau theory. SIAM J. Sci. Comput. 41, 1 (2019), A452–A479.
[60]
Ana Maria Vintescu, Florent Dupont, and Guillaume Lavoué. 2017. Least squares affine transitions for global parameterization. J. WSCG 25, 1 (2017), 21–30.
[61]
Yuanzhen Wang, Beibei Liu, and Yiying Tong. 2012. Linear surface reconstruction from discrete fundamental forms on triangle meshes. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 2277–2287.
[62]
Jiayi Eris Zhang, Alec Jacobson, and Marc Alexa. 2021. Fast updates for least-squares rotational alignment. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 13–22.

Index Terms

  1. The Method of Moving Frames for Surface Global Parametrization

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 42, Issue 5
        October 2023
        195 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3607124
        Issue’s Table of Contents

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 20 September 2023
        Online AM: 10 June 2023
        Accepted: 29 May 2023
        Revised: 28 March 2023
        Received: 30 November 2022
        Published in TOG Volume 42, Issue 5

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Global parametrization
        2. seamless parametrization
        3. singularity placement
        4. distortion minimization
        5. quadmeshing

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 808
          Total Downloads
        • Downloads (Last 12 months)360
        • Downloads (Last 6 weeks)34
        Reflects downloads up to 12 Nov 2024

        Other Metrics

        Citations

        View Options

        Get Access

        Login options

        Full Access

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        Full Text

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media