Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Hyper-reduced projective dynamics

Published: 30 July 2018 Publication History

Abstract

We present a method for the real-time simulation of deformable objects that combines the robustness, generality, and high performance of Projective Dynamics with the efficiency and scalability offered by model reduction techniques. The method decouples the cost for time integration from the mesh resolution and can simulate large meshes in real-time. The proposed hyper-reduction of Projective Dynamics combines a novel fast approximation method for constraint projections and a scalable construction of sparse subspace bases. The resulting system achieves real-time rates for large sub-spaces enabling rich dynamics and can resolve general user interactions, collision constraints, external forces and changes to the materials. The construction of the hyper-reduced system does not require user-interaction and refrains from using training data or modal analysis, which results in a fast preprocessing stage.

Supplementary Material

ZIP File (080-548.zip)
Supplemental files.
MP4 File (080-548.mp4)
MP4 File (a80-brandt.mp4)

References

[1]
Steven S. An, Theodore Kim, and Doug L. James. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5 (2008), 1--10.
[2]
Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (2005), 982--990.
[3]
Jernej Barbič and Doug L. James. 2010. Subspace Self-collision Culling. ACM Trans. Graph. 29, 4 (2010), 81:1--81:9.
[4]
Jernej Barbič, Funshing Sin, and Eitan Grinspun. 2012. Interactive Editing of Deformable Simulations. ACM Trans. Graph. 31, 4 (2012), 70:1--70:8.
[5]
Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, and Anthony T. Patera. 2004. An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique 339, 9 (2004), 667--672.
[6]
Jan Bender, Dan Koschier, Patrick Charrier, and Daniel Weber. 2014. Position-based simulation of continuous materials. Computers & Graphics 44 (2014), 1 -- 10.
[7]
Jan Bender, Matthias Müller, and Miles Macklin. 2017. Position-Based Simulation Methods in Computer Graphics. In EUROGRAPHICS 2017 Tutorials.
[8]
Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4 (2014), 154:1--154:11.
[9]
Christopher Brandt and Klaus Hildebrandt. 2017. Compressed Vibration Modes of Deformable Bodies. Computer Aided Geometric Design 52--53 (2017), 297--312.
[10]
Christopher Brandt, Christoph von Tycowicz, and Klaus Hildebrandt. 2016. Geometric Flows of Curves in Shape Space for Processing Motion of Deformable Objects. Computer Graphics Forum 35, 2 (2016).
[11]
Marcel Campen, Martin Heistermann, and Leif Kobbelt. 2013. Practical Anisotropic Geodesy. Computer Graphics Forum 32, 5 (2013), 63--71.
[12]
Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popovič. 2002. A Multiresolution Framework for Dynamic Deformations. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 41--47.
[13]
Jeffrey N. Chadwick, Steven S. An, and Doug L. James. 2009. Harmonic shells: a practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5 (2009), 119:1--119:10.
[14]
Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29 (2010), 38:1--38:6.
[15]
Saifon Chaturantabut and Danny C Sorensen. 2010. Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific Computing 32, 5 (2010), 2737--2764.
[16]
Xiang Chen, Changxi Zheng, and Kun Zhou. 2017. Example-Based Subspace Stress Analysis for Interactive Shape Design. IEEE Trans. Vis. and Comp. Graph. 23, 10 (2017), 2314--2327.
[17]
Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal Warping: Real-Time Simulation of Large Rotational Deformation and Manipulation. IEEE Trans. Vis. Comput. Graphics 11, 1 (2005), 91--101.
[18]
Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard API for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1 (1998), 46--55.
[19]
Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. 2001. Dynamic Real-time Deformations Using Space & Time Adaptive Sampling. In Proc. ACM SIGGRAPH. 31--36.
[20]
Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Dinesh K. Pai. 2011. Frame-based Elastic Models. ACM Trans. Graph. 30, 2 (2011), 15:1--15:12.
[21]
Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org. (2010).
[22]
Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W Sumner, Forrester Cole, Mark Meyer, Tony DeRose, and Markus H. Gross. 2014. Subspace clothing simulation using adaptive bases. ACM Trans. Graph. 33, 4 (2014), 105:1--105:9.
[23]
David Harmon and Denis Zorin. 2013. Subspace integration with local deformations. ACM Trans. Graph. 32, 4 (2013), 107:1--107:10.
[24]
Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier. 2011. Interactive surface modeling using modal analysis. ACM Trans. Graph. 30, 5 (2011), 119:1--119:11.
[25]
Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier. 2012. Interactive spacetime control of deformable objects. ACM Trans. Graph. 31, 4 (2012), 71:1--71:8.
[26]
Jin Huang, Xiaohan Shi, Xinguo Liu, Kun Zhou, Li-Yi Wei, Shang-Hua Teng, Hujun Bao, Baining Guo, and Heung-Yeung Shum. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3 (2006).
[27]
Jin Huang, Yiying Tong, Kun Zhou, Hujun Bao, and Mathieu Desbrun. 2011. Interactive Shape Interpolation through Controllable Dynamic Deformation. IEEE Trans. Vis. Comput. Graph. 17, 7 (2011), 983--992.
[28]
Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. 2012. Fast Automatic Skinning Transformations. ACM Trans. Graph. 31, 4 (2012), 77:1--77:10.
[29]
Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78:1--78:8.
[30]
Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Numerical Coarsening of Inhomogeneous Elastic Materials. ACM Trans. Graph. 28, 3 (2009), 51:1--51:8.
[31]
Theodore Kim and John Delaney. 2013. Subspace Fluid Re-simulation. ACM Trans. Graph. 32, 4 (2013), 62:1--62:9.
[32]
Tae-Yong Kim, Nuttapong Chentanez, and Matthias Müller-Fischer. 2012. Long Range Attachments - a Method to Simulate Inextensible Clothing in Computer Games. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 305--310.
[33]
Petr Krysl, Sanjay Lall, and Jerrold E. Marsden. 2001. Dimensional Model Reduction in Non-linear Finite Element Dynamics of Solids and Structures. Int. J. Numer. Meth. Eng 51 (2001), 479--504.
[34]
Siwang Li, Jin Huang, Fernando de Goes, Xiaogang Jin, Hujun Bao, and Mathieu Desbrun. 2014. Space-time Editing of Elastic Motion Through Material Optimization and Reduction. ACM Trans. Graph. 33, 4 (2014), 108:1--108:10.
[35]
Tiantian Liu, Adam W. Bargteil, James F. O'Brien, and Ladislav Kavan. 2013. Fast Simulation of Mass-spring Systems. ACM Trans. Graph. 32, 6 (2013), 214:1--214:7.
[36]
Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 3 (2017), 23:1--23:16.
[37]
Miles Macklin and Matthias Müller. 2013. Position Based Fluids. ACM Trans. Graph. 32, 4 (2013), 104:1--104:12.
[38]
Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-based Simulation of Compliant Constrained Dynamics. In Proc. ACM Motion in Games. 49--54.
[39]
Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011. Example-based Elastic Materials. ACM Trans. Graph. 30, 4 (2011), 72:1--72:8.
[40]
Matthias Müller. 2008. Hierarchical Position Based Dynamics. In Proc. Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS).
[41]
Matthias Müller and Nuttapong Chentanez. 2011. Solid Simulation with Oriented Particles. ACM Trans. Graph. 30, 4 (2011), 92:1--92:10.
[42]
Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2014. Strain Based Dynamics. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 149--157.
[43]
Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position Based Dynamics. J. Vis. Comun. Image Represent. 18, 2 (2007), 109--118.
[44]
Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005. Meshless Deformations Based on Shape Matching. In Proc. ACM SIGGRAPH. 471--478.
[45]
Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, and Leif Kobbelt. 2015. Reduced-order Shape Optimization Using Offset Surfaces. ACM Trans. Graph. 34, 4 (2015), 102:1--102:9.
[46]
Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇ Projective Dynamics: Fast Simulation of General Constitutive Models. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 21--28.
[47]
Matthieu Nesme, Paul G. Kry, Lenka Jeřábková, and François Faure. 2009. Preserving Topology and Elasticity for Embedded Deformable Models. ACM Trans. Graph. 28, 3 (2009), 52:1--52:9.
[48]
Thomas Neumann, Kiran Varanasi, Stephan Wenger, Markus Wacker, Marcus Magnor, and Christian Theobalt. 2013. Sparse Localized Deformation Components. ACM Trans. Graph. 32, 6 (2013), 179:1--179:10.
[49]
John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable Parallel Programming with CUDA. Queue 6, 2 (2008), 40--53.
[50]
Matthew Overby, George E. Brown, Jie Li, and Rahul Narain. 2017. ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE Trans. Vis. and Comp. Graph. 23, 10 (2017), 2222--2234.
[51]
Zherong Pan, Hujun Bao, and Jin Huang. 2015. Subspace Dynamic Simulation Using Rotation-strain Coordinates. ACM Trans. Graph. 34, 6 (2015), 242:1--242:12.
[52]
Alex Pentland and John Williams. 1989. Good vibrations: modal dynamics for graphics and animation. In Proc. of ACM SIGGRAPH. 215--222.
[53]
Olivier Rémillard and Paul G. Kry. 2013. Embedded Thin Shells for Wrinkle Simulation. ACM Trans. Graph. 32, 4 (2013), 50:1--50:8.
[54]
Alec R. Rivers and Doug L. James. 2007. FastLSM: Fast Lattice Shape Matching for Robust Real-time Deformation. ACM Trans. Graph. 26, 3 (2007).
[55]
Christian Schulz, Christoph von Tycowicz, Hans-Peter Seidel, and Klaus Hildebrandt. 2014. Animating Deformable Objects using Sparse Spacetime Constraints. ACM Trans. Graph. 33, 4 (2014), 109:1--109:10.
[56]
Sara C. Schvartzman, Jorge Gascón, and Miguel A. Otaduy. 2009. Bounded Normal Trees for Reduced Deformations of Triangulated Surfaces. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 75--82.
[57]
Jos Stam. 2009. Nucleus: Towards a unified dynamics solver for computer graphics. In Proc. IEEE International Conference on Computer-Aided Design and Computer Graphics. 1--11.
[58]
Yun Teng, Miguel A. Otaduy, and Theodore Kim. 2014. Simulating Articulated Subspace Self-contact. ACM Trans. Graph. 33, 4 (2014), 106:1--106:9.
[59]
Philipp von Radziewsky, Elmar Eisemann, Hans-Peter Seidel, and Klaus Hildebrandt. 2016. Optimized subspaces for deformation-based modeling and shape interpolation. Computers & Graphics 58 (2016), 128 -- 138.
[60]
Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt. 2013. An Efficient Construction of Reduced Deformable Objects. ACM Trans. Graph. 32, 6 (2013), 213:1--213:10.
[61]
Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt. 2015. Real-time Nonlinear Shape Interpolation. ACM Trans. Graph. 34, 3 (2015), 34:1--34:10.
[62]
Huamin Wang. 2015. A Chebyshev Semi-iterative Approach for Accelerating Projective and Position-based Dynamics. ACM Trans. Graph. 34, 6 (2015), 246:1--246:9.
[63]
Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear Subspace Design for Real-time Shape Deformation. ACM Trans. Graph. 34, 4 (2015), 57:1--57:11.
[64]
Marcel Weiler, Dan Koschier, and Jan Bender. 2016. Projective Fluids. In Proc. ACM Motion in Games. 79--84.
[65]
Chris Wojtan and Greg Turk. 2008. Fast Viscoelastic Behavior with Thin Features. ACM Trans. Graph. 27, 3 (2008), 47:1--47:8.
[66]
Xiaofeng Wu, Rajaditya Mukherjee, and Huamin Wang. 2015. A Unified Approach for Subspace Simulation of Deformable Bodies in Multiple Domains. ACM Trans. Graph. 34, 6 (2015), 241:1--241:9.
[67]
Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbic. 2015. Interactive Material Design Using Model Reduction. ACM Trans. Graph. 34, 2 (2015), 18:1--18:14.
[68]
Yin Yang, Dingzeyu Li, Weiwei Xu, Yuan Tian, and Changxi Zheng. 2015. Expediting Precomputation for Reduced Deformable Simulation. ACM Trans. Graph. 34, 6 (2015), 243:1--243:13.
[69]
Y. Yang, W. Xu, X. Guo, K. Zhou, and B. Guo. 2013. Boundary-Aware Multidomain Subspace Deformation. IEEE Trans. Vis. and Comp. Graph. 19, 10 (2013), 1633--1645.

Cited By

View all
  • (2024)Biharmonic Coordinates and their Derivatives for Triangular 3D CagesACM Transactions on Graphics10.1145/365820843:4(1-17)Online publication date: 19-Jul-2024
  • (2024)A novel deep learning-driven approach for predicting the pelvis soft-tissue deformations toward a real-time interactive childbirth simulationEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.107150126:PDOnline publication date: 27-Feb-2024
  • (2024)SparseSoftDECA — Efficient high-resolution physics-based facial animation from sparse landmarksComputers & Graphics10.1016/j.cag.2024.103903119(103903)Online publication date: Apr-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 37, Issue 4
August 2018
1670 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3197517
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 July 2018
Published in TOG Volume 37, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. model reduction
  2. projective dynamics
  3. real-time simulation
  4. reduced-order model
  5. subspace dynamics

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)112
  • Downloads (Last 6 weeks)11
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Biharmonic Coordinates and their Derivatives for Triangular 3D CagesACM Transactions on Graphics10.1145/365820843:4(1-17)Online publication date: 19-Jul-2024
  • (2024)A novel deep learning-driven approach for predicting the pelvis soft-tissue deformations toward a real-time interactive childbirth simulationEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.107150126:PDOnline publication date: 27-Feb-2024
  • (2024)SparseSoftDECA — Efficient high-resolution physics-based facial animation from sparse landmarksComputers & Graphics10.1016/j.cag.2024.103903119(103903)Online publication date: Apr-2024
  • (2023)SoftDECA: Computationally Efficient Physics-Based Facial AnimationsProceedings of the 16th ACM SIGGRAPH Conference on Motion, Interaction and Games10.1145/3623264.3624439(1-11)Online publication date: 15-Nov-2023
  • (2023)Learning Contact Deformations with General Collider DescriptorsSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618229(1-10)Online publication date: 10-Dec-2023
  • (2023)Subspace Mixed Finite Elements for Real-Time Heterogeneous ElastodynamicsSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618220(1-10)Online publication date: 10-Dec-2023
  • (2023)Subspace-Preconditioned GPU Projective Dynamics with Contact for Cloth SimulationSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618157(1-12)Online publication date: 10-Dec-2023
  • (2023)Two-Way Coupling of Skinning Transformations and Position Based DynamicsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069306:3(1-18)Online publication date: 24-Aug-2023
  • (2023)Fast Complementary Dynamics via Skinning EigenmodesACM Transactions on Graphics10.1145/359240442:4(1-21)Online publication date: 26-Jul-2023
  • (2023)Data-Free Learning of Reduced-Order KinematicsACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591521(1-9)Online publication date: 23-Jul-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media