Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    George Lambrinidis

    Oleuropein (OLE), a main constituent of olive, exhibits antioxidant and hypolipidemic effects, while it reduces the infarct size in chow- and cholesterol-fed rabbits. Peroxisome proliferator-activated receptor α (PPARα) has essential... more
    Oleuropein (OLE), a main constituent of olive, exhibits antioxidant and hypolipidemic effects, while it reduces the infarct size in chow- and cholesterol-fed rabbits. Peroxisome proliferator-activated receptor α (PPARα) has essential roles in the control of lipid metabolism and energy homeostasis. This study focused on the mechanisms underlying the hypolipidemic activity of OLE and, specifically, on the role of PPARα activation in the OLE-induced effect. Theoretical approach using Molecular Docking Simulations and luciferase reporter gene assay indicated that OLE is a ligand of PPARα. The effect of OLE (100 mg/kg, p.o., per day, ×6 weeks) on serum triglyceride (TG) and cholesterol levels was also assessed in adult male wild-type and Ppara-null mice. Molecular Docking Simulations, Luciferase reporter gene assay and gene expression analysis indicated that OLE is a PPARα agonist that up-regulates several PPARα target genes in the liver. This effect was associated with a significant red...
    We have previously rationally designed, synthesized and tested a number of 3-deazapurine analogues, which inhibit the ubiquitous fungal nucleobase transporter FcyB, through binding in its major substrate binding site, by specifically... more
    We have previously rationally designed, synthesized and tested a number of 3-deazapurine analogues, which inhibit the ubiquitous fungal nucleobase transporter FcyB, through binding in its major substrate binding site, by specifically interacting with Asn163. Here, in an effort to further understand the molecular details of structure-activity relationships in all three major nucleobase transporters of fungi, we extend this study by designing, based on our previous experience, synthesizing and testing further 3-deazapurine analogues. We thus identify seven new compounds with relatively high affinity (19-106 μΜ) for the FcyB binding site. Importantly, four of these compounds can also efficiently inhibit AzgA, a structurally and evolutionary distinct, but functionally similar, purine transporter. Contrastingly, none of the new compounds tested had any effect on the transport activity of the uric acid-xanthine transporter UapA, albeit this being a structural homologue of AzgA. Besides th...
    The uracil permease UraA of Escherichia coli is a structurally known prototype for the ubiquitous Nucleobase-Ascorbate Transporter (NAT) or Nucleobase-Cation Symporter-2 (NCS2) family and represents a well-defined subgroup of bacterial... more
    The uracil permease UraA of Escherichia coli is a structurally known prototype for the ubiquitous Nucleobase-Ascorbate Transporter (NAT) or Nucleobase-Cation Symporter-2 (NCS2) family and represents a well-defined subgroup of bacterial homologs that remain functionally unstudied. Here, we analyze four of these homologs, including RutG of E. coli which shares 35% identity with UraA and is encoded in the catabolic rut (pyrimidine utilization) operon. Using amplified expression in E. coli K-12, we show that RutG is a high-affinity permease for uracil, thymine and, at low efficiency, xanthine and recognizes also 5-fluorouracil and oxypurinol. In contrast, UraA and the homologs from Acinetobacter calcoaceticus and Aeromonas veronii are permeases specific for uracil and 5-fluorouracil. Molecular docking indicates that thymine is hindered from binding to UraA by a highly conserved Phe residue which is absent in RutG. Site-directed replacement of this Phe with Ala in the three uracil-specif...
    The xanthine permease XanQ of Escherichia coli is a paradigm for transporters of the evolutionarily broad family nucleobase-cation symporter-2 (NCS2) that transport key metabolites or anti-metabolite analogs. Most functionally known... more
    The xanthine permease XanQ of Escherichia coli is a paradigm for transporters of the evolutionarily broad family nucleobase-cation symporter-2 (NCS2) that transport key metabolites or anti-metabolite analogs. Most functionally known members are xanthine/uric acid transporters related to XanQ and belong to a distinct phylogenetic cluster of the family. Here, we present a comprehensive mutagenesis of XanQ based on the identification and Cys-scanning analysis of conserved sequence motifs in this cluster. Results are interpreted in relation to homology modeling on the structurally known template of UraA and previous data on critical binding-site residues in transmembrane segments (TMs) 3, 8 and 10. The current analysis, of motifs distant to the binding site, revealed a set of functionally important residues in TMs 2, 5, 12 and 13, including seven irreplaceable ones, of which six are Gly residues in the gate domain (159, 369, 370, 383, 409) and in TM2 (Gly-71), and one is polar (Gln-75). Gln-75 (TM2) is probably crucial in a network of hydrogen-bonding interactions in the middle of the core domain involving another essential residue, Asp-304 (TM9). Although the two residues are irreplaceable individually, combinatorial replacement of Gln-75 with Asn and of Asp-304 with Glu rescues significant transport activity.
    Relaxed-residue energy maps based on the MM3 force field were computed for the methyl glycosides of eight C-linked D-glucosyl disaccharides: the two-bond axial-equatorial linked disaccharides β-kojibioside [(1→2)α–], β-nigeroside... more
    Relaxed-residue energy maps based on the MM3 force field were computed for the methyl glycosides of eight C-linked D-glucosyl disaccharides: the two-bond axial-equatorial linked disaccharides β-kojibioside [(1→2)α–], β-nigeroside [(1→3)α–] and β-maltose [(1→4)α–], the two-bond equatorial-equatorial linked disaccharides β-sophoroside [(1→2)β–], β–laminarabioside [(1→3)β-], β–cellobioside [(1→4)β–] and the three-bond-linked (1→6) disacharides C-isomaltoside and C-gentiobioside. Optimized structures were calculated on a 20° grid spacing of the torsional angles about the C-glycosidic bonds and the final isoenergy surfaces were based on 11664 conformations, for the two-bond-linked disaccharides and 69984 conformations for the three-bond-linked disaccharides. Boltzmann-weighted J coupling constants were calculated and compared to the experimental values. They are satisfactory except for maltose where hydrogen bonds cause an over-estimation of the energy differences between the conformers....
    Plasma protein binding (PPB) strongly affects drug distribution and pharmacokinetic behavior with consequences in overall pharmacological action. Extended plasma protein binding may be associated with drug safety issues and several... more
    Plasma protein binding (PPB) strongly affects drug distribution and pharmacokinetic behavior with consequences in overall pharmacological action. Extended plasma protein binding may be associated with drug safety issues and several adverse effects, like low clearance, low brain penetration, drug-drug interactions, loss of efficacy, while influencing the fate of enantiomers and diastereoisomers by stereoselective binding within the body. Therefore in holistic drug design approaches, where ADME(T) properties are considered in parallel with target affinity, considerable efforts are focused in early estimation of PPB mainly in regard to human serum albumin (HSA), which is the most abundant and most important plasma protein. The second critical serum protein α1-acid glycoprotein (AGP), although often underscored, plays also an important and complicated role in clinical therapy and thus the last years it has been studied thoroughly too. In the present review, after an overview of the prin...
    Binding of drugs to human serum albumin (HSA) strongly influences their pharmacokinetic behavior and is associated with drug safety issues, low clearance, low brain penetration, as well as drug-drug interactions. Thus, in silico... more
    Binding of drugs to human serum albumin (HSA) strongly influences their pharmacokinetic behavior and is associated with drug safety issues, low clearance, low brain penetration, as well as drug-drug interactions. Thus, in silico prediction of HSA binding contributes significantly to the discovery of new drug candidates. The authors provide a short overview on the principles of HSA binding and the crystal structure of HSA, as well as discussing and analyzing the recent structure- and ligand-based HSA binding models. The authors also present the advantages and limitations of each methodology to construct efficient local or global models and outline the critical structural features contributing to HSA. The in silico estimation of drug binding to HSA in early drug discovery contributes to the lead optimization process. Local models are useful for the design of new compounds with reduced HSA binding for a particular target receptor, while real-time quantitative structure-activity relatio...
    ABSTRACT In the present study 2D-QSAR analysis was combined with information on crystallographic data and molecular modeling, in order to investigate dual PPAR-α/γ activity for a data set of 71 compounds, compiled from literature. Using... more
    ABSTRACT In the present study 2D-QSAR analysis was combined with information on crystallographic data and molecular modeling, in order to investigate dual PPAR-α/γ activity for a data set of 71 compounds, compiled from literature. Using Multivariate Data Analysis, satisfactory PLS models were generated for each receptor subtype separately. The models were based on simple and easily interpretable drug-like and constitutional descriptors, while the inclusion of MOLCONN-Z descriptors in the initial pool of variables had no considerable impact in model predictivity. By simultaneous analysis of both types of activity, a consensus PLS model for dual PPAR-α/γ activity could be derived, displaying the molecular features, which may lead to a balanced activity. All models were validated by permutation tests, by dividing the data set into training and test sets, as well as by external validation using a blind test set. Detailed inspection of PPAR-α and PPAR-γ crystal structures and molecular simulation supported the differentiation of most important descriptors in the separate PLS models, e.g. the higher impact of lipophilicity and bulk descriptors in PPAR-α and PPAR-γ activity respectively, as well as the effect of specific structural descriptors. Molecular simulation provided also explanation for the behavior of certain outliers in the PLS models.
    The aerial parts of Inula verbascifolia subsp. methanea yielded three new epoxygermacranolides, compounds 1-3, in addition to the previously known 9beta-hydroxyparthenolide. The structures of 1-3 have been elucidated on the basis of their... more
    The aerial parts of Inula verbascifolia subsp. methanea yielded three new epoxygermacranolides, compounds 1-3, in addition to the previously known 9beta-hydroxyparthenolide. The structures of 1-3 have been elucidated on the basis of their spectral data (MS, CD, 1D and 2D NMR) and by quantum mechanical calculations. The in vitro cytotoxic activity of compounds 1-3 was evaluated against six human solid tumor cell lines.
    Fractionation of the neutral extract of Onobrychis ebenoides (Leguminosae) yielded a new isoflavone, named ebenosin (1), in addition to the known ones, afrormosin (2), formononetin (3) and daidzein (4). Although the relative binding... more
    Fractionation of the neutral extract of Onobrychis ebenoides (Leguminosae) yielded a new isoflavone, named ebenosin (1), in addition to the known ones, afrormosin (2), formononetin (3) and daidzein (4). Although the relative binding affinities of 1 - 4 for estrogen receptor alpha (ERalpha) were nearly comparable and matched those of 1-3 for ERbeta, that of 4 for the latter receptor was significantly higher than any of the other. Compounds 1 - 4 induced cell proliferation and gene expression in breast and endometrial cancer cells in an ER-dependent manner. Nonetheless, the rank order of induction potencies ( 4 > 3 >or= 2 >or= 1) matched better that of affinities for ERbeta ( 4 > 3 >or= 2 >or= 1) rather than ERalpha ( 4 >or= 3 >or= 2 >or= 1). While the antiestrogen ICI 182,780 could inhibit the induction of proliferation of ER-positive breast cancer cells by 1-4, it could not prevent 1 from exhibiting significant ER-independent cytotoxicity at 10 microM. By ...
    Page 1. Environ Chem Lett ( 2006 ) 4 :159–174 DOI 10.1007/s10311-006-0065-y REVIEW ARTICLE The estrogen receptor and polyphenols: molecular simulation studies of their interactions, a review George Lambrinidis · Maria ...
    Physicochemical methods were used to study the thermal and dynamic changes caused by losartan in the membrane bilayers. In addition, molecular modeling was implemented to explore its topography both in membranes and AT(1) receptor. Its... more
    Physicochemical methods were used to study the thermal and dynamic changes caused by losartan in the membrane bilayers. In addition, molecular modeling was implemented to explore its topography both in membranes and AT(1) receptor. Its incorporation resulted in the modification of thermal profile of dipalmitoyl phosphatidylcholine (DPPC) bilayers in a concentration dependent way up to 20mol% as it is depicted from the combination of differential scanning calorimetry (DSC) and MAS data. In particular, the presence of losartan caused lowering of the phase transition temperature and abolishment of the pretransition. T(1) experiments revealed the location of the drug into the membrane bilayers. The use of a combination of biophysical methods along with docking experiments brought out a possible two-step mechanism which involves incorporation of losartan at the interface of membrane bilayers and diffusion in the upper parts of AT(1) receptor helices IV-VII.
    The synthesis, molecular modeling and biological evaluation of substituted deoxybenzoins and optimized dihydrostilbenes are reported. Preliminary structure-activity relationship data were elucidated and lead compounds suitable for further... more
    The synthesis, molecular modeling and biological evaluation of substituted deoxybenzoins and optimized dihydrostilbenes are reported. Preliminary structure-activity relationship data were elucidated and lead compounds suitable for further optimization were discovered. Dihydrostilbene 7 is a particularly potent inhibitor (IC(50)=8.44 μM, more potent than kojic acid).
    The uric acid/xanthine H(+) symporter, UapA, is a high-affinity purine transporter from the filamentous fungus Aspergillus nidulans. Here we present the crystal structure of a genetically stabilized version of UapA (UapA-G411VΔ1-11) in... more
    The uric acid/xanthine H(+) symporter, UapA, is a high-affinity purine transporter from the filamentous fungus Aspergillus nidulans. Here we present the crystal structure of a genetically stabilized version of UapA (UapA-G411VΔ1-11) in complex with xanthine. UapA is formed from two domains, a core domain and a gate domain, similar to the previously solved uracil transporter UraA, which belongs to the same family. The structure shows UapA in an inward-facing conformation with xanthine bound to residues in the core domain. Unlike UraA, which was observed to be a monomer, UapA forms a dimer in the crystals with dimer interactions formed exclusively through the gate domain. Analysis of dominant negative mutants is consistent with dimerization playing a key role in transport. We postulate that UapA uses an elevator transport mechanism likely to be shared with other structurally homologous transporters including anion exchangers and prestin.
    Several new cycloalkyl-fused diaryl pyrazoles were synthesized and their binding affinity for the estrogen receptor (ER) subtypes, ERα and ERβ, and subtype-specific agonist/antagonist properties were determined. Cyclopentane-and... more
    Several new cycloalkyl-fused diaryl pyrazoles were synthesized and their binding affinity for the estrogen receptor (ER) subtypes, ERα and ERβ, and subtype-specific agonist/antagonist properties were determined. Cyclopentane-and cyclohexane-fused pyrazoles with p-...
    Erythrina poeppigiana is a medicinal plant which is widely used in Asia, Latin America, and Africa in traditional remedies for gynecological complications and maladies. In continuation of studies for the discovery of novel phytoestrogens,... more
    Erythrina poeppigiana is a medicinal plant which is widely used in Asia, Latin America, and Africa in traditional remedies for gynecological complications and maladies. In continuation of studies for the discovery of novel phytoestrogens, four erythroidine alkaloids, namely α-erythroidine, β-erythroidine, and their oxo-derivatives 8-oxo-α-erythroidine and 8-oxo-β-erythroidine, were isolated and structurally characterized from the methanolic extract of the stem bark of E. poeppigiana. Due to the high amounts of erythroidines in the extract and considering the widespread utilization of Erythrina preparations in traditional medicine, the exploration of their estrogenic properties was performed. The estrogenicity of the isolated erythroidines was assayed in various estrogen receptor-(ER)-dependent test systems, including receptor binding affinity, cell culture based ER-dependent reporter gene assays, and gene expression studies in cultured cells using reverse transcription polymerase ch...
    Deoxybenzoins are plant compounds with similar structure to isoflavones. In this study, we evaluated the ability of two synthesized deoxybenzoins (compound 1 and compound 2) (a) to influence the activity of the estrogen receptor subtypes... more
    Deoxybenzoins are plant compounds with similar structure to isoflavones. In this study, we evaluated the ability of two synthesized deoxybenzoins (compound 1 and compound 2) (a) to influence the activity of the estrogen receptor subtypes ERalpha and ERbeta in HeLa cells co-transfected with an estrogen response element-driven luciferase reporter gene and ERalpha- or ERbeta-expression vectors, (b) to modulate the IGFBP-3 and pS2 protein in MCF-7 breast cancer cells, (c) to induce mineralization of KS483 osteoblasts and (d) to affect the cell viability of endometrial (Ishikawa) and breast (MCF-7, MDA-MB-231) cancer cells. Docking and binding energy calculations were performed using the mixed Monte Carlo/Low Mode search method (Macromodel 6.5). Compound 1 displayed significant estrogenic activity via ERbeta but no activity via ERalpha. Compound 2 was an estrogen-agonist via ERalpha and antagonist via ERbeta. Both compounds increased, like the pure antiestrogen ICI182780, the IGFBP-3 levels. Compound 2 induced, like 17beta-estradiol, significant mineralization in osteoblasts. The cell viability of Ishikawa cells was unchanged in the presence of either compound. Compound 1 increased MCF-7 cell viability consistently with an increase in pS2 levels, whereas compound 2 inhibited the cell viability. Molecular modeling confirmed the agonistic or antagonistic behaviour of compound 2 via ER subtypes. Compound 2, being an agonist in osteoblasts, an antagonist in breast cancer cells, with no estrogenic effects in endometrial cancer cells, makes it a potential selective estrogen receptor modulator and a choice for hormone replacement therapy.