Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Sarah Wiethoff

    In a previous study, retinal nerve fiber layer thickness (RNFLT) loss was shown as part of the neurodegenerative process in multiple system atrophy (MSA). Here, we investigate in a larger cohort of MSA patients whether the RNFLT loss... more
    In a previous study, retinal nerve fiber layer thickness (RNFLT) loss was shown as part of the neurodegenerative process in multiple system atrophy (MSA). Here, we investigate in a larger cohort of MSA patients whether the RNFLT loss translates into respective visual field defects. Spectral domain optical coherence tomography was performed in 20 MSA patients (parkinsonian subtype = 12, cerebellar subtype = 8) to quantify peripapillary RNFLT. Visual field (90°) was analyzed by automated static perimetry to investigate retinal structure/function relationship. Eight data sets did not meet stringent quality criteria, and only 12 data sets were further analyzed. Compared to healthy controls, MSA patients demonstrated a significant reduction of RNFLT in the nasal sectors (p ( nasal-superior ) = 0.02, p ( nasal ) = 0.03, p ( nasal-inferior ) < 0.01), while changes in temporal RNFLT measures (p ( temporal-superior ) = 0.42, p ( temporal ) = 0.34, p ( temporal-inferior ) = 0.25) were not statistically significant compared to healthy controls (ANOVA). MSA patients featured a significant global mean deviation (2.74 dB; p < 0.01) without predominant peripheral visual field defects. Statistical analysis of mean defect in the central (0-30°), peripheral (30-90°) or global (0-90°) visual field revealed no significant correlation (r (2) (central) = 0.11, r (2) (peripheral) = 0.04, r (2) (global) = 0.07) with nasal RNFLT in MSA patients. MSA patients feature significant reduction in nasal RNFLT and global mean deviation when compared to healthy controls, consistent with the multi-systemic nature of this neurodegenerative disorder. This finding provides first evidence for two independent deteriorations of the visual system in MSA.
    X-linked Adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene resulting in the accumulation of very long chain fatty acids (VLCFA). X-ALD is the most common peroxisomal disorder with adult patients (male and female)... more
    X-linked Adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene resulting in the accumulation of very long chain fatty acids (VLCFA). X-ALD is the most common peroxisomal disorder with adult patients (male and female) presenting with progressive spastic paraparesis with bladder disturbance, sensory ataxia with impaired vibration sense, and leg pain. 80% of male X-ALD patients have an adrenal failure, while adrenal dysfunction is rare in women with X-ALD. The objective of this study was to define optimal serum VLCFA cutoff values in patients with X-ALD-like phenotypes for the differentiation of genetically confirmed X-ALD and Non-X-ALD individuals. Three groups were included into this study: a) X-ALD cases with confirmed ABCD1 mutations (n = 34) and two Non-X-ALD cohorts: b) Patients with abnormal serum VCLFA levels despite negative testing for ABCD1 mutations (n = 15) resulting from a total of 1,953 VLCFA tests c) Phenotypically matching patients as Non-X-ALD controls...
    Spastic paraplegia type 5 (SPG5) is a rare subtype of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative disorders defined by progressive neurodegeneration of the corticospinal tract motor neurons. SPG5 is... more
    Spastic paraplegia type 5 (SPG5) is a rare subtype of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative disorders defined by progressive neurodegeneration of the corticospinal tract motor neurons. SPG5 is caused by recessive mutations in the gene CYP7B1 encoding oxysterol-7α-hydroxylase. This enzyme is involved in the degradation of cholesterol into primary bile acids. CYP7B1 deficiency has been shown to lead to accumulation of neurotoxic oxysterols. In this multicentre study, we have performed detailed clinical and biochemical analysis in 34 genetically confirmed SPG5 cases from 28 families, studied dose-dependent neurotoxicity of oxysterols in human cortical neurons and performed a randomized placebo-controlled double blind interventional trial targeting oxysterol accumulation in serum of SPG5 patients. Clinically, SPG5 manifested in childhood or adolescence (median 13 years). Gait ataxia was a common feature. SPG5 patients lost the ability to walk i...
    In a previous study, retinal nerve fiber layer thickness (RNFLT) loss was shown as part of the neurodegenerative process in multiple system atrophy (MSA). Here, we investigate in a larger cohort of MSA patients whether the RNFLT loss... more
    In a previous study, retinal nerve fiber layer thickness (RNFLT) loss was shown as part of the neurodegenerative process in multiple system atrophy (MSA). Here, we investigate in a larger cohort of MSA patients whether the RNFLT loss translates into respective visual field defects. Spectral domain optical coherence tomography was performed in 20 MSA patients (parkinsonian subtype = 12, cerebellar subtype = 8) to quantify peripapillary RNFLT. Visual field (90°) was analyzed by automated static perimetry to investigate retinal structure/function relationship. Eight data sets did not meet stringent quality criteria, and only 12 data sets were further analyzed. Compared to healthy controls, MSA patients demonstrated a significant reduction of RNFLT in the nasal sectors (p ( nasal-superior ) = 0.02, p ( nasal ) = 0.03, p ( nasal-inferior ) < 0.01), while changes in temporal RNFLT measures (p ( temporal-superior ) = 0.42, p ( temporal ) = 0.34, p ( temporal-inferior ) = 0.25) were not statistically significant compared to healthy controls (ANOVA). MSA patients featured a significant global mean deviation (2.74 dB; p < 0.01) without predominant peripheral visual field defects. Statistical analysis of mean defect in the central (0-30°), peripheral (30-90°) or global (0-90°) visual field revealed no significant correlation (r (2) (central) = 0.11, r (2) (peripheral) = 0.04, r (2) (global) = 0.07) with nasal RNFLT in MSA patients. MSA patients feature significant reduction in nasal RNFLT and global mean deviation when compared to healthy controls, consistent with the multi-systemic nature of this neurodegenerative disorder. This finding provides first evidence for two independent deteriorations of the visual system in MSA.
    Mutations in PANK2 lead to neurodegeneration with brain iron accumulation. PANK2 has a role in the biosynthesis of coenzyme A (CoA) from dietary vitamin B5, but the neuropathological mechanism and reasons for iron accumulation remain... more
    Mutations in PANK2 lead to neurodegeneration with brain iron accumulation. PANK2 has a role in the biosynthesis of coenzyme A (CoA) from dietary vitamin B5, but the neuropathological mechanism and reasons for iron accumulation remain unknown. In this study, atypical patient-derived fibroblasts were reprogrammed into induced pluripotent stem cells (iPSCs) and subsequently differentiated into cortical neuronal cells for studying disease mechanisms in human neurons. We observed no changes in PANK2 expression between control and patient cells, but a reduction in protein levels was apparent in patient cells. CoA homeostasis and cellular iron handling were normal, mitochondrial function was affected; displaying activated NADH-related and inhibited FADH-related respiration, resulting in increased mitochondrial membrane potential. This led to increased reactive oxygen species generation and lipid peroxidation in patient-derived neurons. These data suggest that mitochondrial deficiency is an...
    The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with... more
    The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15, SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencin...
    Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs) became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments... more
    Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs) became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine.
    Hereditary spastic paraplegias (HSPs) are genetically driven disorders with the hallmark of progressive spastic gait disturbance. To investigate phenotypic spectrum, prognostic factors and genotype specific differences we analyzed... more
    Hereditary spastic paraplegias (HSPs) are genetically driven disorders with the hallmark of progressive spastic gait disturbance. To investigate phenotypic spectrum, prognostic factors and genotype specific differences we analyzed baseline data of a continuous, prospective cohort. We recruited 608 HSP cases from 519 families of mostly German origin. Clinical severity was assessed by Spastic Paraplegia Rating Scale (SPRS). Complicating symptoms were recorded by a standardized inventory. Family history indicated dominant (43%), recessive (10%) and simplex (47%) disease. We observed a significant male predominance, particularly in simplex cases without a genetic diagnosis. Disease severity increased with disease duration. Earlier disease onset was associated with less severe disease. Specific complicating features including cognitive impairment, extrapyramidal or peripheral motor involvement, and ataxia were associated with higher disease severity. Disease severity also depended on the...
    Chorea is a hyperkinetic movement disorder resulting from dysfunction of striatal medium spiny neurons (MSNs), which form the main output projections from the basal ganglia. Here, we used whole-exome sequencing to unravel the underlying... more
    Chorea is a hyperkinetic movement disorder resulting from dysfunction of striatal medium spiny neurons (MSNs), which form the main output projections from the basal ganglia. Here, we used whole-exome sequencing to unravel the underlying genetic cause in three unrelated individuals with a very similar and unique clinical presentation of childhood-onset chorea and characteristic brain MRI showing symmetrical bilateral striatal lesions. All individuals were identified to carry a de novo heterozygous mutation in PDE10A (c.898T>C [p.Phe300Leu] in two individuals and c.1000T>C [p.Phe334Leu] in one individual), encoding a phosphodiesterase highly and selectively present in MSNs. PDE10A contributes to the regulation of the intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both substitutions affect highly conserved amino acids located in the regulatory GAF-B domain, which, by binding to cAMP, stimulates the activity of the PDE10A c...
    The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are amongst the commonest hereditary neurodegenerative diseases. They are caused by... more
    The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are amongst the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent GWAS in HD found association between age at onset and genetic variants in DNA repair pathways and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. We assembled an independent cohort of 1462 subjects with HD and polyglutamine SCAs, and genotyped SNPs selected from the most significant hits in the HD study. In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs, p=1.43x10(-5) ). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p=1.52x10(-5) ) and All SCAs (p=2.22x10(-4) ) and rs1805323 in PMS2 with HD+SCAs (p=3.14x10(-5) ), all in the same direction as in the HD GWAS. We show that DNA repair genes significantly modify the age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. This article is protected by copyright. All rights reserved.
    Autosomal-recessive cerebellar ataxias (ARCA) are clinically and genetically heterogeneous conditions primarily affecting the cerebellum. Mutations in the PNPLA6 gene have been identified as the cause of hereditary spastic paraplegia and... more
    Autosomal-recessive cerebellar ataxias (ARCA) are clinically and genetically heterogeneous conditions primarily affecting the cerebellum. Mutations in the PNPLA6 gene have been identified as the cause of hereditary spastic paraplegia and complex forms of ataxia associated with retinal and endocrine manifestations in a field where the genotype-phenotype correlations are rapidly expanding. We identified two cousins from a consanguineous family belonging to a large Zoroastrian (Parsi) family residing in Mumbai, India, who presented with pure cerebellar ataxia without chorioretinal dystrophy or hypogonadotropic hypogonadism. We used a combined approach of clinical characterisation, homozygosity mapping, whole-exome and Sanger sequencing to identify the genetic defect in this family. The phenotype in the family was pure cerebellar ataxia. Homozygosity mapping revealed one large region of shared homozygosity at chromosome 19p13 between affected individuals. Within this region, whole-exome...
    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in... more
    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enric...
    Beta-propeller protein associated neurodegeneration (BPAN) is associated with mutations in the WD repeat domain 45 (WDR45) gene on chromosome Xp11 resulting in reduced autophagic flux. This study describes the clinical and... more
    Beta-propeller protein associated neurodegeneration (BPAN) is associated with mutations in the WD repeat domain 45 (WDR45) gene on chromosome Xp11 resulting in reduced autophagic flux. This study describes the clinical and neuropathological features of a female 51 year old BPAN case. The clinical history includes learning disability and progressive gait abnormalities since childhood followed by progressive dystonic features in young adulthood. Brain imaging revealed generalised brain atrophy and bilateral mineralisation of the globus pallidus and substantia nigra. The major pathological findings were observed in the substantia nigra with excess iron deposition, gliosis, axonal swellings and severe neuronal loss. Iron deposition was also observed in the globus pallidus. There was extensive hyperphosphorylated-tau deposition in the form of neurofibrillary tangles, pre-tangles and neuropil threads. Furthermore, histological studies and immunoblotting confirmed a mixed Alzheimer type 3-...
    To determine the contribution of ADCY5 mutations in cases with genetically undefined benign hereditary chorea (BHC). We studied 18 unrelated cases with BHC (7 familial, 11 sporadic) who were negative for NKX2-1 mutations. The diagnosis of... more
    To determine the contribution of ADCY5 mutations in cases with genetically undefined benign hereditary chorea (BHC). We studied 18 unrelated cases with BHC (7 familial, 11 sporadic) who were negative for NKX2-1 mutations. The diagnosis of BHC was based on the presence of a childhood-onset movement disorder, predominantly characterized by chorea and no other major neurologic features. ADCY5 analysis was performed by whole-exome sequencing or Sanger sequencing. ADCY5 and NKX2-1 expression during brain development and in the adult human brain was assessed using microarray analysis of postmortem brain tissue. The c.1252C>T; p.R418W mutation was identified in 2 cases (1 familial, 1 sporadic). The familial case inherited the mutation from the affected father, who had a much milder presentation, likely due to low-grade somatic mosaicism. The mutation was de novo in the sporadic case. The clinical presentation of these cases featured nonparoxysmal generalized chorea, as well as dystonia ...
    The cerebellum forms a highly ordered and indispensible component of motor function within the adult neuraxis, consisting of several distinct cellular subtypes. Cerebellar disease, through a variety of genetic and acquired causes, results... more
    The cerebellum forms a highly ordered and indispensible component of motor function within the adult neuraxis, consisting of several distinct cellular subtypes. Cerebellar disease, through a variety of genetic and acquired causes, results in the loss of function of defined subclasses of neurons, and remains a significant and untreatable healthcare burden. The scarcity of therapies in this arena can partially be explained by unresolved disease mechanisms due to inaccessibility of human cerebellar neurons in a relevant experimental context where initiating disease mechanisms could be functionally elucidated, or drug screens conducted. In this review we discuss the potential promise of human induced pluripotent stem cells (hiPSC; or induced pluripotent stem cells (iPSC) in the following) for regenerative neurology, with a particular emphasis on in vitro modelling of cerebellar degeneration. We discuss progress made thus far using human iPSC-based models of neurodegeneration, noting the relatively slower pace of discovery made in modelling cerebellar dysfunction. We conclude by speculating how strategies attempting cerebellar differentiation from human iPSCs can be refined to allow the generation of accurate disease models. This in turn will allow deeper mechanistic dissection of cerebellar pathophysiology to inform mechanistically rationalised therapies, which are desperately needed in this arena.