Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Y. Zou

    ABSTRACT Many demanding applications require single-photon detectors with very large active area, very low noise, high detection efficiency, and precise time response. Single-photon avalanche diodes (SPADs) provide all the advantages of... more
    ABSTRACT Many demanding applications require single-photon detectors with very large active area, very low noise, high detection efficiency, and precise time response. Single-photon avalanche diodes (SPADs) provide all the advantages of solid-state devices, but in many applications other single-photon detectors, like photomultiplier tubes, have been preferred so far due to their larger active area. We developed silicon SPADs with active area diameters as large as 500 μm in a fully standard CMOS process. The 500 μm SPAD exhibits 55% peak photon detection efficiency at 420 nm, 8 kcps of dark counting rate at 0°C, and high uniformity of the sensitivity in the active area. These devices can be used with on-chip integrated quenching circuitry, which reduces the afterpulsing probability, or with external circuits to achieve even better photon-timing performances, as good as 92 ps FWHM for a 100 μm diameter SPAD. Owing to the state-of-the-art performance, not only compared to CMOS SPADs but also SPADs developed in custom technologies, very high uniformity and low crosstalk probability, these CMOS SPADs can be successfully employed in detector arrays and single-chip imagers for single-photon counting and timing applications.
    ABSTRACT Silicon Photomultipliers (SiPMs) are emerging single photon detectors used in many applications requiring large active area, photon number resolving capability and immunity to magnetic fields. We developed planar analog SiPMs in... more
    ABSTRACT Silicon Photomultipliers (SiPMs) are emerging single photon detectors used in many applications requiring large active area, photon number resolving capability and immunity to magnetic fields. We developed planar analog SiPMs in a reliable and cost-effective CMOS technology with a total photosensitive area of about 1×1 mm2. Three devices with different active areas, and fill-factor (21%, 58.3%, 73.7%), have been characterized. The maximum photon detection efficiency is in the near-UV and tops at 38% (fill-factor included), with a dark count rate of 125 kcps. Gain and crosstalk depend on the active area size and are comparable to those of commercial best-in-class custom-technology SiPMs. However our full CMOS processing enables advanced SiPM single-chip systems where transistors and further on chip electronics can be integrated together with the detectors.