Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Three dimensions (3D) acquisition systems are driving applications in many research field. Nowadays 3D acquiring systems are used in a lot of applications, such as cinema industry or in automotive (for active security systems). Depending... more
Three dimensions (3D) acquisition systems are driving applications in many research field. Nowadays 3D acquiring systems are used in a lot of applications, such as cinema industry or in automotive (for active security systems). Depending on the application, systems present different features, for example color sensitivity, bi-dimensional image resolution, distance measurement accuracy and acquisition frame rate. The system we developed acquires 3D movie using indirect Time of Flight (iTOF), starting from phase ...
ABSTRACT We report on the design and characterization of a smart pixel for long-distance ranging, comprising a high performances Single-Photon detector and sub-nanosecond Time-to-Digital Conversion (TDC), in 0.35 μm CMOS technology.
ABSTRACT Many demanding applications require single-photon detectors with very large active area, very low noise, high detection efficiency, and precise time response. Single-photon avalanche diodes (SPADs) provide all the advantages of... more
ABSTRACT Many demanding applications require single-photon detectors with very large active area, very low noise, high detection efficiency, and precise time response. Single-photon avalanche diodes (SPADs) provide all the advantages of solid-state devices, but in many applications other single-photon detectors, like photomultiplier tubes, have been preferred so far due to their larger active area. We developed silicon SPADs with active area diameters as large as 500 μm in a fully standard CMOS process. The 500 μm SPAD exhibits 55% peak photon detection efficiency at 420 nm, 8 kcps of dark counting rate at 0°C, and high uniformity of the sensitivity in the active area. These devices can be used with on-chip integrated quenching circuitry, which reduces the afterpulsing probability, or with external circuits to achieve even better photon-timing performances, as good as 92 ps FWHM for a 100 μm diameter SPAD. Owing to the state-of-the-art performance, not only compared to CMOS SPADs but also SPADs developed in custom technologies, very high uniformity and low crosstalk probability, these CMOS SPADs can be successfully employed in detector arrays and single-chip imagers for single-photon counting and timing applications.
ABSTRACT SPADs (Single Photon Avalanche Diodes) are emerging as most suitable photodetectors for both single-photon counting (Fluorescence Correlation Spectroscopy, Lock-in 3D Ranging) and single-photon timing (Lidar, Fluorescence... more
ABSTRACT SPADs (Single Photon Avalanche Diodes) are emerging as most suitable photodetectors for both single-photon counting (Fluorescence Correlation Spectroscopy, Lock-in 3D Ranging) and single-photon timing (Lidar, Fluorescence Lifetime Imaging, Diffuse Optical Imaging) applications. Different complementary metal-oxide semiconductor (CMOS) implementations have been reported in literature. We present some figure of merit able to summarize the typical SPAD performances (i.e. Dark Counting Rate, Photo Detection Efficiency, afterpulsing probability, hold-off time, timing jitter) and to identify a proper metric for SPAD comparison, both as single detectors and also as imaging arrays. The goal is to define a practical framework within which it is possible to rank detectors based on their performances in specific experimental conditions, for either photon-counting or photon-timing applications. Furthermore we review the performances of some CMOS and custom-made SPADs. Results show that CMOS SPADs performances improve as the technology scales down; moreover, miniaturization of SPADs and new solutions adopted to counteract issues related with the SPAD design (electric field uniformity, premature edge breakdown, tunneling effects, defect-rich STI interface) along with advances in standard CMOS processes led to a general improvement in all fabricated photodetectors; therefore, CMOS SPADs can be suitable for very dense and cost-effective many-pixels imagers with high performances.
ABSTRACT Many demanding applications require single-photon detectors with very large active area, very low noise, high detection efficiency, and precise time response. Single-photon avalanche diodes (SPADs) provide all the advantages of... more
ABSTRACT Many demanding applications require single-photon detectors with very large active area, very low noise, high detection efficiency, and precise time response. Single-photon avalanche diodes (SPADs) provide all the advantages of solid-state devices, but in many applications other single-photon detectors, like photomultiplier tubes, have been preferred so far due to their larger active area. We developed silicon SPADs with active area diameters as large as 500 μm in a fully standard CMOS process. The 500 μm SPAD exhibits 55% peak photon detection efficiency at 420 nm, 8 kcps of dark counting rate at 0°C, and high uniformity of the sensitivity in the active area. These devices can be used with on-chip integrated quenching circuitry, which reduces the afterpulsing probability, or with external circuits to achieve even better photon-timing performances, as good as 92 ps FWHM for a 100 μm diameter SPAD. Owing to the state-of-the-art performance, not only compared to CMOS SPADs but also SPADs developed in custom technologies, very high uniformity and low crosstalk probability, these CMOS SPADs can be successfully employed in detector arrays and single-chip imagers for single-photon counting and timing applications.
ABSTRACT We present our latest results concerning CMOS Single-Photon Avalanche Diode (SPAD) arrays for high-throughput parallel single-photon counting. We exploited a high-voltage 0.35 μm CMOS technology in order to develop low-noise CMOS... more
ABSTRACT We present our latest results concerning CMOS Single-Photon Avalanche Diode (SPAD) arrays for high-throughput parallel single-photon counting. We exploited a high-voltage 0.35 μm CMOS technology in order to develop low-noise CMOS SPADs. The Dark Count Rate is 30 cps at room temperature for 30 μm devices, increases to 2 kcps for 100 μm SPADs and just to 100 kcps for 500 μm ones. Afterpulsing is less than 1% for hold-off time longer than 50 ns, thus allowing to reach high count rates. Photon Detection Efficiency is > 50% at 420 nm, > 40% below 500 nm and is still 5% at 850 nm. Timing jitter is less than 100 ps (FWHM) in SPADs with active area diameter up to 50 μm. We developed CMOS SPAD imagers with 150 μm pixel pitch and 30 μm SPADs. A 64×32 SPAD array is based on pixels including three 9-bit counters for smart phase-resolved photon counting up to 100 kfps. A 32x32 SPAD array includes 1024 10-bit Time-to-Digital Converters (TDC) with 300 ps resolution and 450 ps single-shot precision, for 3D ranging and FLIM. We developed also linear arrays with up to 60 pixels (with 100 μm SPAD, 150 μm pitch and in-pixel 250 ps TDC) for time-resolved parallel spectroscopy with high fill factor.
ABSTRACT We present a low-power Time-to-Digital Converter (TDC) chip, fabricated in a standard cost-effective 0.35 μm CMOS technology, which provides 160 ns dynamic range, 10 ps timing resolution and Differential Non-Linearity better than... more
ABSTRACT We present a low-power Time-to-Digital Converter (TDC) chip, fabricated in a standard cost-effective 0.35 μm CMOS technology, which provides 160 ns dynamic range, 10 ps timing resolution and Differential Non-Linearity better than 0.01 LSB rms. This chip is the core of a compact TDC module equipped with an USB 2.0 interface for user-friendly control and data-acquisition. The TDC module is suitable for a wide variety of applications such as Fluorescence Lifetime Imaging (FLIM), time-resolved spectroscopy, Diffuse Optical Spectroscopy (DOS), Optical Time-Domain Reflectometry (OTDR), quantum optics, etc. In particular, we show the application of our TDC module to fluorescence lifetime measurements.
We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of... more
We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.
ABSTRACT The use of Bioelectrical Impedance Analysis (BIA) for assessing body composition is widespread both in healthy subjects and patients. However, until now its use has been limited to laboratory environments or at the patients??... more
ABSTRACT The use of Bioelectrical Impedance Analysis (BIA) for assessing body composition is widespread both in healthy subjects and patients. However, until now its use has been limited to laboratory environments or at the patients?? bedside. A portable system measuring body impedance in a wide range of frequencies (10 Hz-1 MHz) would allow to assess the body water content in a much larger number of applications, including for instance monitoring the hydration state in endurance athletes during sport performances or in elderly subjects during daily activities. Aim of this work is to demonstrate the feasibility of long-term (several hours) bioimpedance monitoring by means of a portable multifrequency device. This is done by analyzing the influence of different electrode set-up; by performing preliminary recordings to evaluate measures stability over long periods and after postural changes; and finally by developing a prototype of DSP-based portable system for BIA, that minimize the number of components and the power consumption. Keywords ?? Bioelectrical Impedance Analysis, body impedance, electrodes, DSP, analog interface