Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Zhenguo Li

    Zhenguo Li

    While deep learning demonstrates its strong ability to handle independent and identically distributed (IID) data, it often suffers from out-of-distribution (OoD) generalization, where the test data come from another distribution (w.r.t.... more
    While deep learning demonstrates its strong ability to handle independent and identically distributed (IID) data, it often suffers from out-of-distribution (OoD) generalization, where the test data come from another distribution (w.r.t. the training one). Designing a general OoD generalization framework for a wide range of applications is challenging, mainly due to different kinds of distribution shifts in the real world, such as the shift across domains or the extrapolation of correlation. Most of the previous approaches can only solve one specific distribution shift, leading to unsatisfactory performance when applied to various OoD benchmarks. In this work, we propose DecAug, a novel decomposed feature representation and semantic augmentation approach for OoD generalization. Specifically, DecAug disentangles the category-related and context-related features by orthogonalizing the two gradients (w.r.t. intermediate features) of losses for predicting category and context labels, whe...
    This is the supplemental material for our main paper titled “Locally Linear Hashing for Extracting Non-Linear Manifolds”. In the main paper, we propose a new hashing method named Locally Linear Hashing (LLH) and report a set of extensive... more
    This is the supplemental material for our main paper titled “Locally Linear Hashing for Extracting Non-Linear Manifolds”. In the main paper, we propose a new hashing method named Locally Linear Hashing (LLH) and report a set of extensive experimental results to demonstrate its su-periority over the state-of-the-art methods. In this supple-mental material, we provide additional results to emphasize its effectiveness, scalability, and efficiency.
    Statistical and systematic challenges in collaboratively training machine learning models across distributed networks of mobile devices have been the bottlenecks in the real-world application of federated learning. In this work, we show... more
    Statistical and systematic challenges in collaboratively training machine learning models across distributed networks of mobile devices have been the bottlenecks in the real-world application of federated learning. In this work, we show that meta-learning is a natural choice to handle these issues, and propose a federated meta-learning framework FedMeta, where a parameterized algorithm (or meta-learner) is shared, instead of a global model in previous approaches. We conduct an extensive empirical evaluation on LEAF datasets and a real-world production dataset, and demonstrate that FedMeta achieves a reduction in required communication cost by 2.82-4.33 times with faster convergence, and an increase in accuracy by 3.23%-14.84% as compared to Federated Averaging (FedAvg) which is a leading optimization algorithm in federated learning. Moreover, FedMeta preserves user privacy since only the parameterized algorithm is transmitted between mobile devices and central servers, and no raw da...
    Earlier methods for Neural Architecture Search were computationally expensive. Recently proposed Differentiable Neural Architecture Search algorithms such as DARTS can effectively speed up the computation. However, the current formulation... more
    Earlier methods for Neural Architecture Search were computationally expensive. Recently proposed Differentiable Neural Architecture Search algorithms such as DARTS can effectively speed up the computation. However, the current formulation relies on a relaxation of the original problem that leads to unstable and suboptimal solutions. We argue that these problems are caused by three fundamental reasons: (1) The difficulty of bi-level optimization; (2) Multicollinearity of correlated operations such as max pooling and average pooling; (3) The discrepancy between the optimization complexity of the search stage and the final training. In this paper, we propose a grouped variable pruning algorithm based on one-level optimization, which leads to a more stable and consistent optimization solution for differentiable NAS. Extensive experiments verify the superiority of the proposed method regarding both accuracy and stability. Our new approach obtains state-of-the-art accuracy on CIFAR-10, CI...
    Learning under multi-environments often requires the ability of out-of-distribution generalization for the worst-environment performance guarantee. Some novel algorithms, e.g. Invariant Risk Minimization and Risk Extrapolation, build... more
    Learning under multi-environments often requires the ability of out-of-distribution generalization for the worst-environment performance guarantee. Some novel algorithms, e.g. Invariant Risk Minimization and Risk Extrapolation, build stable models by extracting invariant (causal) feature. However, it remains unclear how these methods learn to remove the environmental features. In this paper, we focus on the Risk Extrapolation (REx) and make attempts to fill this gap. We first propose a framework, Quasi-Distributional Robustness, to unify the Empirical Risk Minimization (ERM), the Robust Optimization (RO) and the Risk Extrapolation. Then, under this framework, we show that, comparing to ERM and RO, REx has a much larger robust region. Furthermore, based on our analysis, we propose a novel regularization method, Risk Variance Penalization (RVP), which is derived from REx. The proposed method is easy to implement, and has proper degree of penalization, and enjoys an interpretable tunin...
    Deep learning has achieved tremendous success with independent and identically distributed (i.i.d.) data. However, the performance of neural networks often degenerates drastically when encountering out-of-distribution (OoD) data, i.e.,... more
    Deep learning has achieved tremendous success with independent and identically distributed (i.i.d.) data. However, the performance of neural networks often degenerates drastically when encountering out-of-distribution (OoD) data, i.e., training and test data are sampled from different distributions. While a plethora of algorithms has been proposed to deal with OoD generalization, our understanding of the data used to train and evaluate these algorithms remains stagnant. First, we identify and measure two distinct kinds of distribution shifts that are ubiquitous in various datasets. Next, through extensive experiments, we compare OoD generalization algorithms across two groups of benchmarks, each dominated by one of the mentioned distribution shifts, revealing their strengths on one distribution shift as well as limitations on the other distribution shift. Overall, we position existing datasets and algorithms from different research areas seemingly unconnected into the same coherent ...
    The mismatch between training and target data is one major challenge for current machine learning systems. When training data is collected from multiple domains and the target domains include all training domains and other new domains, we... more
    The mismatch between training and target data is one major challenge for current machine learning systems. When training data is collected from multiple domains and the target domains include all training domains and other new domains, we are facing an Out-of-Distribution (OOD) generalization problem that aims to find a model with the best OOD accuracy. One of the definitions of OOD accuracy is worst-domain accuracy. In general, the set of target domains is unknown, and the worst over target domains may be unseen when the number of observed domains is limited. In this paper, we show that the worst accuracy over the observed domains may dramatically fail to identify the OOD accuracy. To this end, we introduce Influence Function, a classical tool from robust statistics, into the OOD generalization problem and suggest the variance of influence function to monitor the stability of a model on training domains. We show that the accuracy on test domains and the proposed index together can ...
    Recommender systems have been widely studied from the machine learning perspective, where it is crucial to share information among users while preserving user privacy. In this work, we present a federated meta-learning framework for... more
    Recommender systems have been widely studied from the machine learning perspective, where it is crucial to share information among users while preserving user privacy. In this work, we present a federated meta-learning framework for recommendation in which user information is shared at the level of algorithm, instead of model or data adopted in previous approaches. In this framework, user-specific recommendation models are locally trained by a shared parameterized algorithm, which preserves user privacy and at the same time utilizes information from other users to help model training. Interestingly, the model thus trained exhibits a high capacity at a small scale, which is energy- and communication-efficient. Experimental results show that recommendation models trained by meta-learning algorithms in the proposed framework outperform the state-of-the-art in accuracy and scale. For example, on a production dataset, a shared model under Google Federated Learning (McMahan et al., 2017) ...
    The dominant object detection approaches treat each dataset separately and fit towards a specific domain, which cannot adapt to other domains without extensive retraining. In this paper, we address the problem of designing a universal... more
    The dominant object detection approaches treat each dataset separately and fit towards a specific domain, which cannot adapt to other domains without extensive retraining. In this paper, we address the problem of designing a universal object detection model that exploits diverse category granularity from multiple domains and predict all kinds of categories in one system. Existing works treat this problem by integrating multiple detection branches upon one shared backbone network. However, this paradigm overlooks the crucial semantic correlations between multiple domains, such as categories hierarchy, visual similarity, and linguistic relationship. To address these drawbacks, we present a novel universal object detector called Universal-RCNN that incorporates graph transfer learning for propagating relevant semantic information across multiple datasets to reach semantic coherency. Specifically, we first generate a global semantic pool by integrating all high-level semantic representa...
    Kernel learning is a powerful framework for nonlinear data modeling. Using the kernel trick, a number of problems have been formulated as semidefinite programs (SDPs). These include Maximum Variance Unfolding (MVU) (Weinberger et al.,... more
    Kernel learning is a powerful framework for nonlinear data modeling. Using the kernel trick, a number of problems have been formulated as semidefinite programs (SDPs). These include Maximum Variance Unfolding (MVU) (Weinberger et al., 2004) in nonlinear dimensionality reduction, and Pairwise Constraint Propagation (PCP) (Li et al., 2008) in constrained clustering. Although in theory SDPs can be efficiently solved, the high computational complexity incurred in numerically processing the huge linear matrix inequality constraints has rendered the SDP approach unscalable. In this paper, we show that a large class of kernel learning problems can be reformulated as semidefinite-quadratic-linear programs (SQLPs), which only contain a simple positive semidefinite constraint, a second-order cone constraint and a number of linear constraints. These constraints are much easier to process numerically, and the gain in speedup over previous approaches is at least of the order m2:5, where m is the...
    Research Interests: