Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a005266 -id:a005266
Displaying 1-10 of 43 results found. page 1 2 3 4 5
     Sort: relevance | references | number | modified | created      Format: long | short | data
A000058 Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(0) = 2.
(Formerly M0865 N0331)
+10
107
2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, 12864938683278671740537145998360961546653259485195807 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Also called Euclid numbers, because a(n) = a(0)*a(1)*...*a(n-1) + 1. - Jonathan Sondow, Jan 26 2014
Another version of this sequence is given by A129871, which starts with 1, 2, 3, 7, 43, 1807, ... .
The greedy Egyptian representation of 1 is 1 = 1/2 + 1/3 + 1/7 + 1/43 + 1/1807 + ... .
Take a square. Divide it into 2 equal rectangles by drawing a horizontal line. Divide the upper rectangle into 2 squares. Now you can divide the lower one into another 2 squares, but instead of doing so draw a horizontal line below the first one so you obtain a (2+1 = 3) X 1 rectangle which can be divided in 3 squares. Now you have a 6 X 1 rectangle at the bottom. Instead of dividing it into 6 squares, draw another horizontal line so you obtain a (6+1 = 7) X 1 rectangle and a 42 X 1 rectangle left, etc. - Néstor Romeral Andrés, Oct 29 2001
More generally one may define f(1) = x_1, f(2) = x_2, ..., f(k) = x_k, f(n) = f(1)*...*f(n-1)+1 for n > k and natural numbers x_i (i = 1, ..., k) which satisfy gcd(x_i, x_j) = 1 for i <> j. By definition of the sequence we have that for each pair of numbers x, y from the sequence gcd(x, y) = 1. An interesting property of a(n) is that for n >= 2, 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) = (a(n)-2)/(a(n)-1). Thus we can also write a(n) = (1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) - 2 )/( 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) - 1). - Frederick Magata (frederick.magata(AT)uni-muenster.de), May 10 2001; [corrected by Michel Marcus, Mar 27 2019]
A greedy sequence: a(n+1) is the smallest integer > a(n) such that 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n+1) doesn't exceed 1. The sequence gives infinitely many ways of writing 1 as the sum of Egyptian fractions: Cut the sequence anywhere and decrement the last element. 1 = 1/2 + 1/3 + 1/6 = 1/2 + 1/3 + 1/7 + 1/42 = 1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = ... . - Ulrich Schimke, Nov 17 2002; [corrected by Michel Marcus, Mar 27 2019]
Consider the mapping f(a/b) = (a^3 + b)/(a + b^3). Starting with a = 1, b = 2 and carrying out this mapping repeatedly on each new (reduced) rational number gives 1/2, 1/3, 4/28 = 1/7, 8/344 = 1/43, ..., i.e., 1/2, 1/3, 1/7, 1/43, 1/1807, ... . Sequence contains the denominators. Also the sum of the series converges to 1. - Amarnath Murthy, Mar 22 2003
a(1) = 2, then the smallest number == 1 (mod all previous terms). a(2n+6) == 443 (mod 1000) and a(2n+7) == 807 (mod 1000). - Amarnath Murthy, Sep 24 2003
An infinite coprime sequence defined by recursion.
Apart from the initial 2, a subsequence of A002061. It follows that no term is a square.
It appears that a(k)^2 + 1 divides a(k+1)^2 + 1. - David W. Wilson, May 30 2004. This is true since a(k+1)^2 + 1 = (a(k)^2 - a(k) + 1)^2 +1 = (a(k)^2-2*a(k)+2)*(a(k)^2 + 1) (a(k+1)=a(k)^2-a(k)+1 by definition). - Pab Ter (pabrlos(AT)yahoo.com), May 31 2004
In general, for any m > 0 coprime to a(0), the sequence a(n+1) = a(n)^2 - m*a(n) + m is infinite coprime (Mohanty). This sequence has (m,a(0))=(1,2); (2,3) is A000215; (1,4) is A082732; (3,4) is A000289; (4,5) is A000324.
Any prime factor of a(n) has -3 as its quadratic residue (Granville, exercise 1.2.3c in Pollack).
Note that values need not be prime, the first composites being 1807 = 13 * 139 and 10650056950807 = 547 * 19569939581. - Jonathan Vos Post, Aug 03 2008
If one takes any subset of the sequence comprising the reciprocals of the first n terms, with the condition that the first term is negated, then this subset has the property that the sum of its elements equals the product of its elements. Thus -1/2 = -1/2, -1/2 + 1/3 = -1/2 * 1/3, -1/2 + 1/3 + 1/7 = -1/2 * 1/3 * 1/7, -1/2 + 1/3 + 1/7 + 1/43 = -1/2 * 1/3 * 1/7 * 1/43, and so on. - Nick McClendon, May 14 2009
(a(n) + a(n+1)) divides a(n)*a(n+1)-1 because a(n)*a(n+1) - 1 = a(n)*(a(n)^2 - a(n) + 1) - 1 = a(n)^3 - a(n)^2 + a(n) - 1 = (a(n)^2 + 1)*(a(n) - 1) = (a(n) + a(n)^2 - a(n) + 1)*(a(n) - 1) = (a(n) + a(n+1))*(a(n) - 1). - Mohamed Bouhamida, Aug 29 2009
This sequence is also related to the short side (or hypotenuse) of adjacent right triangles, (3, 4, 5), (5, 12, 13), (13, 84, 85), ... by A053630(n) = 2*a(n) - 1. - Yuksel Yildirim, Jan 01 2013, edited by M. F. Hasler, May 19 2017
For n >= 4, a(n) mod 3000 alternates between 1807 and 2443. - Robert Israel, Jan 18 2015
The set of prime factors of a(n)'s is thin in the set of primes. Indeed, Odoni showed that the number of primes below x dividing some a(n) is O(x/(log x log log log x)). - Tomohiro Yamada, Jun 25 2018
Sylvester numbers when reduced modulo 864 form the 24-term arithmetic progression 7, 43, 79, 115, 151, 187, 223, 259, 295, 331, ..., 763, 799, 835 which repeats itself until infinity. This was first noticed in March 2018 and follows from the work of Sondow and MacMillan (2017) regarding primary pseudoperfect numbers which similarly form an arithmetic progression when reduced modulo 288. Giuga numbers also form a sequence resembling an arithmetic progression when reduced modulo 288. - Mehran Derakhshandeh, Apr 26 2019
Named after the English mathematician James Joseph Sylvester (1814-1897). - Amiram Eldar, Mar 09 2024
REFERENCES
Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.7.
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994.
Richard K. Guy and Richard Nowakowski, Discovering primes with Euclid. Delta, Vol. 5 (1975), pp. 49-63.
Amarnath Murthy, Smarandache Reciprocal partition of unity sets and sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David Adjiashvili, Sandro Bosio and Robert Weismantel, Dynamic Combinatorial Optimization: a complexity and approximability study, 2012.
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437, alternative link.
Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.
Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.
Gennady Bachman and Troy Kessler, On divisibility properties of certain multinomial coefficients—II, Journal of Number Theory, Volume 106, Issue 1, May 2004, Pages 1-12.
Andreas Bäuerle, Sharp volume and multiplicity bounds for Fano simplices, arXiv:2308.12719 [math.CO], 2023.
Eunice Y. S. Chan and Robert M. Corless, Minimal Height Companion Matrices for Euclid Polynomials, Mathematics in Computer Science, Vol. 13, No. 1-2 (2019), pp. 41-56, arXiv preprint, arXiv:1712.04405 [math.NA], 2017.
Matthew Brendan Crawford, On the Number of Representations of One as the Sum of Unit Fractions, Master's Thesis, Virginia Polytechnic Institute and State University (2019).
D. R. Curtiss, On Kellogg's Diophantine problem, Amer. Math. Monthly, Vol. 29, No. 10 (1922), pp. 380-387.
Paul Erdős and E. G. Straus, On the Irrationality of Certain Ahmes Series, J. Indian Math. Soc. (N.S.), 27(1964), pp. 129-133.
Solomon W. Golomb, On the sum of the reciprocals of the Fermat numbers and related irrationalities, Canad. J. Math., 15 (1963), 475-478.
Solomon W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly 70 (1963), 403-405.
Richard K. Guy and Richard Nowakowski, Discovering primes with Euclid, Research Paper No. 260 (Nov 1974), The University of Calgary Department of Mathematics, Statistics and Computing Science.
János Kollár, Which powers of holomorphic functions are integrable?, arXiv:0805.0756 [math.AG], 2008.
E. Lemoine, Sur la décomposition d'un nombre en ses carrés maxima, Assoc. Française pour L'Avancement des Sciences (1896), 73-77.
Nick Lord, A uniform construction of some infinite coprime sequences, The Mathematical Gazette, vol. 92, no. 523, March 2008, pp.66-70.
Melvyn B. Nathanson, Underapproximation by Egyptian fractions, arXiv:2202.00191 [math.NT], 2022.
Benjamin Nill, Volume and lattice points of reflexive simplices, Discrete & Computational Geometry, Vol. 37, No. 2 (2007), pp. 301-320, arXiv preprint, arXiv:math/0412480 [math.AG], 2004-2007.
R. W. K. Odoni, On the prime divisors of the sequence w_{n+1}=1+w_1 ... w_n, J. London Math. Soc. 32 (1985), 1-11.
Simon Plouffe, A set of formulas for primes, arXiv:1901.01849 [math.NT], 2019.
Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 5. [?Broken link]
Filip Saidak, A New Proof of Euclid's Theorem, Amer. Math. Monthly, Vol. 113, No. 10 (Dec., 2006), pp. 937-938.
Jonathan Sondow and Kieren MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdős-Moser equation, Amer. Math. Monthly, Vol. 124, No. 3 (2017), pp. 232-240, arXiv preprint, arXiv:math/1812.06566 [math.NT], 2018.
J. J. Sylvester, On a Point in the Theory of Vulgar Fractions, Amer. J. Math., Vol. 3, No. 4 (1880), pp. 332-335.
Burt Totaro, The ACC conjecture for log canonical thresholds, Séminaire Bourbaki no. 1025 (juin 2010).
Burt Totaro and Chengxi Wang, Varieties of general type with small volume, arXiv:2104.12200 [math.AG], 2021.
Akiyoshi Tsuchiya, The delta-vectors of reflexive polytopes and of the dual polytopes, Discrete Mathematics, Vol. 339, No. 10 (2016), pp. 2450-2456, arXiv preprint, arXiv:1411.2122 [math.CO], 2014-2016.
Stephan Wagner and Volker Ziegler, Irrationality of growth constants associated with polynomial recursions, arXiv:2004.09353 [math.NT], 2020.
Eric Weisstein's World of Mathematics, Quadratic Recurrence Equation.
Eric Weisstein's World of Mathematics, Sylvester's Sequence.
Bowen Yao, A note on fraction decompositions of integers, The American Mathematical Monthly, 127(10), 928-932, Dec 2020.
FORMULA
a(n) = 1 + a(0)*a(1)*...*a(n-1).
a(n) = a(n-1)*(a(n-1)-1) + 1; Sum_{i>=0} 1/a(i) = 1. - Néstor Romeral Andrés, Oct 29 2001
Vardi showed that a(n) = floor(c^(2^(n+1)) + 1/2) where c = A076393 = 1.2640847353053011130795995... - Benoit Cloitre, Nov 06 2002 (But see the Aho-Sloane paper!)
a(n) = A007018(n+1)+1 = A007018(n+1)/A007018(n) [A007018 is a(n) = a(n-1)^2 + a(n-1), a(0)=1]. - Gerald McGarvey, Oct 11 2004
a(n) = sqrt(A174864(n+1)/A174864(n)). - Giovanni Teofilatto, Apr 02 2010
a(n) = A014117(n+1)+1 for n = 0,1,2,3,4; a(n) = A054377(n)+1 for n = 1,2,3,4. - Jonathan Sondow, Dec 07 2013
a(n) = f(1/(1-(1/a(0) + 1/a(1) + ... + 1/a(n-1)))) where f(x) is the smallest integer > x (see greedy algorithm above). - Robert FERREOL, Feb 22 2019
From Amiram Eldar, Oct 29 2020: (Start)
Sum_{n>=0} (-1)^n/(a(n)-1) = A118227.
Sum_{n>=0} (-1)^n/a(n) = 2 * A118227 - 1. (End)
EXAMPLE
a(0)=2, a(1) = 2+1 = 3, a(2) = 2*3 + 1 = 7, a(3) = 2*3*7 + 1 = 43.
MAPLE
A[0]:= 2:
for n from 1 to 12 do
A[n]:= A[n-1]^2 - A[n-1]+1
od:
seq(A[i], i=0..12); # Robert Israel, Jan 18 2015
MATHEMATICA
a[0] = 2; a[n_] := a[n - 1]^2 - a[n - 1] + 1; Table[ a[ n ], {n, 0, 9} ]
NestList[#^2-#+1&, 2, 10] (* Harvey P. Dale, May 05 2013 *)
RecurrenceTable[{a[n + 1] == a[n]^2 - a[n] + 1, a[0] == 2}, a, {n, 0, 10}] (* Emanuele Munarini, Mar 30 2017 *)
PROG
(PARI) a(n)=if(n<1, 2*(n>=0), 1+a(n-1)*(a(n-1)-1))
(PARI) A000058(n, p=2)={for(k=1, n, p=(p-1)*p+1); p} \\ give Mod(2, m) as 2nd arg to calculate a(n) mod m. - M. F. Hasler, Apr 25 2014
(PARI) a=vector(20); a[1]=3; for(n=2, #a, a[n]=a[n-1]^2-a[n-1]+1); concat(2, a) \\ Altug Alkan, Apr 04 2018
(Haskell)
a000058 0 = 2
a000058 n = a000058 m ^ 2 - a000058 m + 1 where m = n - 1
-- James Spahlinger, Oct 09 2012
(Haskell)
a000058_list = iterate a002061 2 -- Reinhard Zumkeller, Dec 18 2013
(Python)
A000058 = [2]
for n in range(1, 10):
A000058.append(A000058[n-1]*(A000058[n-1]-1)+1)
# Chai Wah Wu, Aug 20 2014
(Maxima) a(n) := if n = 0 then 2 else a(n-1)^2-a(n-1)+1 $
makelist(a(n), n, 0, 8); # Emanuele Munarini, Mar 23 2017
(Julia)
a(n) = n == 0 ? BigInt(2) : a(n - 1)*(a(n - 1) - 1) + 1
[a(n) for n in 0:8] |> println # Peter Luschny, Dec 15 2020
CROSSREFS
Cf. A005267, A000945, A000946, A005265, A005266, A075442, A007018, A014117, A054377, A002061, A118227, A126263, A007996 (primes dividing some term), A323605 (smallest prime divisors), A129871 (a variant starting with 1).
KEYWORD
nonn,nice,core
AUTHOR
STATUS
approved
A000945 Euclid-Mullin sequence: a(1) = 2, a(n+1) is smallest prime factor of 1 + Product_{k=1..n} a(k).
(Formerly M0863 N0329)
+10
101
2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, 23003, 30693651606209, 37, 1741, 1313797957, 887, 71, 7127, 109, 23, 97, 159227, 643679794963466223081509857, 103, 1079990819, 9539, 3143065813, 29, 3847, 89, 19, 577, 223, 139703, 457, 9649, 61, 4357 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
"Does the sequence ... contain every prime? ... [It] was considered by Guy and Nowakowski and later by Shanks, [Wagstaff 1993] computed the sequence through the 43rd term. The computational problem inherent in continuing the sequence further is the enormous size of the numbers that must be factored. Already the number a(1)* ... *a(43) + 1 has 180 digits." - Crandall and Pomerance
If this variant of Euclid-Mullin sequence is initiated either with 3, 7 or 43 instead of 2, then from a(5) onwards it is unchanged. See also A051614. - Labos Elemer, May 03 2004
Wilfrid Keller informed me that a(1)* ... *a(43) + 1 was factored as the product of two primes on Mar 09 2010 by the GNFS method. See the post in the Mersenne Forum for more details. The smaller 68-digit prime is a(44). Terms a(45)-a(47) were easy to find. Finding a(48) will require the factorization of a 256-digit number. See the b-file for the four new terms. - T. D. Noe, Oct 15 2010
On Sep 11 2012, Ryan Propper factored the 256-digit number by finding a 75-digit factor by using ECM. Finding a(52) will require the factorization of a 335-digit number. See the b-file for the terms a(48) to a(51). - V. Raman, Sep 17 2012
Needs longer b-file. - N. J. A. Sloane, Dec 18 2015
A056756 gives the position of the k-th prime in this sequence for each k. - Jianing Song, May 07 2021
Named after the Greek mathematician Euclid (flourished c. 300 B.C.) and the American engineer and mathematician Albert Alkins Mullin (1933-2017). - Amiram Eldar, Jun 11 2021
REFERENCES
Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 6.
Richard Guy and Richard Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Samuel S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, Vol. 8 (1993), pp. 23-32.
LINKS
Ryan Propper, Table of n, a(n) for n = 1..51 (first 47 terms from T. D. Noe)
Andrew R. Booker, On Mullin's second sequence of primes, Integers, Vol. 12, No. 6 (2012), pp. 1167-1177; arXiv preprint, arXiv:1107.3318 [math.NT], 2011-2013.
Andrew R. Booker, A variant of the Euclid-Mullin sequence containing every prime, arXiv preprint arXiv:1605.08929 [math.NT], 2016.
Andrew R. Booker and Sean A. Irvine, The Euclid-Mullin graph, Journal of Number Theory, Vol. 165 (2016), pp. 30-57; arXiv preprint, arXiv:1508.03039 [math.NT], 2015-2016.
Cristian Cobeli and Alexandru Zaharescu, Promenade around Pascal Triangle-Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Vol. 56(104), No. 1 (2013), pp. 73-98.
Keith Conrad, The infinitude of the primes, University of Connecticut, 2020.
C. D. Cox and A. J. van der Poorten, On a sequence of prime numbers, Journal of the Australian Mathematical Society, Vol. 8 (1968), pp. 571-574.
FactorDB, Status of EM51.
Richard Guy and Richard Nowakowski, Discovering primes with Euclid, Research Paper No. 260 (Nov 1974), The University of Calgary Department of Mathematics, Statistics and Computing Science.
Lucas Hoogendijk, Prime Generators, Bachelor Thesis, Utrecht University (Netherlands, 2020).
Robert R. Korfhage, On a sequence of prime numbers, Bull Amer. Math. Soc., Vol. 70 (1964), pp. 341, 342, 747. [Annotated scanned copy]
Evelyn Lamb, A Curious Sequence of Prime Numbers, Scientific American blog (2019).
Des MacHale, Infinitely many proofs that there are infinitely many primes, Math. Gazette, Vol. 97, No. 540 (2013), pp. 495-498.
Mersenne Forum, Factoring EM47.
Albert A. Mullin, Research Problem 8: Recursive function theory, Bull. Amer. Math. Soc., Vol. 69, No. 6 (1963), p. 737.
Thorkil Naur, Letter to N. J. A. Sloane, Aug 27 1991, together with copies of "Mullin's sequence of primes is not monotonic" (1984) and "New integer factorizations" (1983) [Annotated scanned copies]
Paul Pollack and Enrique Treviño, The Primes that Euclid Forgot, Amer. Math. Monthly, Vol. 121, No. 5 (2014), pp. 433-437. MR3193727; alternative link.
Daphne Stouthart, Euclid and the infinite number of missing primes, Bachelor Thesis, Utrecht Univ (Netherlands, 2024). See p. 1.
Samuel S. Wagstaff, Jr., Emails to N. J. A. Sloane, May 30 1991.
Samuel S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, Vol. 8 (1993), pp. 23-32. (Annotated scanned copy)
EXAMPLE
a(5) is equal to 13 because 2*3*7*43 + 1 = 1807 = 13 * 139.
MAPLE
a :=n-> if n = 1 then 2 else numtheory:-divisors(mul(a(i), i = 1 .. n-1)+1)[2] fi: seq(a(n), n=1..15);
# Robert FERREOL, Sep 25 2019
MATHEMATICA
f[1]=2; f[n_] := f[n] = FactorInteger[Product[f[i], {i, 1, n - 1}] + 1][[1, 1]]; Table[f[n], {n, 1, 46}]
PROG
(PARI) print1(k=2); for(n=2, 20, print1(", ", p=factor(k+1)[1, 1]); k*=p) \\ Charles R Greathouse IV, Jun 10 2011
(PARI) P=[]; until(, print(P=concat(P, factor(vecprod(P)+1)[1, 1]))) \\ Jeppe Stig Nielsen, Apr 01 2024
CROSSREFS
KEYWORD
nonn,nice,hard,changed
AUTHOR
STATUS
approved
A000946 Euclid-Mullin sequence: a(1) = 2, a(n+1) is the largest prime factor of 1 + Product_{k=1..n} a(k).
(Formerly M0864 N0330)
+10
53
2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129, 1368845206580129, 889340324577880670089824574922371, 20766142440959799312827873190033784610984957267051218394040721 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Cox and van der Poorten show that 5, 11, 13, 17, ... (A216227) are not members of this sequence. - Charles R Greathouse IV, Jul 02 2007
Booker's abstract claims: "We consider the second of Mullin's sequences of prime numbers related to Euclid's proof that there are infinitely many primes. We show in particular that it omits infinitely many primes, confirming a conjecture of Cox and van der Poorten."
REFERENCES
R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew R. Booker, On Mullin's second sequence of primes, Integers, 12A (2012), article A4.
A. R. Booker, S. A. Irvine, The Euclid-Mullin graph, arXiv preprint arXiv:1508.03039 [math.NT], 2015.
C. Cobeli and A. Zaharescu, Promenade around Pascal Triangle-Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104) No. 1, 2013, pp. 73-98.
C. D. Cox and A. J. van der Poorten, On a sequence of prime numbers, Journal of the Australian Mathematical Society 8 (1968), pp. 571-574.
R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Research Paper No. 260 (Nov 1974), The University of Calgary Department of Mathematics, Statistics and Computing Science.
R. R. Khorfhage, On a sequence of prime numbers, Bull Amer. Math. Soc., 70 (1964), pp. 341, 342, 747. [Annotated scanned copy]
Des MacHale, Infinitely many proofs that there are infinitely many primes, Math. Gazette, 97 (No. 540, 2013), 495-498.
R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - From N. J. A. Sloane, Jun 13 2012
A. A. Mullin, Research Problem 8: Recursive function theory, Bull. Amer. Math. Soc., 69 (1963), 737.
Thorkil Naur, Mullin's sequence of primes is not monotonic, Proc. Amer. Math. Soc., 90 (1984), 43-44.
Thorkil Naur, Letter to N. J. A. Sloane, Aug 27 1991, together with copies of "Mullin's sequence of primes is not monotonic" (1984) and "New integer factorizations" (1983) [Annotated scanned copies]
Paul Pollack and Enrique Treviño, The primes that Euclid forgot, 2013. - From N. J. A. Sloane, Feb 20 2013
Paul Pollack and Enrique Treviño, The Primes that Euclid Forgot, Amer. Math. Monthly 121 (2014), no. 5, 433-437. MR3193727
Daphne Stouthart, Euclid and the infinite number of missing primes, Bachelor Thesis, Utrecht Univ (Netherlands, 2024). See p. 1.
S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32.
S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32. (Annotated scanned copy)
MATHEMATICA
f[1] = 2; f[n_] := f[n] = FactorInteger[Product[f[i], {i, 1, n - 1}] + 1][[-1, 1]]; Table[f[n], {n, 1, 10}] (* Alonso del Arte, Jun 25 2011 based on the program given for A000945 *)
PROG
(PARI) gpf(n)=my(f=factor(n)[, 1]); f[#f];
first(m)=my(v=vector(m)); v[1]=2; for(i=2, m, v[i]=gpf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Aug 14 2015
CROSSREFS
KEYWORD
nonn,nice,changed
AUTHOR
EXTENSIONS
Extended by Andrew R. Booker, Mar 13 2013
STATUS
approved
A005265 a(1)=3, b(n) = Product_{k=1..n} a(k), a(n+1) is the smallest prime factor of b(n)-1.
(Formerly M2246)
+10
47
3, 2, 5, 29, 11, 7, 13, 37, 32222189, 131, 136013303998782209, 31, 197, 19, 157, 17, 8609, 1831129, 35977, 508326079288931, 487, 10253, 1390043, 18122659735201507243, 25319167, 9512386441, 85577, 1031, 3650460767, 107, 41, 811, 15787, 89, 68168743, 4583, 239, 1283, 443, 902404933, 64775657, 2753, 23, 149287, 149749, 7895159, 79, 43, 1409, 184274081, 47, 569, 63843643 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Suggested by Euclid's proof that there are infinitely many primes.
REFERENCES
R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32.
LINKS
R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Research Paper No. 260 (Nov 1974), The University of Calgary Department of Mathematics, Statistics and Computing Science.
Des MacHale, Infinitely many proofs that there are infinitely many primes, Math. Gazette, 97 (No. 540, 2013), 495-498.
S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32. (Annotated scanned copy)
MAPLE
a :=n-> if n = 1 then 3 else numtheory:-divisors(mul(a(i), i = 1 .. n-1)-1)[2] fi:seq(a(n), n=1..15);
# Robert FERREOL, Sep 25 2019
PROG
(PARI) lpf(n)=factor(n)[1, 1] \\ better code exists, usually best to code in C and import
print1(A=3); for(n=2, 99, a=lpf(A); print1(", "a); A*=a) \\ Charles R Greathouse IV, Apr 07 2020
CROSSREFS
Essentially the same as A084598.
KEYWORD
nonn,nice,hard
AUTHOR
STATUS
approved
A051308 Euclid-Mullin sequence (A000945) with initial value a(1)=5 instead of a(1)=2. +10
39
5, 2, 11, 3, 331, 19, 199, 53, 21888927391, 29833, 101, 71, 23, 311, 7, 72353, 13, 227, 96014559769, 5641, 41, 82107739003, 67, 169637539, 61, 29, 31319, 17, 97, 238591921, 313, 102065429, 157, 37, 595553520313, 244217, 241, 4773229353714971081083834237, 103 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The initial primes 3 and 7 give essentially A000945.
LINKS
EXAMPLE
5*2*11*3 + 1 = 331, which is prime; the least prime factor of 330*331 + 1 = 109231 = 19*5749 is 19, so a(6) = 19.
MATHEMATICA
a[1]=5; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
PROG
(PARI) spf(n)=my(f=factor(n)[1, 1]); f;
first(m)=my(v=vector(m)); v[1]=5; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Aug 15 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(38)-a(39) from Robert Price, Jul 19 2015
STATUS
approved
A051335 Euclid-Mullin sequence (A000945) with initial value a(1)=127 instead of a(1)=2. +10
33
127, 2, 3, 7, 5, 149, 19, 41, 23899, 139, 43, 761, 281, 17, 53, 2551, 23, 20149, 100720363856036298033578901613089271, 31, 179, 11, 13, 523, 282995646721, 2871347, 83, 10744429, 1031, 427773048135533, 97, 78506876242349, 67 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
MATHEMATICA
a[1]=127; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
PROG
(PARI) spf(n)=my(f=factor(n)[1, 1]); f;
first(m)={my(v=vector(m)); v[1]=127; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; } /* Anders Hellström, Aug 18 2015 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved
A057204 Primes congruent to 1 mod 6 generated recursively. Initial prime is 7. The next term is p(n) = Min_{p is prime; p divides 4Q^2+3; p mod 6 = 1}, where Q is the product of previous entries of the sequence. +10
28
7, 199, 7761799, 487, 67, 103, 3562539697, 7251847, 13, 127, 5115369871402405003, 31, 697830431171707, 151, 3061, 229, 193, 5393552285540920774057256555028583857599359699, 709, 397, 37, 61, 46168741, 3127279, 181, 122268541 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
4*Q^2 + 3 always has a prime divisor congruent to 1 modulo 6.
If we start with the empty product Q=1 then it is not necessary to specify the initial prime. - Jens Kruse Andersen, Jun 30 2014
REFERENCES
P. G. L. Dirichlet (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
LINKS
EXAMPLE
a(4)=487 is the smallest prime divisor of 4*Q*Q + 3 = 10812186007, congruent to 1 (mod 6), where Q = 7*199*7761799.
MATHEMATICA
a={7}; q=1;
For[n=2, n<=7, n++,
q=q*Last[a];
AppendTo[a, Min[Select[FactorInteger[4*q^2+3][[All, 1]], Mod[#, 6]==1 &]]];
];
a (* Robert Price, Jul 16 2015 *)
PROG
(PARI) Q=1; for(n=1, 11, f=factor(4*Q^2+3); for(i=1, #f~, p=f[i, 1]; if(p%6==1, break)); print1(p", "); Q*=p) \\ Jens Kruse Andersen, Jun 30 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 09 2000
EXTENSIONS
More terms from Nick Hobson, Nov 14 2006
More terms from Sean A. Irvine, Oct 23 2014
STATUS
approved
A057208 Primes of the form 8k+5 generated recursively: a(1)=5, a(n) = least prime p == 5 (mod 8) with p | 4+Q^2, where Q is the product of all previous terms in the sequence. +10
25
5, 29, 1237, 32171803229, 829, 405565189, 14717, 39405395843265000967254638989319923697097319108505264560061, 282860648026692294583447078797184988636062145943222437, 53, 421, 13, 109, 4133, 6476791289161646286812333, 461, 34549, 453690033695798389561735541 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
LINKS
EXAMPLE
a(3) = 1237 = 8*154 + 5 is the smallest suitable prime divisor of (5*29)*5*29 + 4 = 21029 = 17*1237. (Although 17 is the smallest prime divisor, 17 is not congruent to 5 modulo 8.)
MATHEMATICA
a={5}; q=1;
For[n=2, n<=7, n++,
q=q*Last[a];
AppendTo[a, Min[Select[FactorInteger[4+q^2][[All, 1]], Mod[#, 8]==5 &]]];
];
a (* Robert Price, Jul 16 2015 *)
PROG
(PARI) lista(nn) = {v = vector(nn); v[1] = 5; print1(v[1], ", "); for (n=2, nn, f = factor(4 + prod(k=1, n-1, v[k])^2); for (k=1, #f~, if (f[k, 1] % 8 == 5, v[n] = f[k, 1]; break); ); print1(v[n], ", "); ); } \\ Michel Marcus, Oct 27 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 09 2000
EXTENSIONS
More terms from Sean A. Irvine, Oct 26 2014
STATUS
approved
A051334 Euclid-Mullin sequence (A000945) with initial value a(1)=8191 instead of a(1)=2. +10
12
8191, 2, 3, 7, 53, 1399, 5, 19, 646843, 26945441, 109, 443, 90670999, 280460690293140589, 907, 16293787, 3655513, 499483, 131, 21067, 143797, 54540542259000816707816058313971443, 392963, 977, 11, 5021, 179, 439, 353, 34417238589462247, 1193114397863177, 13, 59, 31643, 79399, 73, 43, 16639867 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
MATHEMATICA
a[1]=8191; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
PROG
(PARI) spf(n)=my(f=factor(n)[1, 1]); f;
first(m)={my(v=vector(m)); v[1]=8191; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; } /* Anders Hellström, Aug 18 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Sep 20 2012
a(30)-a(38) from Charles R Greathouse IV, Sep 21 2012
STATUS
approved
A051309 Euclid-Mullin sequence (A000945) with initial value a(1)=11 instead of a(1)=2. +10
5
11, 2, 23, 3, 7, 10627, 433, 17, 13, 10805892983887, 73, 6397, 19, 489407, 2753, 87491, 18618443, 5, 31, 113, 41, 10723, 35101153, 25243, 374399, 966011, 293821591198219762366057, 234947, 4729, 27953, 3256171, 331, 613, 67, 272646324430637, 34281113, 21050393332691947013, 61, 97 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
A. R. Booker and S. A. Irvine, The Euclid-Mullin graph, arXiv preprint arXiv:1508.03039 [math.NT], 2015-2016.
MATHEMATICA
a[1]=11; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
PROG
(PARI) lpf(n)=factor(n)[1, 1]
first(m)=my(v=vector(m)); v[1]=11; for(i=2, m, v[i]=lpf(1+prod(j=1, i-1, v[j]))); v;
\\ Anders Hellström, Aug 22 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected and extended by Sean A. Irvine, Apr 13 2008
STATUS
approved
page 1 2 3 4 5

Search completed in 0.025 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 27 19:37 EDT 2024. Contains 375471 sequences. (Running on oeis4.)