Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
An early and accurate detection of different subtypes of tumors is crucial for an effective guidance to personalized therapy and in predicting the ability of tumor to metastasize. Here we exploit the Surface Enhanced Raman Scattering... more
An early and accurate detection of different subtypes of tumors is crucial for an effective guidance to personalized therapy and in predicting the ability of tumor to metastasize. Here we exploit the Surface Enhanced Raman Scattering (SERS) platform, based on disordered silver coated silicon nanowires (Ag/SiNWs), to efficiently discriminate genomic DNA of different subtypes of melanoma and colon tumors. The diagnostic information is obtained by performing label free Raman maps of the dried drops of DNA solutions onto the Ag/NWs mat and leveraging the classification ability of learning models to reveal the specific and distinct physico-chemical interaction of tumor DNA molecules with the Ag/NW, here supposed to be partly caused by a different DNA methylation degree.
We study a reaction-diffusion-convection problem with non-linear drift posed in a domain with periodically arranged obstacles. The non-linearity in the drift is linked to the hydrodynamic limit of a totally asymmetric simple exclusion... more
We study a reaction-diffusion-convection problem with non-linear drift posed in a domain with periodically arranged obstacles. The non-linearity in the drift is linked to the hydrodynamic limit of a totally asymmetric simple exclusion process (TASEP) governing a population of interacting particles crossing a domain with obstacle. Because of the imposed large drift scaling, this non-linearity is expected to explode in the limit of a vanishing scaling parameter. As main working techniques, we employ two-scale formal homogenization asymptotics with drift to derive the corresponding upscaled model equations as well as the structure of the effective transport tensors. Finally, we use Schauder’s fixed point theorem as well as monotonicity arguments to study the weak solvability of the upscaled model posed in an unbounded domain. This study wants to contribute with theoretical understanding needed when designing thin composite materials that are resistant to high velocity impacts.
We exploit Surface-Enhanced Raman Scattering (SERS) to investigate aqueous droplets of genomic DNA deposited onto silver-coated silicon nanowires, and we show that it is possible to efficiently discriminate between spectra of tumoral and... more
We exploit Surface-Enhanced Raman Scattering (SERS) to investigate aqueous droplets of genomic DNA deposited onto silver-coated silicon nanowires, and we show that it is possible to efficiently discriminate between spectra of tumoral and healthy cells. To assess the robustness of the proposed technique, we develop two different statistical approaches, one based on the Principal Components Analysis of spectral data and one based on the computation of the ℓ2 distance between spectra. Both methods prove to be highly efficient, and we test their accuracy via the Cohen’s κ statistics. We show that the synergistic combination of the SERS spectroscopy and the statistical analysis methods leads to efficient and fast cancer diagnostic applications allowing rapid and unexpansive discrimination between healthy and tumoral genomic DNA alternative to the more complex and expensive DNA sequencing.
We study the deterministic dynamics of N point particles moving at constant speed in a 2D table made of two polygonal urns connected by an active rectangular channel, which applies a feedback-control on the particles, inverting the... more
We study the deterministic dynamics of N point particles moving at constant speed in a 2D table made of two polygonal urns connected by an active rectangular channel, which applies a feedback-control on the particles, inverting the horizontal component of their velocities, when their number in the channel exceeds a fixed threshold. Such a bounce--back mechanism is non-dissipative: it preserves volumes in phase space. An additional passive channel closes the billiard table forming a circuit in which a stationary current may flow. Under specific constraints on the geometry and on the initial conditions, the large N limit allows nonequilibrium phase transitions between homogeneous and inhomogeneous phases. The role of ergodicity in making a probabilistic theory applicable is discussed both for rational and irrational urns. The theoretical predictions are compared with the numerical simulation results. Connections with the dynamics of feedback-controlled biological systems are highlighted.
We study the solutions of a generalized Allen-Cahn equation deduced from a Landau energy functional, endowed with a non-constant higher order stiffness. We assume the stiffness to be a positive function of the field and we discuss the... more
We study the solutions of a generalized Allen-Cahn equation deduced from a Landau energy functional, endowed with a non-constant higher order stiffness. We assume the stiffness to be a positive function of the field and we discuss the stability of the stationary solutions proving both linear and local non-linear stability.
Traveling waves of permanent form with compact support are possible in several nonlinear partial nonlinear differential equations and this, mainly, along two pathways: A pure nonlinearity stronger than quadratic in the higher order... more
Traveling waves of permanent form with compact support are possible in several nonlinear partial nonlinear differential equations and this, mainly, along two pathways: A pure nonlinearity stronger than quadratic in the higher order gradient terms describing the mathematical model of the phenomena or a special inhomogeneity in quadratic gradient terms of the model. In the present note we perform a rigorous analysis of the mathematical structure of compactification via a generalization of a classical theorem by Weierstrass. Our mathematical analysis allows to explain in a rigorous and complete way the presence of compact structures in nonlinear partial differential equations 1 + 1 dimensions.
We present modeling strategies that describe the motion and interaction of groups of pedestrians in obscured spaces. We start off with an approach based on balance equations in terms of measures and then we exploit the descriptive power... more
We present modeling strategies that describe the motion and interaction of groups of pedestrians in obscured spaces. We start off with an approach based on balance equations in terms of measures and then we exploit the descriptive power of a probabilistic cellular automaton model.Based on a variation of the simple symmetric random walk on the square lattice, we test the interplay between population size and an interpersonal attraction parameter for the evacuation of confined and darkened spaces. We argue that information overload and coordination costs associated with information processing in small groups are two key processes that influence the evacuation rate. Our results show that substantial computational resources are necessary to compensate for incomplete information — the more individuals in (information processing) groups the higher the exit rate for low population size. For simple social systems, it is likely that the individual representations are not redundant and large ...
We study the solutions of a generalized Allen–Cahn equation deduced from a Landau energy functional, endowed with a non–constant higher order stiffness. We analytically solve the stationary problem and deduce the existence of so-called... more
We study the solutions of a generalized Allen–Cahn equation deduced from a Landau energy functional, endowed with a non–constant higher order stiffness. We analytically solve the stationary problem and deduce the existence of so-called compactons, namely, connections on a finite interval between the two phases. The dynamics problem is numerically solved and compacton formation is described.
We consider a two-dimensional Ising model with random i.i.d. nearest-neighbor ferromagnetic couplings and no external magnetic field. We show that, if the probability of supercritical couplings is small enough, the system admits a... more
We consider a two-dimensional Ising model with random i.i.d. nearest-neighbor ferromagnetic couplings and no external magnetic field. We show that, if the probability of supercritical couplings is small enough, the system admits a convergent cluster expansion with probability one. The associated polymers are defined on a sequence of increasing scales; in particular the convergence of the above expansion implies the infinite differentiability of the free energy but not its analyticity. The basic tools in the proof are a general theory of graded cluster expansions and a stochastic domination of the disorder.
for a stochastic dynamics with a parallel heat bath
Diffusion of particles through an heterogenous obstacle line is modeled as a two-dimensional diffusion problem with a one--directional nonlinear convective drift and is examined using two-scale asymptotic analysis. At the scale where the... more
Diffusion of particles through an heterogenous obstacle line is modeled as a two-dimensional diffusion problem with a one--directional nonlinear convective drift and is examined using two-scale asymptotic analysis. At the scale where the structure of heterogeneities is observable the obstacle line has an inherent thickness. Assuming the heterogeneity to be made of an array of periodically arranged microstructures (e.g. impenetrable solid rectangles), two scaling regimes are identified: the characteristic size of the microstructure is either significantly smaller than the thickness of the obstacle line or it is of the same order of magnitude. We scale up the convection-diffusion model and compute the effective diffusion and drift tensorial coefficients for both scaling regimes. The upscaling procedure combines ideas of two-scale asymptotics homogenization with dimension reduction arguments. Consequences of these results for the construction of more general transmission boundary condi...
We discuss the properties of the residence time in presence of moving defects or obstacles for a particle performing a one dimensional random walk. More precisely, for a particle conditioned to exit through the right endpoint, we measure... more
We discuss the properties of the residence time in presence of moving defects or obstacles for a particle performing a one dimensional random walk. More precisely, for a particle conditioned to exit through the right endpoint, we measure the typical time needed to cross the entire lattice in presence of defects. We find explicit formulae for the residence time and discuss several models of moving obstacles. The presence of a stochastic updating rule for the motion of the obstacle smoothens the local residence time profiles found in the case of a static obstacle. We finally discuss connections with applicative problems, such as the pedestrian motion in presence of queues and the residence time of water flows in runoff ponds.
Particle diffusion is modified by the presence of barriers. In cells macromolecules, behaving as obstacles, slow down the dynamics so that the meansquare displacement of molecules grows with time as a power law with exponent smaller than... more
Particle diffusion is modified by the presence of barriers. In cells macromolecules, behaving as obstacles, slow down the dynamics so that the meansquare displacement of molecules grows with time as a power law with exponent smaller than one. In different situations, such as grain and pedestrian dynamics, it can happen that an obstacle can accelerate the dynamics. In the framework of very basic models, we study the time needed by particles to cross a strip for different bulk dynamics and discuss the effect of obstacles. We find that in some regimes such a residence time is not monotonic with respect to the size and the position of the obstacles. We can then conclude that, even in very elementary systems where no interaction among particles is considered, obstacles can either slow down or accelerate the particle dynamics depending on their geometry and position.
Uphill currents are observed when mass diffuses in the direction of the density gradient. We study this phenomenon in stationary conditions in the framework of locally perturbed 1D Zero Range Processes (ZRP). We show that the onset of... more
Uphill currents are observed when mass diffuses in the direction of the density gradient. We study this phenomenon in stationary conditions in the framework of locally perturbed 1D Zero Range Processes (ZRP). We show that the onset of currents flowing from the reservoir with smaller density to the one with larger density can be caused by a local asymmetry in the hopping rates on a single site at the center of the lattice. For fixed injection rates at the boundaries, we prove that a suitable tuning of the asymmetry in the bulk may induce uphill diffusion at arbitrarily large, finite volumes. We also deduce heuristically the hydrodynamic behavior of the model and connect the local asymmetry characterizing the ZRP dynamics to a matching condition relevant for the macroscopic problem.
In this paper we develop a general theory which provides a unified treatment of two apparently different problems. The weak Gibbs property of measures arising from the application of Renormalization Group maps and the mixing properties of... more
In this paper we develop a general theory which provides a unified treatment of two apparently different problems. The weak Gibbs property of measures arising from the application of Renormalization Group maps and the mixing properties of disordered lattice systems in the Griffiths’ phase. We suppose that the system satisfies a mixing condition in a subset of the lattice whose complement is sparse enough namely, large regions are widely separated. We then show how it is possible to construct a convergent multi-scale cluster expansion.
We study the upscaling of a system of many interacting particles through a heterogenous thin elongated obstacle as modeled via a two-dimensional diffusion problem with a one-directional nonlinear convective drift. Assuming that the... more
We study the upscaling of a system of many interacting particles through a heterogenous thin elongated obstacle as modeled via a two-dimensional diffusion problem with a one-directional nonlinear convective drift. Assuming that the obstacle can be described well by a thin composite strip with periodically placed microstructures, we aim at deriving the upscaled model equations as well as the effective transport coefficients for suitable scalings in terms of both the inherent thickness at the strip and the typical length scales of the microscopic heterogeneities. Aiming at computable scenarios, we consider that the heterogeneity of the strip is made of an array of periodically arranged impenetrable solid rectangles and identify two scaling regimes what concerns the small asymptotics parameter for the upscaling procedure: the characteristic size of the microstructure is either significantly smaller than the thickness of the thin obstacle or it is of the same order of magnitude. We scal...

And 83 more