Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Anthony Waas

    University of Washington, ME, Department Member
    A discrete cohesive zone model (DCZM) is implemented to simulate the mode I fracture of two dimensional triaxially braided carbon (2DTBC) fiber composites. The 2DTBC is modeled as an elastic-one-parameter (a66) plastic continuum. The... more
    A discrete cohesive zone model (DCZM) is implemented to simulate the mode I fracture of two dimensional triaxially braided carbon (2DTBC) fiber composites. The 2DTBC is modeled as an elastic-one-parameter (a66) plastic continuum. The plastic behavior of the 2DTBC was characterized by measuring a66. Mode I fracture tests are carried out by using a modified single edge notch bend (SENB) configuration. Fracture toughness (GIC) as a function of crack extension is measured by a compliance approach. The fracture tests are then simulated by using the DCZM based interface element in conjunction with the commercial software ABAQUS® through a user subroutine UEL. The simulated results, carried out under conditions of plane stress, are compared with the experimental results and also verified for mesh sensitivity. The results presented provide guidelines and a basic understanding to model structural response of non-homogeneous materials, incorporating fracture as a damage mechanism and using co...
    Representative volume elements (RVEs) are commonly used to compute the effective elastic properties of solid media having repeating microstructure, such as fiber reinforced composites. However, for softening materials, an RVE could be... more
    Representative volume elements (RVEs) are commonly used to compute the effective elastic properties of solid media having repeating microstructure, such as fiber reinforced composites. However, for softening materials, an RVE could be problematic due to localization of deformation. Here, we address the effects of unit cell size and fiber packing on the transverse tensile response of fiber reinforced composites in the context of integrated computational materials engineering (ICME). Finite element computations for unit cells at the microscale are performed for different sizes of unit cells with random fiber packing that preserve a fixed fiber volume fraction—these unit cells are loaded in the transverse direction under tension. Salient features of the response are analyzed to understand the effects of fiber packing and unit cell size on the details of crack path, overall strength and also the shape of the stress-strain response before failure. Provision for damage accumulation/cracki...
    This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites... more
    This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391-1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre-matrix concentric cylinder model is extended...
    The effect of the curing process on the mechanical response of fiber-reinforced polymer matrix composites is studied using a computational model. Computations are performed using the finite element (FE) method at the microscale where... more
    The effect of the curing process on the mechanical response of fiber-reinforced polymer matrix composites is studied using a computational model. Computations are performed using the finite element (FE) method at the microscale where representative volume elements (RVEs) are analyzed with periodic boundary conditions (PBCs). The commercially available finite element (FE) package ABAQUS is used as the solver, supplemented by user-written subroutines. The transition from a continuum to damage/failure is effected by using the Bažant-Oh crack band model, which preserves mesh objectivity. Results are presented for a hexagonally packed RVE whose matrix portion is first subjected to curing and subsequently to mechanical loading. The effect of the fiber packing randomness on the microstructure is analyzed by considering multi-fiber RVEs where fiber volume fraction is held constant but with random packing of fibers. The possibility of failure is accommodated throughout the analysis—failure c...
    A mesh-objective two-scale finite element approach for analyzing damage and failure of fiber-reinforced ceramic matrix composites is presented here. The commercial finite element software suite Abaqus is used to generate macroscopic... more
    A mesh-objective two-scale finite element approach for analyzing damage and failure of fiber-reinforced ceramic matrix composites is presented here. The commercial finite element software suite Abaqus is used to generate macroscopic models, e.g., structural-level components or parts of ceramic matrix composites (CMCs), coupled with a second finite element code which pertains to the sub-scale at the fiber-matrix interface level, which is integrated seamlessly using user-generated subroutines and referred to as the integrated finite element method (IFEM). IFEM calculates the reaction of a microstructural sub-scale model that consists of a representative volume element (RVE) which includes all constituents of the actual material, e.g., fiber, matrix, and fiber/matrix interfaces, details of packing, and nonuniformities in properties. The energy-based crack band theory (CBT) is implemented within IFEM’s sub-scale constitutive laws to predict micro-cracking in all constituents included in...
    Research Interests:
    The size effect in the failure of a hybrid adhesive joint of a metal with a fiber-polymer composite, which has been experimentally demonstrated and analytically formulated in preceding two papers, is here investigated numerically.... more
    The size effect in the failure of a hybrid adhesive joint of a metal with a fiber-polymer composite, which has been experimentally demonstrated and analytically formulated in preceding two papers, is here investigated numerically. Cohesive finite elements with a mixed-mode fracture criterion are adopted to model the adhesive layer in the metal-composite interface. A linear traction-separation softening law is assumed to describe the damage evolution at debonding in the adhesive layer. The results of simulations agree with the previously measured load-displacement curves of geometrically similar hybrid joints of various sizes, with the size ratio of 1:4:12. The effective size of the fracture process zone is identified from the numerically simulated cohesive stress profile at the peak load. The fracture energy previously identified analytically by fitting the experimentally observed size effect curves agrees well with the fracture energy of the cohesive crack model obtained numericall...
    Many finite element programs including standard commercial software such as ABAQUS use an incremental finite strain formulation that is not fully work-conjugate, i.e., the work of stress increments on the strain increments does not give a... more
    Many finite element programs including standard commercial software such as ABAQUS use an incremental finite strain formulation that is not fully work-conjugate, i.e., the work of stress increments on the strain increments does not give a second-order accurate expression for work. In particular, the stress increments based on the Jaumann rate of Kirchhoff stress are work-conjugate with the increments of the Hencky (logarithmic) strain tensor but are paired in many finite element programs with the increments of Green’s Lagrangian strain tensor. Although this problem was pointed out as early 1971, a demonstration of its significance in realistic situations has been lacking. Here it is shown that, in buckling of compressed highly orthotropic columns or sandwich columns that are very “soft” in shear, the use of such nonconjugate stress and strain increments can cause large errors, as high as 100% of the critical load, even if the strains are small. A similar situation may arise when sev...
    A material model for the fracturing behavior for braided composites is developed and implemented in a material subroutine for use in the commercial explicit finite element code ABAQUS. The subroutine is based on the microplane model in... more
    A material model for the fracturing behavior for braided composites is developed and implemented in a material subroutine for use in the commercial explicit finite element code ABAQUS. The subroutine is based on the microplane model in which the constitutive behavior is defined not in terms of stress and strain tensors and their invariants but in terms of stress and strain vectors in the material mesostructure called the “microplanes.” This is a semi-multiscale model, which captures the interactions between inelastic phenomena such as cracking, splitting, and frictional slipping occurring on planes of various orientations though not the interactions at a distance. To avoid spurious mesh sensitivity due to softening, the crack band model is adopted. Its band width, related to the material characteristic length, serves as the localization limiter. It is shown that the model can realistically predict the orthotropic elastic constants and the strength limits. More importantly, the prese...