Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Concurrent testing of digital microfluidics-based biochips

Published: 01 April 2006 Publication History
  • Get Citation Alerts
  • Abstract

    We present a concurrent testing methodology for detecting catastrophic faults in digital microfluidics-based biochips and investigate the related problems of test planning and resource optimization. We first show that an integer linear programming model can be used to minimize testing time for a given hardware overhead, for example, droplet dispensing sources and capacitive sensing circuitry. Due to the NP-complete nature of the problem, we also develop efficient heuristic procedures to solve this optimization problem. We apply the proposed concurrent testing methodology to a droplet-based microfluidic array that was fabricated and used to perform multiplexed glucose and lactate assays. Experimental results show that the proposed test approach interleaves test application with the biomedical assays and prevents resource conflicts. The proposed method is therefore directed at ensuring high reliability and availability of bio-MEMS and lab-on-a-chip systems, as they are increasingly deployed for safety-critical applications.

    References

    [1]
    Balch, T. and Arkin, R. 1993. Avoiding the past: a simple, but effective strategy for reactive navigation. In Proceedings of the International Conference on Robotics and Automation, 678--685.
    [2]
    Berkelaar, M. lpsolve. Eindhoven Univ. Technol., Eindhoven, The Netherlands {Online}. Available at ftp://ftp.ics.ele.tue.nl/pub/lp_solve.
    [3]
    Cho, S. K., Fan, S. K., Moon, H., and Kim, C. J. 2002. Toward digital microfluidic circuits: Creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation. In Proceedings of the IEEE Conference on MEMS. IEEE Computer Society Press, Los Alamitos, CA, 32--52.
    [4]
    Davies, B. 1995. Robotics in minimally invasive surgery. In Proceedings of the IEE Colloquium Through the Keyhole: Microengoneering in Minimally Invasive Surgery, 5/1--5/2.
    [5]
    Deb, N. and Blanton, R. D. 2000. Analysis of failure sources in surface-micromachined MEMS. In Proceedings of the IEEE International Test Conference. IEEE Computer Society Press, Los Alamitos, CA, 739--749.
    [6]
    Deb, N. and Blanton, R. D. 2004. Multi-modal built-in self-test for symmetric microsystems. In Proceedings of the IEEE VLSI Test Symposium. IEEE Computer Society Press, Los Alamitos, CA, 139--147.
    [7]
    Dhayni, Al, Mir, S. and Rufer, L. 2004. MEMS built-in-self-test using MLS. In Proceedings of the European Test Symposium, 66--71.
    [8]
    Dumas, N., Azais, F., Latorre, L., and Nouet, P. 2004. Electrically-induced thermal stimuli for MEMS testing. In Proceedings of the European Test Symposium, 60--65.
    [9]
    Graham, R., Lawler, E., Lenstra, J., and Kan, A. R. 1979. Optimization and approximation in deterministic sequencing and scheduling: A survey. Ann. Disc. Math. 5, 287--326.
    [10]
    Henning, A. K. 1998. Microfluidic MEMS. In Proceedings of the IEEE Aerospace Conference. IEEE Computer Society Press, Los Alamitos, CA, 471--486.
    [11]
    Hull, H. F., Danila, R., and Ehresmann, K. 2003. Smallpox and bioterrorism: Public-health responses. J. Lab. Clin. Med. 142, 221--228.
    [12]
    International Technology Roadmap for Semiconductors (ITRS), http://public.itrs.net/Files/2003ITRS/Home2003.htm.
    [13]
    Kerkhoff, H. G. 1999. Testing philosophy behind the micro analysis system. In Proceedings of the SPIE: Design, Test and Microfabrication of MEMS and MOEMS. 78--83.
    [14]
    Kerkhoff, H. G. and Acar, M. 2003. Testable design and testing of micro-electro-fluidic arrays. In Proceedings of the IEEE VLSI Test Symposium. IEEE Computer Society Press, Los Alamitos, CA, 403--409.
    [15]
    Kerkhoff, H. G. and Hendriks, H. P. A. 2001. Fault modeling and fault simulation in mixed micro-fluidic microelectronic systems. J. Elect. Test. Theory. Appl. 17, 427--437.
    [16]
    Kolpekwar, A. and Blanton, R. D. 1997. Development of a MEMS testing methodology. In Proceedings of the IEEE Inernational Test Conference. IEEE Computer Society Press, Los Alamitos, CA, 923--931.
    [17]
    Mir, S., Charlot, B., and Courtois, B. 2000. Extending fault-based testing to microelectromechanical systems. J. Elect. Test. Theory Appl. 16, 279--288.
    [18]
    Paik, P., Pamula, V. K., and Fair, R. B. 2003. Rapid droplet mixers for digital microfluidic systems. Lab on a Chip 3, 253--259.
    [19]
    Poul, J. 2002. Bioterrorism and biodefence, J. Infect. 44, 59--66.
    [20]
    Pollack, M. G., Fair, R. B., and Shenderov, A. D. 2000. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77, 1725--1726.
    [21]
    Pollack, M. G., Shendero, A. D., and Fair, R. B. 2002. Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip 2, 96--101.
    [22]
    Pollack, M. G., Paik, P. Y., Shendero, A. D., Pamula, V. K., Dietrich, F. S., and Fair, R. B. 2003. Investigation of electrowetting-based microfluidics for real-time PCR applications. In Proceedings of μTAS. 619--622.
    [23]
    Ren, H. and Fair, R. B. 2002. Micro/nano liter droplet formation and dispensing by capacitance metering and electrowetting actuation. Technical Digest IEEE-NANO, 36--38.
    [24]
    Schulte, T. H., Bardell, R. L., and Weigl, B. H. 2002. Microfluidic technologies in clinical diagnostics. Clinica Chimica Acta 321, 1--10.
    [25]
    Srinivasan, V., Pamula, V. K., Pollack, M. G., and FAIR, R. B. 2003a. A digital microfluidic biosensor for multianalyte detection. In Proceedings of the IEEE Conference on MEMS. IEEE Computer Society Press, Los Alamitos, CA, 327--330.
    [26]
    Srinivasan, V., Pamula, V. K., Pollack, M. G., and FAIR, R. B. 2003b. Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform. In Proceedings of μTAS, 1287--1290.
    [27]
    Srinivasan, V., Pamula, V. K., and Fair, R. B. 2004. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip 4, 310--315.
    [28]
    Su, F. and Chakrabarty, K. 2004. Architectural-level synthesis of digital microfluidics-based biochips. In Proceedings of the IEEE International Conference on CAD. IEEE Computer Society Press, Los Alamitos,CA, 223--228.
    [29]
    Su, F. and Chakrabarty, K. 2005. Design of fault-tolerant and dynamically-reconfigurable microfluidic biochips. In Proceedings of the Design, Automation and Test in Europe (DATE) Conference. 1202--1207.
    [30]
    Su, F., Ozev, S., and Chakrabarty, K. 2004. Test planning And test resource optimization for droplet-based microfluidic systems. In Proceedings of the European Test Symposium, 72--77.
    [31]
    Su, F., Ozev, S., and Chakrabarty, K. 2005. Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE Sens. J. 5, 763--773.
    [32]
    Thorsen, T., Maerkl, S., and Quake, S. 2002. Microfluidic large-scale integration. Science 298, 580--584.
    [33]
    Trinder, P. 1969. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 6, 24--27.
    [34]
    Venkatesh, S. and Memish, Z. A. 2003. Bioterrorism: A new challenge for public health. Int. J. Antimicro. Agents 21, 200--206.
    [35]
    Verpoorte, E. and De Rooij, N. F. 2003. Microfluidics meets MEMS, Proc. IEEE 91, 930--953.
    [36]
    Videos on droplet transport, dispensing, mixing and biomedical assays {Online}. Available at http://www.ee.duke.edu/Research/microfluidics
    [37]
    Zhang, T., Chakrabarty, K., and Fairs, R. B. 2002. Microelectrofluidic Systems: Modeling and Simulation. CRC Press, Boca Raton, FL.

    Cited By

    View all
    • (2023)MEDA-Based BiochipsNovel Research and Development Approaches in Heterogeneous Systems and Algorithms10.4018/978-1-6684-7524-9.ch009(155-172)Online publication date: 28-Apr-2023
    • (2021)Machine vision-based driving and feedback scheme for digital microfluidics systemOpen Chemistry10.1515/chem-2021-006019:1(665-677)Online publication date: 7-Jun-2021
    • (2021)On-Line Test of Pin-Constrained Digital Microfluidic Biochips with Connect-5 StructureJournal of Electronic Testing: Theory and Applications10.1007/s10836-020-05923-z37:1(97-107)Online publication date: 1-Feb-2021
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Design Automation of Electronic Systems
    ACM Transactions on Design Automation of Electronic Systems  Volume 11, Issue 2
    April 2006
    283 pages
    ISSN:1084-4309
    EISSN:1557-7309
    DOI:10.1145/1142155
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 01 April 2006
    Published in TODAES Volume 11, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Concurrent testing
    2. biochips
    3. catastrophic faults
    4. microfluidics

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)MEDA-Based BiochipsNovel Research and Development Approaches in Heterogeneous Systems and Algorithms10.4018/978-1-6684-7524-9.ch009(155-172)Online publication date: 28-Apr-2023
    • (2021)Machine vision-based driving and feedback scheme for digital microfluidics systemOpen Chemistry10.1515/chem-2021-006019:1(665-677)Online publication date: 7-Jun-2021
    • (2021)On-Line Test of Pin-Constrained Digital Microfluidic Biochips with Connect-5 StructureJournal of Electronic Testing: Theory and Applications10.1007/s10836-020-05923-z37:1(97-107)Online publication date: 1-Feb-2021
    • (2020)An Efficient Algorithm for Optimizing the Test Path of Digital Microfluidic BiochipsJournal of Electronic Testing: Theory and Applications10.1007/s10836-020-05865-636:2(205-218)Online publication date: 1-Apr-2020
    • (2020)Position and feedback for digital microfluidic system based on light intensity informationAsia-Pacific Journal of Chemical Engineering10.1002/apj.244915:S1Online publication date: 25-Mar-2020
    • (2019)FloatXACM Transactions on Mathematical Software10.1145/336808645:4(1-23)Online publication date: 9-Dec-2019
    • (2019)Code Generation for Generally Mapped Finite ElementsACM Transactions on Mathematical Software10.1145/336174545:4(1-23)Online publication date: 25-Dec-2019
    • (2019)High-Performance Derivative Computations using CoDiPackACM Transactions on Mathematical Software10.1145/335690045:4(1-26)Online publication date: 9-Dec-2019
    • (2019)A Wolfe Line Search Algorithm for Vector OptimizationACM Transactions on Mathematical Software10.1145/334210445:4(1-23)Online publication date: 9-Dec-2019
    • (2019)Algorithm 1002ACM Transactions on Mathematical Software10.1145/333048145:4(1-28)Online publication date: 9-Dec-2019
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media