Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Weighted averages on surfaces

Published: 21 July 2013 Publication History

Abstract

We consider the problem of generalizing affine combinations in Euclidean spaces to triangle meshes: computing weighted averages of points on surfaces. We address both the forward problem, namely computing an average of given anchor points on the mesh with given weights, and the inverse problem, which is computing the weights given anchor points and a target point. Solving the forward problem on a mesh enables applications such as splines on surfaces, Laplacian smoothing and remeshing. Combining the forward and inverse problems allows us to define a correspondence mapping between two different meshes based on provided corresponding point pairs, enabling texture transfer, compatible remeshing, morphing and more. Our algorithm solves a single instance of a forward or an inverse problem in a few microseconds. We demonstrate that anchor points in the above applications can be added/removed and moved around on the meshes at interactive framerates, giving the user an immediate result as feedback.

Supplementary Material

ZIP File (a60-panozzo.zip)
Supplemental material.
MP4 File (tp101.mp4)

References

[1]
Alexa, M. 2002. Linear combination of transformations. ACM Trans. Graph. 21, 3, 380--387.
[2]
Baran, I., Vlasic, D., Grinspun, E., and Popović, J. 2009. Semantic deformation transfer. ACM Trans. Graph. 28, 3.
[3]
Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. 2011. Displacement interpolation using lagrangian mass transport. ACM Trans. Graph. 30, 6.
[4]
Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. Visualization and Computer Graphics 14, 1, 213--230.
[5]
Botsch, M., Steinberg, S., Bischoff, S., and Kobbelt, L. 2002. OpenMesh - a generic and efficient polygon mesh data structure. In Proc. OpenSG Symposium.
[6]
Boubekeur, T., and Alexa, M. 2008. Phong tessellation. ACM Trans. Graph. 27, 5, 141:1--141:5.
[7]
Buss, S. R., and Fillmore, J. P. 2001. Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20, 2, 95--126.
[8]
Cartan, É. 1929. Groupes simples clos et ouverts et géométrie riemannienne. J. Math. Pures Appl. 8, 1--33.
[9]
Chen, Y., and Medioni, G. 1991. Object modeling by registration of multiple range images. In Proc. IEEE International Conference on Robotics and Automation, 2724--2729.
[10]
Cox, T. F., and Cox, M. A. A. 2000. Multidimensional Scaling, Second Edition. Chapman & Hall/CRC, Sept.
[11]
Crane, K., Weischedel, C., and Wardetzky, M. 2013. Geodesics in heat. ACM Trans. Graph. to appear.
[12]
de Silva, V., and Tenenbaum, J. B. 2002. Global versus local methods in nonlinear dimensionality reduction. In Proc. NIPS, 705--712.
[13]
Eckstein, I., Surazhsky, V., and Gotsman, C. 2001. Texture mapping with hard constraints. Comput. Graph. Forum 20, 3, 95--104.
[14]
Floater, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1, 19--27.
[15]
Fréchet, M. 1948. Les éléments alétoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré 10, 4, 215--310.
[16]
Hofer, M., and Pottmann, H. 2004. Energy-minimizing splines in manifolds. ACM Trans. Graph. 23, 3, 284--293.
[17]
Hormann, K., and Sukumar, N. 2008. Maximum entropy coordinates for arbitrary polytopes. In Proc. SGP, 1513--1520.
[18]
Hormann, K., Polthier, K., and Sheffer, A. 2008. Mesh parameterization: Theory and practice. In SIGGRAPH ASIA 2008 Course Notes.
[19]
Jin, J., Garland, M., and Ramos, E. A. 2009. MLS-based scalar fields over triangle meshes and their application in mesh processing. In Proc. ACM I3D, 145--153.
[20]
Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, 71:1--71:9.
[21]
Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3, 561--566.
[22]
Karcher, H. 1977. Riemannian center of mass and mollifier smoothing. Communications on pure and applied mathematics 30, 5, 509--541.
[23]
Kendall, W. 1990. Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proceedings of the London Mathematical Society 3, 2, 371.
[24]
Kim, V. G., Lipman, Y., and Funkhouser, T. 2011. Blended intrinsic maps. ACM Trans. Graph. 30, 4.
[25]
Kobbelt, L., Vorsatz, J., and Seidel, H.-P. 1999. Multiresolution hierarchies on unstructured triangle meshes. Comput. Geom. Theory Appl. 14, 1--3, 5--24.
[26]
Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graph. 23, 3, 861--869.
[27]
Langer, T., Belyaev, A., and Seidel, H.-P. 2006. Spherical barycentric coordinates. In Proc. SGP, 81--88.
[28]
Lipman, Y., Kopf, J., Cohen-Or, D., and Levin, D. 2007. GPU-assisted positive mean value coordinates for mesh deformations. In Proc. SGP, 117--124.
[29]
Lipman, Y., Rustamov, R. M., and Funkhouser, T. A. 2010. Biharmonic distance. ACM Trans. Graph. 29, 3.
[30]
Loop, C. 1987. Smooth subdivision surfaces based on triangles. Master's thesis, Department of Mathematics, University of Utah.
[31]
Ovsjanikov, M., Mérigot, Q., Mémoli, F., and Guibas, L. J. 2010. One point isometric matching with the heat kernel. Comput. Graph. Forum 29, 5, 1555--1564.
[32]
Pálfia, M. 2009. The Riemann barycenter computation and means of several matrices. Int. J. Comput. Math. Sci. 3, 3, 128--133.
[33]
Pennec, X. 1998. Computing the mean of geometric features: Application to the mean rotation. Rapport de Recherche RR--3371, INRIA - Epidaure project, Sophia Antipolis, France, March.
[34]
Phong, B. 1975. Illumination for computer generated pictures. Communications of the ACM 18, 6, 311--317.
[35]
Ritschel, T., Thormählen, T., Dachsbacher, C., Kautz, J., and Seidel, H.-P. 2010. Interactive on-surface signal deformation. ACM Trans. Graph. 29, 4.
[36]
Rustamov, R., Lipman, Y., and Funkhouser, T. 2009. Interior distance using barycentric coordinates. Comput. Graph. Forum 28, 5.
[37]
Rustamov, R. 2010. Barycentric coordinates on surfaces. Comput. Graph. Forum 29, 5, 1507--1516.
[38]
Sander, P. V., Gu, X., Gortler, S. J., Hoppe, H., and Snyder, J. 2000. Silhouette clipping. In Proc. ACM SIGGRAPH, 327--334.
[39]
Schmidt, R., Grimm, C., and Wyvill, B. 2006. Interactive decal compositing with discrete exponential maps. ACM Trans. Graph. 25, 3, 605--613.
[40]
Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. ACM Trans. Graph. 23, 3.
[41]
Sethian, J. A. 1996. A fast marching level set method for monotonically advancing fronts. In Proc. Nat. Acad. Sci, 1591--1595.
[42]
Sorkine, O., and Cohen-Or, D. 2004. Least-squares meshes. In Proc. Shape Modeling International, 191--199.
[43]
Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. 2002. Bounded-distortion piecewise mesh parameterization. In Proc. IEEE Visualization, 355--362.
[44]
Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3, 399--405.
[45]
Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., and Hoppe, H. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 3, 553--560.
[46]
Tzur, Y., and Tal, A. 2009. FlexiStickers: Photogrammetric texture mapping using casual images. ACM Trans. Graph. 28, 3.
[47]
Waldron, S. 2011. Affine generalised barycentric coordinates. Jaen Journal on Approximation 3, 2.
[48]
Wallner, J., and Pottmann, H. 2006. Intrinsic subdivision with smooth limits for graphics and animation. ACM Trans. Graph. 25, 2, 356--374.
[49]
Xin, S.-Q., Ying, X., and He, Y. 2012. Constant-time all-pairs geodesic distance query on triangle meshes. In Proc. ACM I3D.
[50]
Yeh, I.-C., Lin, C.-H., Sorkine, O., and Lee, T.-Y. 2011. Template-based 3D model fitting using dual-domain relaxation. IEEE Trans. Vis. Comput. Graph. 17, 8, 1178--1190.
[51]
Zhou, K., Synder, J., Guo, B., and Shum, H.-Y. 2004. Isocharts: stretch-driven mesh parameterization using spectral analysis. In Proc. SGP, ACM, New York, NY, USA, 45--54.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 32, Issue 4
July 2013
1215 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2461912
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 July 2013
Published in TOG Volume 32, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. correspondence
  2. surface geometry
  3. weighted averages

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)44
  • Downloads (Last 6 weeks)4
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Smooth Bijective Projection in a High-order ShellACM Transactions on Graphics10.1145/365820743:4(1-13)Online publication date: 19-Jul-2024
  • (2024)Splines on Manifolds: a SurveyComputer Aided Geometric Design10.1016/j.cagd.2024.102349(102349)Online publication date: May-2024
  • (2023)Learning the Geodesic Embedding with Graph Neural NetworksACM Transactions on Graphics10.1145/361831742:6(1-12)Online publication date: 5-Dec-2023
  • (2023)b/Surf: Interactive Bézier Splines on Surface MeshesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.317117929:7(3419-3435)Online publication date: 1-Jul-2023
  • (2023)Computing the Riemannian center of mass on meshesComputer Aided Geometric Design10.1016/j.cagd.2023.102203103(102203)Online publication date: Jun-2023
  • (2022)Robust computation of implicit surface networks for piecewise linear functionsACM Transactions on Graphics10.1145/3528223.353017641:4(1-16)Online publication date: 22-Jul-2022
  • (2022)Compatible intrinsic triangulationsACM Transactions on Graphics10.1145/3528223.353017541:4(1-12)Online publication date: 22-Jul-2022
  • (2022)ASSETACM Transactions on Graphics10.1145/3528223.353017241:4(1-12)Online publication date: 22-Jul-2022
  • (2022)R2E2ACM Transactions on Graphics10.1145/3528223.353017141:4(1-12)Online publication date: 22-Jul-2022
  • (2022)Disentangling random and cyclic effects in time-lapse sequencesACM Transactions on Graphics10.1145/3528223.353017041:4(1-13)Online publication date: 22-Jul-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media