Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Anja Taubert

    Cryptosporidium parvum causes a zoonotic infection with worldwide distribution. Besides humans, cryptosporidiosis affects a wide range of animals leading to significant economic losses due to severe enteritis in neonatal livestock.... more
    Cryptosporidium parvum causes a zoonotic infection with worldwide distribution. Besides humans, cryptosporidiosis affects a wide range of animals leading to significant economic losses due to severe enteritis in neonatal livestock. Neutrophil extracellular trap (NET) formation has been demonstrated as an important host effector mechanism of PMN acting against several invading pathogens. In the present study, C. parvum-mediated NET formation was investigated in human and bovine PMN in vitro. We here demonstrate that C. parvum sporozoites indeed trigger NET formation in a time-dependent manner. Thereby, the classical characteristics of NETs were demonstrated by co-localization of extracellular DNA with histones, neutrophil elastase (NE) and myeloperoxidase (MPO). A significant reduction of NET formation was measured following treatments of PMN with NADPH oxidase-, NE- and MPO-inhibitors, confirming the key role of these enzymes in C. parvum-induced NETs. Additionally, sporozoite-trigg...
    Eimeria (E.) bovis sporozoites as well as Toxoplasma (T.) gondii and Neospora (N.) caninum tachyzoites can invade bovine endothelial cells (BUVEC) in vitro and develop to next stage meronts within 15-20 and 3-4 days, respectively. The... more
    Eimeria (E.) bovis sporozoites as well as Toxoplasma (T.) gondii and Neospora (N.) caninum tachyzoites can invade bovine endothelial cells (BUVEC) in vitro and develop to next stage meronts within 15-20 and 3-4 days, respectively. The latter differences suggest different immune evasion strategies, particularly concerning innate reactions. Realtime RT-PCR techniques were used to determine transcript levels of genes relevant in this sense, i.e. adhesion molecule, chemokine, growth factor GM-CSF, cyclooxygenase 2 (COX-2) and iNOS genes in infected cells. In addition, adhesion of neutrophils (PMN) to infected BUVEC monolayers was quantified. Effects differed between E. bovis and T. gondii/N. caninum as the latter two species strongly enhance the transcription of all genes in question and induce PMN adhesion to infected BUVEC whereas E. bovis either caused only weak responses or failed to enhance gene transcription as in case of CXC chemokines and COX-2. It even down regulates adhesion m...
    Extracellular traps (ETs) are composed of nuclear DNA as backbone adorned with histones, cytoplasmic antimicrobial peptides/proteins which are released from a range of vertebrate and invertebrate host immune cells in response to several... more
    Extracellular traps (ETs) are composed of nuclear DNA as backbone adorned with histones, cytoplasmic antimicrobial peptides/proteins which are released from a range of vertebrate and invertebrate host immune cells in response to several invading pathogens. Until now this ancient novel innate defence mechanism has not been demonstrated in any marine mammal. Interactions of harbour seal (Phoca vitulina)-PMN and -monocytes with viable tachyzoites of Toxoplasma gondii were investigated in this respect in vitro. For the demonstration and quantification of harbour seal PMN- and monocyte-derived ETs, extracellular DNA was stained with Sytox Orange. Fluorescence assays as well as scanning electron microscopy (SEM) analyses demonstrated PMN- and monocyte-promoted ET formation rapidly being induced upon contact with T. gondii-tachyzoites. The co-localisation of extracellular DNA decorated with histones (H3), neutrophil elastase (NE) and myeloperoxidase (MPO) in parasite entrapping structures confirmed the classical characteristics of PMN- and monocyte-promoted ETs. Exposure of harbour seal PMN and monocytes to viable tachyzoites resulted in a significant induction of ETs when compared to negative controls. Harbour seal-ETs were efficiently abolished by DNase I treatment and were reduced after PMN and monocytes pre-incubation with the NADPH oxidase inhibitor diphenilane iodondium. Tachyzoites of T. gondii were firmly entrapped and immobilised within harbour seal-ET structures. To our best knowledge, we here report for the first time on T. gondii-induced ET formation in harbour seal-PMN and -monocytes. Our results strongly indicate that PMN- and monocyte-triggered ETs represent a relevant and ancient conserved effector mechanism of the pinniped innate immune system as reaction against the pathogenic protozoon T. gondii and probably against other foreign pathogens occurring in the ocean environment.
    A 120 kDa antigen produced by juvenile female Litomosoides sigmodontis (Juv-p120) was isolated and purified. The amino acid composition of the molecule was determined. Juv-p120 was shown to be highly modified with... more
    A 120 kDa antigen produced by juvenile female Litomosoides sigmodontis (Juv-p120) was isolated and purified. The amino acid composition of the molecule was determined. Juv-p120 was shown to be highly modified with N,N-dimethyl-aminoethanol (28.4 mol%). Treatment of Juv-p120 with potassium hydroxide (beta-elimination) or with sodium m-periodate leads to the destruction of epitopes recognized by antibodies immune affinity-purified with isolated Juv-p120. Juvenile L. sigmodontis were shown to release Juv-p120 into the pleural cavity of infected Mastomys coucha before the onset of patency.
    PF 1022A, a novel anthelmintically active cyclodepsipeptide, and Bay 44-4400, a semisynthetic derivative of PF 1022A were tested for filaricidal efficacy in Mastomys coucha infected with Litomosoides sigmodontis, Acanthocheilonema viteae... more
    PF 1022A, a novel anthelmintically active cyclodepsipeptide, and Bay 44-4400, a semisynthetic derivative of PF 1022A were tested for filaricidal efficacy in Mastomys coucha infected with Litomosoides sigmodontis, Acanthocheilonema viteae and Brugia malayi. The parent compound PF 1022A showed limited anti-filarial efficacy in L. sigmodontis and B. malayi infected animals. Oral doses of 5 x 100 mg/kg on consecutive days caused only a temporary decrease of microfilariaemia levels. By contrast, Bay 44-4400 was highly effective against microfilariae of all three species in single oral, subcutaneous and cutaneously applied (spot on) doses. Minimum effective doses (MED, reducing parasitaemia density by > or =95%) determined 3 and 7 days after treatment were 3.125-6.25 and 6.25-12.5mg/kg, respectively. Using the spot on formulation, doses of 6.25mg/kg (L. sigmodontis), 12.5mg/kg (A. viteae) and 25mg/kg (B. malayi) were required to cause reductions of microfilaraemia levels by > or =95% until day 56. Adulticidal effects, determined as minimum curative doses (MCD, eliminating adult parasites within 56 days by >95%) after single dose treatment were limited to A. viteae (MCD, 100mg/kg independent of the route of administration). Repeated oral treatment (100mg/kg on 5 consecutive days) killed all adult L. sigmodontis but did not affect B. malayi. However, single doses of 6.25 and 25mg/kg resulted in severe pathological alterations of intrauterine stages of L. sigmodontis and B. malayi, respectively. These alterations may be responsible for long-lasting reductions of microfilaraemia even when curative effects could not be achieved.