Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Elisabeth Schwartz

    Arthropods are the most diverse animal group on the planet, and occupy almost all ecological niches. Venomous arthropods are a rich source of bioactive compounds evolved for prey capture and defense against predators and/or... more
    Arthropods are the most diverse animal group on the planet, and occupy almost all ecological niches. Venomous arthropods are a rich source of bioactive compounds evolved for prey capture and defense against predators and/or microorganisms. These highly potent chemical arsenals represent an available source for new insecticidal compounds as they act selectively on their molecular targets. These toxins affect the invertebrate nervous system and, until the moment, several insecticidal compounds belonging to the class of peptides or polyamine-like compounds have been purified and characterized from the venom of arachnids and hymenopterans. This review focuses on invertebrate-specific peptide neurotoxins that have been isolated from the venom ofspiders, scorpions, centipedes, ants, and wasps, discussing their potential in pest control and as invaluable tools in neuropharmacology.
    Tityus discrepans is a Venezuelan scorpion known to cause severe human envenomations. It contains toxins that impair proper ion channels function, affect coagulation pathways and interfere with the immunological system, leading to a... more
    Tityus discrepans is a Venezuelan scorpion known to cause severe human envenomations. It contains toxins that impair proper ion channels function, affect coagulation pathways and interfere with the immunological system, leading to a widespread inflammatory syndrome. This communication reports the results of genes cloned from a cDNA expression library of venomous glands from T. discrepans. A full-length cDNA phagemid library
    The venoms of several scorpion species have long been associated with pancreatitis in animal models and humans. Antarease, a Zn-metalloprotease from Tityus serrulatus, is able to penetrate intact pancreatic tissue and disrupts the normal... more
    The venoms of several scorpion species have long been associated with pancreatitis in animal models and humans. Antarease, a Zn-metalloprotease from Tityus serrulatus, is able to penetrate intact pancreatic tissue and disrupts the normal vesicular traffic necessary for secretion, so it could play a relevant role in the onset of acute pancreatitis. The cDNA libraries from five different scorpion species were screened for antarease homologs with specific primers. The amplified PCR products were cloned and sequenced. A structural model was constructed to assess the functionality of the putative metalloproteases. A phylogenetic analysis was performed to identify clustering patterns of these venom components. Antarease-like sequences were amplified from all the screened cDNA libraries. The complete sequence of the antarease from T. serrulatus was obtained. The structural model of the putative antarease from Tityus trivittatus shows that it may adopt a catalytically active conformation, s...
    Scorpions are well known for their dangerous stings that can result in severe consequences for human beings, including death. Neurotoxins present in their venoms are responsible for their toxicity. Due to their medical relevance, toxins... more
    Scorpions are well known for their dangerous stings that can result in severe consequences for human beings, including death. Neurotoxins present in their venoms are responsible for their toxicity. Due to their medical relevance, toxins have been the driving force in the scorpion natural compounds research field. On the other hand, for thousands of years, scorpions and their venoms have been applied in traditional medicine, mainly in Asia and Africa. With the remarkable growth in the number of characterized scorpion venom components, several drug candidates have been found with the potential to tackle many of the emerging global medical threats. Scorpions have become a valuable source of biologically active molecules, from novel antibiotics to potential anticancer therapeutics. Other venom components have drawn attention as useful scaffolds for the development of drugs. This review summarizes the most promising candidates for drug development that have been isolated from scorpion ve...
    Scorpions like other venomous animals possess a highly specialized organ that produces, secretes and disposes the venom components. In these animals, the last postabdominal segment, named telson, contains a pair of venomous glands... more
    Scorpions like other venomous animals possess a highly specialized organ that produces, secretes and disposes the venom components. In these animals, the last postabdominal segment, named telson, contains a pair of venomous glands connected to the stinger. The isolation of numerous scorpion toxins, along with cDNA-based gene cloning and, more recently, proteomic analyses have provided us with a large collection of venom components sequences. However, all of them are secreted, or at least are predicted to be secretable gene products. Therefore very little is known about the cellular processes that normally take place inside the glands for production of the venom mixture. To gain insights into the scorpion venom gland biology, we have decided to perform a transcriptomic analysis by constructing a cDNA library and conducting a random sequencing screening of the transcripts. From the cDNA library prepared from a single venom gland of the scorpion Hadrurus gertschi, 160 expressed sequenc...