Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Francesca Moro

    Inherited disorders characterized by motor neuron loss and muscle weakness are genetically heterogeneous. The recent identification of mutations in the gene encoding transient receptor potential vanilloid 4 (TRPV4) in distal spinal... more
    Inherited disorders characterized by motor neuron loss and muscle weakness are genetically heterogeneous. The recent identification of mutations in the gene encoding transient receptor potential vanilloid 4 (TRPV4) in distal spinal muscular atrophy (dSMA) prompted us to screen for TRPV4 mutations in a small group of children with compatible phenotype. In a girl with dSMA and vocal cord paralysis, we detected a new variant (p.P97R) localized in the cytosolic N-terminus of the TRPV4 protein, upstream of the ankyrin-repeat domain, where the great majority of disease-associated mutations reside. In another child with congenital dSMA, in this case associated with bone abnormalities, we detected a previously reported mutation (p.R232C). Functional analysis of the novel p.P97R mutation in a heterologous system demonstrated a loss-of-function mechanism. Protein localization studies in muscle, skin, and cultured skin fibroblasts from both patients showed normal protein expression. No TRPV4 m...
    Post-ischemic reperfusion may result in reactive oxygen species (ROS) generation, reduced availability of nitric oxide (NO•), Ca(2+)overload, prolonged opening of mitochondrial permeability transition pore, and other processes... more
    Post-ischemic reperfusion may result in reactive oxygen species (ROS) generation, reduced availability of nitric oxide (NO•), Ca(2+)overload, prolonged opening of mitochondrial permeability transition pore, and other processes contributing to cell death, myocardial infarction, stunning, and arrhythmias. With the discovery of the preconditioning and postconditioning phenomena, reperfusion injury has been appreciated as a reality from which protection is feasible, especially with postconditioning, which is under the control of physicians. Potentially cooperative protective signaling cascades are recruited by both pre- and postconditioning. In these pathways, phosphorylative/dephosphorylative processes are widely represented. However, cardioprotective modalities of signal transduction also include redox signaling by ROS, S-nitrosylation by NO• and derivative, S-sulfhydration by hydrogen sulfide, and O-linked glycosylation with beta-N-acetylglucosamine. All these modalities can interact and regulate an entire pathway, thus influencing each other. For instance, enzymes can be phosphorylated and/or nitrosylated in specific and/or different site(s) with consequent increase or decrease of their specific activity. The cardioprotective signaling pathways are thought to converge on mitochondria, and various mitochondrial proteins have been identified as targets of these post-transitional modifications in both pre- and postconditioning.
    DCX mutations cause mental retardation in male subjects with lissencephalypachygyria and in female subjects with subcortical band heterotopia (SBH). We observed four families in which carrier women had normal brain magnetic resonance... more
    DCX mutations cause mental retardation in male subjects with lissencephalypachygyria and in female subjects with subcortical band heterotopia (SBH). We observed four families in which carrier women had normal brain magnetic resonance imaging (MRI) and mild mental retardation, with or without epilepsy. Affected male subjects had SBH or pachygyria-SBH. In two families, the phenotype was mild in both genders. In the first family, we found a tyr138his mutation that is predicted to result in abnormal folding in the small hinge region. In the second family, we found an arg178cys mutation at the initial portion of R2, in the putative beta-sheet structure. Carrier female subjects with normal MRI showed no somatic mosaicism or altered X-inactivation in lymphocytes, suggesting a correlation between mild mutations and phenotypes. In the two other families, with severely affected boys, we found arg76ser and arg56gly mutations within the R1 region that are predicted to affect DCX folding, severely modifying its activity. Both carrier mothers showed skewed X-inactivation, possibly explaining their mild phenotypes. Missense DCX mutations may manifest as non-syndromic mental retardation with cryptogenic epilepsy in female subjects and SBH in boys. Mutation analysis in mothers of affected children is mandatory, even when brain MRI is normal.
    DYNC1H1 encodes the heavy chain of cytoplasmic dynein 1, a motor protein complex implicated in retrograde axonal transport, neuronal migration, and other intracellular motility functions. Mutations in DYNC1H1 have been described in... more
    DYNC1H1 encodes the heavy chain of cytoplasmic dynein 1, a motor protein complex implicated in retrograde axonal transport, neuronal migration, and other intracellular motility functions. Mutations in DYNC1H1 have been described in autosomal-dominant Charcot-Marie-Tooth type 2 and in families with distal spinal muscular atrophy (SMA) predominantly affecting the legs (SMA-LED). Recently, defects of cytoplasmic dynein 1 were also associated with a form of mental retardation and neuronal migration disorders. Here, we describe two unrelated patients presenting a combined phenotype of congenital motor neuron disease associated with focal areas of cortical malformation. In each patient, we identified a novel de novo mutation in DYNC1H1: c.3581A>G (p.Gln1194Arg) in one case and c.9142G>A (p.Glu3048Lys) in the other. The mutations lie in different domains of the dynein heavy chain, and are deleterious to protein function as indicated by assays for Golgi recovery after nocodazole washout in patient fibroblasts. Our results expand the set of pathological mutations in DYNC1H1, reinforce the role of cytoplasmic dynein in disorders of neuronal migration, and provide evidence for a syndrome including spinal nerve degeneration and brain developmental problems.
    Mutations in the fukutin gene were first identified in Japanese patients with classic Fukuyama congenital muscular dystrophy, a severe form of congenital muscular dystrophy associated with cobblestone lissencephaly and ocular defects.... more
    Mutations in the fukutin gene were first identified in Japanese patients with classic Fukuyama congenital muscular dystrophy, a severe form of congenital muscular dystrophy associated with cobblestone lissencephaly and ocular defects. Patients of different ethnicities and with milder phenotypes, including limb girdle muscular dystrophy and cardiomyopathy without brain impairment, have also been reported. The hallmark of this disorder, regardless of the clinical outcome, is moderate-to-severe hypoglycosylation of alpha-dystroglycan in muscle sections. We describe the case of a boy harboring two novel mutations in fukutin gene and presenting a five-year history of asymptomatic hyperCKemia, without overt muscle, brain or ocular involvement. Genetic investigations, guided by the presence of moderate myopathic changes on muscle biopsy with loss of immunodetectable alpha-dystroglycan, led to a definitive diagnosis. Cardiac and echocardiographic examinations at follow-up disclosed low norm...