はてなキーワード: 物理量とは
数学的宇宙仮説(Mathematical Universe Hypothesis, MUH)は、マックス・テグマークが提唱する「物理的実在が数学的構造そのものである」という大胆な命題から発展した理論的枠組みである[1][6]。本報告では、arXivや学術機関ドメインに基づく最新の研究動向を分析し、この仮説が直面する理論的課題と観測的可能性を包括的に検討する。
テグマークのMUHは、外部実在仮説(External Reality Hypothesis, ERH)を基盤としている[1]。ERHが「人間の認識から独立した物理的実在の存在」を前提とするのに対し、MUHはこれを「数学的構造の客観的実在性」へと拡張する。近年の議論では、この関係性がゲーデルの不完全性定理との関連で再解釈されている。2024年の研究[2]では、ブラックホール熱力学との類推から、宇宙のエントロピーと数学的構造の決定可能性が議論され、非加法エントロピー(Tsallisエントロピー)を用いた宇宙モデルが提案されている。
従来のMUH批判に対応する形で、テグマークは計算可能性の概念を理論に組み込んでいる[6]。2019年の論文[1]では、ゲーデル的に完全(完全に決定可能)な数学的構造のみが物理的実在を持つとする修正仮説が提示されている。このアプローチは、宇宙の初期条件の単純性を説明すると共に、観測可能な物理法則の計算複雑性を制限する理論的根拠として機能する[3]。
MUHに基づく多宇宙論は、4つのレベルに分類される[4]。レベルⅠ(空間的無限宇宙)、レベルⅡ(インフレーション的バブル宇宙)、レベルⅢ(量子多世界)、レベルⅣ(数学的構造の多様性)である。最新の展開では、ブラックホールの情報パラドックス解決策として提案されるホログラフィック原理が、レベルⅣ多宇宙の数学的記述と整合する可能性が指摘されている[2]。
Barrowらが提唱する修正エントロピー(∆-エントロピー)を用いた宇宙モデル[2]は、MUHの数学的構造に新たな解釈を付与する。このモデルでは、時空の量子ゆらぎがエントロピーの非加法性によって記述され、観測データ(宇宙マイクロ波背景放射や重力レンズ効果)との整合性が検証されている[2]。特にダークマター分布の理論予測と観測結果の比較から、数学的構造の「計算可能領域」が具体的な物理量として抽出可能であることが示唆されている。
2024年の研究[2]では、PeVスケールのダークマターと高エネルギー宇宙ニュートリノの関連性が議論されている。IceCube観測所のデータ解析から、Tsallisエントロピーパラメータδ≃3/2が示唆される事実は、MUHが予測する数学的構造の特定のクラス(非加法統計力学系)と現実宇宙の対応関係を裏付ける可能性がある[2]。
宇宙マイクロ波背景放射(CMB)の偏光データをMUHの枠組みで再解釈する試みが進展している[2]。特に、Bモード偏光の非ガウス性統計解析から、初期量子ゆらぎの数学的構造における対称性の破れパターンが、レベルⅣ多宇宙の存在確率分布と矛盾しないことが示されている。
Academia.eduの批判的論文[3]が指摘するように、MUHは数学的対象と物理的実在の同一視に関する伝統的な哲学的問題を内包する。2024年の議論では、カントの超越論的観念論との対比が活発化しており、数学的構造の「内的実在性」と「外的実在性」の区別が理論の一貫性を保つ鍵とされている[4]。
SchmidhuberやHutらが指摘するゲーデルの不完全性定理との矛盾[6]に対し、テグマークは「計算可能で決定可能な構造のみが物理的実在を持つ」という制限を課すことで反論している[1][6]。この制約下では、自己言及的なパラドックスを生じさせる数学的構造が物理的宇宙として実現されないため、観測宇宙の論理的整合性が保たれるとされる。
MUHのレベルⅣ多宇宙は、弦理論のランドスケープ問題と数学的構造の多様性という点で深い関連を持つ[1]。最近の研究では、カルビ-ヤウ多様体のトポロジー的安定性が、数学的宇宙の「生存可能条件」として再解釈されている。特に、超対称性の自発的破れメカニズムが、数学的構造の選択原理として機能する可能性が議論されている[2]。
時空の離散構造を仮定するループ量子重力理論は、MUHの数学的実在論と親和性が高い[2]。2024年の論文では、スピンネットワークの組み合わせ論的構造が、レベルⅣ多宇宙における「計算可能な数学的オブジェクト」の具体例として分析されている。ここでは、プランクスケールの時空幾何が群論的対称性によって記述されることが、MUHの予測と一致すると指摘されている。
MUHが提唱する「自己意識部分構造(SAS)」概念[6]について、近年は量子脳理論との関連性が注目されている[3]。特に、オルロッキ量子モデルとの比較から、意識現象の数学的記述可能性が議論されている。ただし、この拡張解釈は哲学的自由意志の問題を新たに引き起こすため、理論的慎重さが求められる段階にある。
汎用人工知能(AGI)の開発が進む現代において、MUHは機械知性の存在論的基盤を提供する可能性がある[3]。数学的構造内で「意識」を定義するSAS理論は、シンギュラリティ後の知性体の物理的実在性について、従来の物質主義的枠組みを超えた議論を可能にする。
MUHの観点から、無次元物理定数(微細構造定数α≈1/137など)の数値が数学的構造の必然性から説明される可能性が探られている[1]。特に、保型関数理論やモジュラー対称性を用いた定数値の導出試みが、レベルⅣ多宇宙における「典型的な」数学的構造の特性と関連付けられている。
近年の観測データに基づき、宇宙加速膨張の原因となるダークエネルギーが、数学的構造の位相欠陥としてモデル化されるケースが増えている[2]。Barrowモデルにおける∆-パラメータの観測的制約(∆≲10^-4)は、MUHが想定する数学的宇宙の「滑らかさ」と密接に関連している。
MUHが提起する根本的問題は、数学的真理の認識可能性に関する伝統的哲学問題を物理学へ移植した点にある[3][4]。2024年の時点で、この問題に対する決定的解決策は見出されていないが、計算複雑性理論と量子情報理論の融合が新たな突破口を開くと期待されている[2]。
今後の重要課題は、MUHから導出可能な検証可能な予測の具体化である。現在の主要なアプローチは、(1)初期宇宙の量子ゆらぎパターンの数学的構造分析、(2)高エネルギー宇宙線の異常事象の統計的検証、(3)量子重力効果の間接的観測を通じた時空離散性の検出、の3方向で進展している[2][6]。
数学的宇宙仮説は、その野心的なスコープにもかかわらず、近年の理論物理学と数学の交差点で着実な進展を遂げている。ブラックホール熱力学との接続[2]、計算可能性制約の導入[1][6]、観測データとの整合性検証[2]など、従来の哲学的議論を超えた具体的な研究プログラムが展開されつつある。しかしながら、数学的実在論の認識論的基盤[3][4]やゲーデル問題[6]といった根本的な課題は未解決のままであり、これらに対する理論的突破口が今後の発展の鍵を握る。特に、量子重力理論の完成がMUHの検証可能性に決定的な役割を果たすと予測される。
Citations:
[1] http://www.arxiv.org/pdf/0704.0646v1.pdf
[2] https://arxiv.org/pdf/2403.09797.pdf
[3] https://www.academia.edu/38333889/Max_Tegmark_Our_Universe_is_Not_Mathematical
[4] https://inquire.jp/2019/05/07/review_mathematical_universe/
[6] https://en.wikipedia.org/wiki/Mathematical_universe_hypothesis
まず、標準的な量子力学において、系の状態は複素ヒルベルト空間 𝓗 のベクトルによって記述される。
純粋状態は正規化された状態ベクトル ∣ψ⟩ で表され、混合状態は密度行列 ρ によって記述される。
測定とは、物理量に対応する自己共役演算子 A の固有値に関する確率的な過程であり、波動関数の収縮(射影仮説)が導入される。
この非ユニタリな過程と、シュレーディンガー方程式によるユニタリ時間発展との矛盾が観測問題の本質である。
状態はヒルベルト空間 𝓗 の要素として、純粋状態 ∣ψ⟩ により表される。正規化条件は以下の通りである。
⟨ψ∣ψ⟩ = 1
より一般に、混合状態は密度行列 ρ により記述され、以下を満たす。
ρ ≥ 0, Tr(ρ) = 1
量子系の時間発展は、ハミルトニアン H によりシュレーディンガー方程式で記述される。
i ℏ d/dt ∣ψ(t)⟩ = H ∣ψ(t)⟩
U(t) = exp(− i H t / ℏ)
この U(t) はユニタリであり、量子力学の基本法則の一つである。
量子力学において、観測可能量 A は自己共役演算子であり、スペクトル定理により直交射影 P_a を用いて分解される。
A = ∑ a P_a
P_a P_b = δ_ab P_a, ∑ P_a = I
を満たす。
測定時、状態 ∣ψ⟩ において固有値 a が得られる確率はボルン則に従う。
p(a) = ⟨ψ∣P_a∣ψ⟩
∣ψ⟩ → P_a ∣ψ⟩ / √⟨ψ∣P_a∣ψ⟩
と変化する。
この過程は非ユニタリであり、シュレーディンガー方程式のユニタリ時間発展と両立しない。
ユニタリ進化による時間発展では、状態は決定論的かつ線形である。
∣ψ(t)⟩ = U(t) ∣ψ(0)⟩
しかし、測定後の状態は射影仮説により確率的かつ非ユニタリに変化する。
∣Ψ(0)⟩ = ∣ψ⟩_S ⊗ ∣M_0⟩_M
∣Ψ(t)⟩ = U(t) ∣Ψ(0)⟩
となり、測定が完了すると、
∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M
のようにエンタングルした状態となる。ここで、測定装置の指示状態 ∣M_a⟩_M は S の固有状態 ∣a⟩_S に対応する。
しかし、ユニタリ進化の枠組みでは、この重ね合わせが自発的に単一の結果へと収縮するメカニズムは存在しない。したがって、なぜ一つの結果のみが観測されるのかという問題が発生する。
標準解釈では、測定は基本的なプロセスであり、それ以上の説明は与えられない。観測行為そのものが確率的収縮を引き起こすとする立場である。
∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M
において、各分岐した世界が独立した現実として存在すると考える。この解釈では波動関数の収縮を仮定せず、すべての可能性が並存する。
∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M ⊗ ∣E_a⟩_E
ρ_S+M = ∑ |c_a|² ∣a⟩⟨a∣ ⊗ ∣M_a⟩⟨M_a∣
となり、オフダイアゴナル成分が消滅する。この過程がデコヒーレンスであり、実効的に波動関数の収縮を説明するが、依然として観測者の経験との対応を説明する必要がある。
量子観測問題は、量子系のユニタリ時間発展と測定における非ユニタリな収縮の矛盾に起因する。
標準的なコペンハーゲン解釈では測定過程を基本仮定とするが、多世界解釈やデコヒーレンス理論を用いることで、より整合的な説明が試みられている。
朝食は通常通り、オートミールとトーストだ。パンの焼き加減は完璧な黄金色、まさに理想的な炭水化物の摂取だ。
量子測定における誤差の定義は、実験科学の基本でありながら、長年にわたり満足のいく解決策が見出されていなかった。
古典物理学では測定対象の物理量の値が測定と独立に存在するのに対し、量子測定では「波束の収縮」という現象により、測定行為自体が量子状態に影響を与える。
この特性により、古典的な誤差概念をそのまま適用することができず、量子測定の誤差を完全に定義することは困難な課題とされてきた。
最新の研究では、量子測定に対する誤差概念が満たすべき条件を、I.操作的定義可能性、II.対応原理、III.健全性、IV.完全性の4つの数学的条件に整理した。
これらの条件は、誤差の値が測定装置の操作的性質から決まること、古典的定義が適用可能な場合はその値と矛盾しないこと、正確な測定の誤差の値はゼロであること、そして不正確な測定にはゼロでない誤差の値が与えられることを意味する。
さらに、最新の技術では、POVMと呼ばれる正作用価測度が量子測定に革命をもたらしている。
POVMは従来のプロジェクティブ測定の限界を超え、より広範な測定を可能にする。
この手法では、測定結果が単一の確定した状態に収束するのではなく、複数の結果が同時に観測される可能性があり、それらの結果が確率的に得られることを前提としている。
講義後、僕は通常の水曜日のルーチンに従って、コミックブックストアに立ち寄った。
新しいバットマンのコミックが入荷していて、僕の完璧なコレクションにまた一つ追加できることに喜びを感じた。
残念ながら、量子力学の描写に科学的な誤りがいくつか見られた。特に、量子もつれの表現が完全に間違っていて、僕は思わず画面に向かって訂正をしてしまった。
数の概念は文化や歴史によって変化してきた。古代ギリシアでは、1は数ではなく単位とされていたが、現代では自然数の集合 N の最小の要素とされている。
数の概念は哲学的な問題を引き起こすことがある。無限や超準数といった数は直観に反する性質を持つ。例えば、無限は自分自身に加えても変わらないという性質を持つ(∞+∞=∞)。超準数もまた通常の数の演算法則が成り立たない(ω+1≠1+ω)。
数は実在するのか、それとも人間の心の産物なのかという存在論的な問いもある。数の実在主義は、数は客観的な実在であり、人間の心とは独立して存在すると考える。数の構成主義は、数は人間の心の産物であり、人間の言語や思考に依存して存在すると考える。プラトニズムは、数はイデア界に存在する普遍的な実在であると考える。ピタゴラス主義は、数は万物の根源であると考える。論理主義は、数は論理的な体系から導き出されるものであると考える。
数の概念は数学の基礎付けにも関わる。数学の公理や定理は、数の概念に基づいて構築されているが、その正当性や完全性には限界がある。ゲーデルの不完全性定理は、数の概念を用いた形式体系には矛盾しないが証明できない命題が存在することを示した。
数の概念は、かつて客観的な現実を表すものと考えられていたが、量子論の発展により、数はより複雑で主観的なものである可能性が高まった。古典物理学では、数は物理量と一致していたが、量子論では、数は物理量とは別の抽象的な概念として使われている。
自我や自由意識と同様に、数の本質はまだ解明されていない。しかし、量子コンピューターは数の概念を利用して作られており、数は物理システムを表現する有効なツールであることは、どのレイヤー、スケールにおいても明らかである。
数の概念は私たちの知識や理解を拡張するものであり、同時に私たちの疑問や不確実性を増やすものでもある。
数の概念は、私たちの世界に対する見方を変える力を持っている。(どやああああ)
————————-
量子観測とは、量子系の状態を測定することで、その状態を確定させることです。量子系の状態は、一般に複数の可能性の重ね合わせになっていますが、量子観測によってその重ね合わせが崩れて、一つの可能性に収束します。この現象を「波動関数の収縮」と呼びます。
情報理論的エントロピーとは、情報の不確かさや乱雑さを表す物理量です。エントロピーが高いほど、情報が不確かで乱雑であると言えます。量子系の状態に対しても、エントロピーを定義することができます。量子系のエントロピーは、その状態の重ね合わせの度合いによって決まります。重ね合わせの度合いが高いほど、エントロピーも高くなります。
したがって、量子観測を行うと、量子系の状態が重ね合わせから一つの可能性に収束するので、エントロピーが下がるということになります。これは、量子観測によって、量子系の状態に関する情報が得られることを意味します。量子観測は、情報の不確かさや乱雑さを減らすという観点から見ると、情報の圧縮や整理といった操作に相当します。
一頭の牛が年間に生産する乳量は年々増加の一途を辿り、現在ではおよそ9000kgに達している。
一昔前までは、年間に10000kgを出す牛はスーパーカウと呼ばれ、人間で言えば100mを10秒台で走る超人のような扱いだったが、今日本記録は年間に30000kgを突破している。
平均で年間9000kgと書いた。一度産むと約300日の期間搾るので、1日平均で30kgにもなる。もちろん変動があり、ピーク時には40kg近く出す。凄まじい量ではないか?
乳牛は体重が600〜700kgくらいだ。つまり体重の5%が乳として出ていく。乳の原料は血である。血は体重の8%くらいだ。
体を流れる血液が毎日総入れ替えされるくらい、飲んだ水と食べた餌が血となり、乳となる。成分だって、ヒトの乳に比べずっとずっと濃い。
もちろん、水を飲む量は出す乳の量よりはるか多い。餌も凄まじい。糞尿もすごい。呼吸も凄けりゃゲップもすごい。牛のゲップが温暖化の原因というのも納得する。彼女らは、生きる化学プラントだ。
牛を正面から見ると、左右対称ではないことがわかるだろう。片側に巨大な発酵タンクを備えているからだ。牛は草食というのは嘘だ。発酵タンクで飼育する微生物を食べてる。エビオス錠を主食にしてるようなものだといえば、凄まじさがわかるだろう。もう少し言うと、ヒトは不要になった老廃物を尿から捨ててるが、牛は胃袋に捨て微生物の餌にするエコシステムを持ってる。他にも、生理学生化学的に、もう化学プラントとしか思えない能力がたくさんあるのだが、専門家に譲る。
さて、前振りはこの辺に、酪農は夢がある。乳価が乳質にもよるがおよそ100円。
一頭が9000kgも出せば年間に90万円売り上げる計算になる。20頭で1800万、50頭で4500万、100頭で9000万、これだけ売上が出せる農業というのはなかなかない。
もちろんこれは売上で、売上は凄まじくても、経費と減価償却を差っ引くとなんも残らないというのが昨今の酪農危機ではあるが、売上高はロマンだ。
大量の水を運び、餌を運び、糞尿を始末して、乳を搾る。1日に何トンもの物理量を動かす、それはロマンだ。
そして、牛飼いは上手い人と下手な人の差が激しいというのもロマンだ。
上手い牛飼いというのは、ある種の異能の持ち主だ。しかしどのへんがというと説明が難しい。
機械より速く搾るとか、そういうわかりやすいスキルもあるのだが、何故か受胎率がよく、何故か事故(病傷)が少ない。
何故気がつけるのかを調べると、牛のことをよく覚えているからだ。
考えてもみてほしい。ヒトはしばしば、自分自身のことでも、前に生理が来た日すらしばしば忘れるのだ。よい牛飼いは分娩予定日や前回発情が来た日を、食べた餌の量を、よくよく覚える。よく見てるから、発情行動を見逃さないし、どんなに遠くでも斑紋からその行動した個体を識別する。もちろん健康異常もすぐ気付く。牛飼いに休日はなく、ほぼ365日、ずっと働く。「この牛の母ちゃん、その母ちゃん」と親子三代の思い出を語る。自分からしたら異能としか思えない。
ビックバン以前は正方向の時間の流れがないといいます。そういうなかで物理量や量子状態が変化しているといいます。しかしそのような物理量や量子状態の振る舞い様を物理学の専門的な知識がない人が見たら、「正方向の時間の流れの中で、物体がランダムに変化しているだけ」と、通常の時間があるかのように錯覚してしまうだけなのではないですか?
ビッグバン以前の世界についての理解は、物理学の専門知識がない人でも一定の理解を持つことができますが、そのような世界で物理量や量子状態が変化しているという概念は、一般的な時間の流れとは異なるものであるため、理解するのは困難でしょう。
通常の時間は、過去から未来へと流れるものであると考えられていますが、ビッグバン以前の宇宙には正方向の時間の流れが存在していないと考えられています。そのため、そこで物理量や量子状態が変化しているということは、通常の時間の流れとは異なるものであり、物理学の専門的な知識がなければ、その振る舞いを説明することは非常に困難でしょう。
一般的な時間の流れがない世界で物理量や量子状態が変化しているということを理解するには、物理学の専門的な知識が必要です。そのため、物理学の専門的な知識がない人が見た場合、通常の時間の流れがあるかのように錯覚してしまう可能性があります。
(x,y,z)についてxとyまでは普通の平面座標として、zを電束密度の値でとったグラフ=曲面だよ。電束密度=f(x,y)ということで平面座標ごとにプロットして得られる曲面。
もとをたどればchatgptのこの回答から始まってる。
電束密度を真上から見て特定の密度間隔ごとに線を引くことは、等電束線と呼ばれます。等電束線は、単位時間あたりに垂直な面積を通過する電磁力線の本数が一定となる曲線です。一方、電気力線は、電場の方向を表すベクトル場として表現されるものであり、電束密度とは異なる物理量です。
電気力線と等電束線は、一般には異なる曲線となります。ただし、等電束線の近似として、ある一定の密度間隔ごとに電気力線を描くこともできます。この場合、等電束線と異なり、電磁力線の本数が一定となるわけではなく、密度が一定となる線となります。しかし、このような描き方は、本来の電気力線の性質を正確に表現するものではなく、注意が必要です。
こういう意見をよく見るけど、個人的には「たかが絵」という言い回しが「絵」をバカにしているとはあまり思わない。この感覚は説明するのが少し難しい。
一つのありがちな説明として、「現実の方がよほど影響力があるだろう」という意味で「たかが絵」という言い回しが使われるのだ、と言えば、説得できる人も少なくないだろう。私もフィクトセクシュアルなので、そのような説明は嫌いじゃない。しかし、ここで私は、一人の「オタク」として、「たかが絵」という言い回しを擁護したい。
私は「オタク」である一方、「たかが絵」に入れ込むこと、熱を上げること、時間や金銭を(自身の生活が崩壊するレベルまで)注ぎ込むような、極度な「オタ活」には否定的だ。ガチャやブラインド商法のような売り込み方も嫌いなので、たとえ推しアニメや推しキャラのグッズでも、そのような売り方をされると意地でもお金を出したくない。
私にとってそれは、どこまで言っても「たかが絵」だ。
それはなぜか。
さて、私が「たかが絵」を好むのは、「そのヒューム値が低いから」と説明したい。
ヒューム値とは、SCP財団の創作設定で使われる、架空の物理量だ。それはしばしば「現実度」と説明されるが、ヒューム値の高い実体はヒューム値の低い実体へ自らの「現実」を押し付けることが出来る、らしい。なかなか面白い設定だと思う。
つまり、私は「たかが絵」を鑑賞する時、そこに「たかが絵」を見るのではない。そこに「私自身の現実」を見るのだ。
私は結局のところ「私自身」が好きなのだ。実際、私はいくらかオートセクシュアルの傾向がある。
https://twitter.com/Kaworu911/status/1462797280218546176?s=20
「マンガはひとつの読みしかできない」と東京都の役人が愚かしいことを述べたことがありましたが、どんな表現でも複数の「読み」があり、解釈があり、誤読が発生します。百人の読者がいれば百の脳内で百の物語が生まれます。最多数派は「作者の意図」に近いクラスターを形成するにしても完全一致はない
私は、これこそが「たかが絵」の本質であり、それ故に尊い文化的営みなのだと信じている。
それは存在しないぞ。少なくとも物理で言う意味での「量子化」は、サンプリングやスペクトル分解とは全く違う構造。
サンプリングとスペクトル分解が同じではないかと思うあたりかなり鋭いかもしれないと思うので、何かを感じ取ってるのかもしれないけど、そこはもうちょっと詳細を聞かないと分からない。
物理で言う「量子化」の結果はハミルトニアンとか物理量ごとの(無限次元空間に作用する)線形作用素が得られて、それは要は行列みたいなもんなので、そいつのスペクトル分解というのはある。
だからいわゆる「エネルギー準位の離散化」とかそういうものが出てくる。(いやもちろん連続スペクトルの場合もあって、それは無限次元ヒルベルト空間の可分性とかに関わってるんだけど…)
インターネットを知の集積とみていた時代の発想には、データの物理量って概念がなかった。
テキストだけがデータみたいな発想で、動画を配信してどうこうみたいなことを具体的に考えてなかったから、ストレージと回線が数万倍レベルで大きくなってもまだ足りてないなんて思いもよらなかったし。
同じ理由で、検索できないデータを閲覧するのに時間がかかる限界、全てのデータを集積するサーバーを維持し続けるなんてコスト的に不可能って限界のことを考えていなかった。まさか光速度が理想の速度に足りてないなんて。
そりゃ雑談も論文もを全てまるまる集積してデータベースにして全て検索かけてふるいにかけることができたら、きっと知の集積が完成したんだろうね。
でもそれは無理だった。
寝れない。寒い。それでスマホをいじっていたらこういう記事が流れてきた。
この宇宙の時空はスムーズなのかチャンキーなのか https://twitter.com/Kyukimasa/status/1197488567162789889
おれは化学系なのでこういう問題については口を出した事はない(我々の扱う領域ではほほ確実である)が、分析機器の精度が上がっていけば最終的には全部チャンクになるのが当然なのではないかという気がしてならない。
だってハイゼンベルグの不確定性原理によれば二つの物理量を同時に測定できないんだからそもそもスムーズであるという結論は出せないよね。というか一見スムーズであっても解像度を上げて尚スムーズであるという保証はないよね。
そう考えると冒頭の「この宇宙の時空はスムースなのかチャンキーなのか」という問いかけは、無意味で、「どの程度にチャンキーなのか」が問題となるのではないか。
それに記事後半の「γ線バーストを拾うタイミングを厳密に計測する」、それも複数個所で、というのはそれが可能なら面白いかもしれないが実行してどのくらいのデータが得られるか、となるとかなり怪しいのではなかろうか。