Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Mathematical formalisms for performance evaluation of networks-on-chip

Published: 03 July 2013 Publication History

Abstract

This article reviews four popular mathematical formalisms—queueing theory, network calculus, schedulability analysis, and dataflow analysis—and how they have been applied to the analysis of on-chip communication performance in Systems-on-Chip. The article discusses the basic concepts and results of each formalism and provides examples of how they have been used in Networks-on-Chip (NoCs) performance analysis. Also, the respective strengths and weaknesses of each technique and its suitability for a specific purpose are investigated. An open research issue is a unified analytical model for a comprehensive performance evaluation of NoCs. To this end, this article reviews the attempts that have been made to bridge these formalisms.

References

[1]
Abdelzaher, T. F., Sharma, V., and Lu, C. 2004. A utilization bound for aperiodic tasks and priority driven scheduling. IEEE Trans. Comput. 53, 3, 334--350.
[2]
Andersson, B. and Jonsson, J. 2000. Fixed-priority preemptive multiprocessor scheduling: To partition or not to partition. In Proceedings of the 7th International Conference on Real-Time Systems and Applications (RTCSA'00). IEEE Computer Society, 337--346.
[3]
Andersson, B., Baruah, S., and Jonsson, J. 2001. Static-priority scheduling on multiprocessors. In Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS'01). IEEE Computer Society, 193--202.
[4]
Audsley, N. C., Burns, A., Tindell, K., and Wellings, A. 1993. Applying new scheduling theory to static priority preemptive scheduling. Softw. Eng. J. 8, 5, 284--292.
[5]
Altisen, K., Liu, Y., and Moy, M. 2010. Performance evaluation of components using a granularity-based interface between real-time calculus and timed automata. In Proceedings of the 8th Workshop on Quantitative Aspects of Programming Languages (QAPL'10). 16--23.
[6]
Baker, T. P. 2003. Multiprocessor EDF and deadline monotonic schedulability analysis. In Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS'03). IEEE Computer Society, 120--129.
[7]
Bakhouya, M., Suboh, S., Gaber, J., El-Ghazawi, T. A., and Niar, S. 2011. Performance evaluation and design tradeoffs of on-chip interconnect architectures. Simul. Model. Practice Theory 19, 6, 1496--1505.
[8]
Balakrishnan, S. and Ozguner, F. 1998. A priority-driven flow control mechanism for real-time traffic in multiprocessor networks. IEEE Trans. Parallel Distrib. Syst. 9, 7, 664--678.
[9]
Bekooij, M. J. G., Moriera, O., Poplavko, P., Mesman, B., Pastrnak, M., and Meerbergen, J. 2004. Predictable embedded multiprocessor system design. In Proceedings of the International Workshop on Software and Compilers for Embedded Systems, Lecture Notes in Computer Science, vol. 3199, Springer, 77--91.
[10]
Bekooij, M. J. G., Hoes, R., Moreira, O., Poplavko, P., Pastrnak, M., Mesman, B., Mol, J. D., Stuijk, S., Gheorghita V., and van Meerbergen J. 2005. Dataflow analysis for real-time embedded multiprocessor system design. In Dynamic and Robust Streaming in and between Connected Consumer-Elecronic Devices, Chapter 15. Kluwer Academic Publishers, Norwell, MA.
[11]
Bertsimas, D. and Mourtzinou, G. 1997. Transient laws of non-stationary queueing systems and their applications. Queu. Syst. 25, 1--4, 115--155.
[12]
Bhattacharya, B. and Bhattacharyya, S. S. 2001. Parameterized dataflow modeling for DSP systems. IEEE Trans. Signal Process. 49, 10, 2408--2421.
[13]
Bilsen, G., Engels, M., Lauwereins, R., and Peperstraete, J. 1996. Cyclo-static dataflow. IEEE Trans. Signal Process. 44, 2, 397--408.
[14]
Bini, E., Buttazzo, G. C., and Buttazzo, G. M. 2003. Rate monotonic scheduling: The hyperbolic bound. IEEE Trans. Comp. 52, 7, 933--942.
[15]
Bini, E. and Buttazzo, G. C. 2004. Schedulability analysis of periodic fixed priority systems. IEEE Trans. Comput. 53, 11, 1462--1473.
[16]
Bogdan, P. and Marculescu, R. 2007. Quantum-like effects in network-on-chip buffers behavior. In Proceedings of the 44th Annual Design Automation Conference (DAC'07). ACM Press, 266--267.
[17]
Bogdan, P. and Marculescu, R. 2009. Statistical physics approaches for network-on-chip traffic characterization. In Proceedings of the 7th IEEE/ACM International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS'09). ACM Press, 461--470.
[18]
Bogdan, P. and Marculescu, R. 2010. Workload characterization and its impact on multicore platform design. In Proceedings of the 8th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS'10). ACM Press, 231--240.
[19]
Bogdan, P. and Marculescu, R. 2011. Non-stationary traffic analysis and its implications on multicore platform design. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 30, 4, 508--519.
[20]
Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. S. 2006. Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications. 2nd Ed. John Wiley & Sons, Hoboken, NJ.
[21]
Buck, J. T. 1993. Scheduling dynamic dataflow graphs with bounded memory using the token flow model. Ph.D. dissertation, Dept. of EECS, UC Berkeley, Berkeley, CA.
[22]
Buck, J. T. and Lee, E. A. 1993. Scheduling dynamic dataflow graphs with bounded memory using the token flow model. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing: Plenary, Special, Audio, Underwater Acoustics, VLSI, Neural Networks (ICASSP'93), vol. I. IEEE Computer Society, 429--432.
[23]
Buck, J. T. 1994. A dynamic dataflow model suitable for efficient mixed hardware and software implementations of DSP applications. In Proceedings of the 3rd International Workshop on Hardware/Software Co-design (CODES'94). IEEE Computer Society, 165--172.
[24]
Buttazzo, G. C. 2005. Rate monotonic vs. EDF: Judgement day. Real Time Syst. 29, 1, 5--26.
[25]
Chakraborty, S., Kunzli, S., and Thiele, L. 2003. A general framework for analysing system properties in platform-based embedded system designs. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE'03). IEEE Computer Society, 10190--10195.
[26]
Chang, C.-S. 2000. Performance Guarantees in Communication Networks. Springer-Verlag, London, U.K.
[27]
Cheng, A.-L., Pan, Y., Yan, X.-L., and Huan, R.-H. 2011. A general communication performance evaluation model based on routing path decomposition. J. Zhejiang Univ. - Sci. C (Comput. & Electron.) 12, 7, 561--573.
[28]
Cruz, R. L. 1991a. A calculus for network delay, part I: Network elements in isolation. IEEE Trans. Inf. Theory 37, 1, 114--131.
[29]
Cruz, R. L. 1991b. A calculus for network delay, part II: Network analysis. IEEE Trans. Inf. Theory 37, 1, 132--141.
[30]
Dasdan, A. 2004. Experimental analysis of the fastest optimum cycle ratio and mean algorithms. ACM Trans. Des. Autom. Electron. Syst. 9, 4, 385--418.
[31]
Dasdan, A. and Gupta, R. 1998. Faster maximum and minimum mean cycle algorithms for system performance analysis. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 17, 10, 889--899.
[32]
Davis, R. I. and Burns, A. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. 43, 4, article 35.
[33]
Dennis, J. B. 1980. Data flow supercomputers. Computer 13, 11, 48--56.
[34]
Foroutan, S., Thonnart, Y., Hersemeule, R., and Jerraya, A. 2009. Analytical computation of packet latency in a 2D-mesh NoC. In Proceedings of the Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conference. 1--4.
[35]
Foroutan, S., Thonnart, Y., Hersemeule, R., and Jerraya, A. 2010. An analytical method for evaluating network-on-chip performance. In Proceedings of the 13th Conference on Design, Automation and Test in Europe (DATE'10). 1629--1632.
[36]
Funk, S., Goossens, J., and Baruah, S. 2001. On-line scheduling on uniform multiprocessors. In Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS'01). IEEE Computer Society, 183--192.
[37]
Ghamarian, A. H., Geilen, M. C. W., Stuijk, S., Basten, T. Theelen, B. D., Mousavi, M. R., Moonen, A. J. M., and Bekooij, M. J. G. 2006. Throughput analysis of synchronous data flow graphs. In Proceedings of the 6th International Conference on Application of Concurrency to System Design (ACSD'06). IEEE Computer Society, 25--36.
[38]
Ghamarian, A. H., Stuijk, S., Basten, T., Geilen, M. C. W., and Theelen, B. D. 2007. Latency minimization for synchronous data flow graphs. In Proceedings of the 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD'07). IEEE Computer Society, 189--196.
[39]
Guan, W., Tsai, W., and Blough, D. 1993. An analytical model for wormhole routing in multicomputer interconnection networks. In Proceedings of the International Parallel Processing Symposium. 650--654.
[40]
Guz, Z., Walter, I., Bolotin, E., Cidon, I., Ginosar, R., and Kolodny, A. 2007. Network delays and link capacities in application-specific wormhole NoCs. J. VLSI Design, article 90941.
[41]
Hamann, A., Jersak, M., Richter, K., and Ernst, R. 2004. Design space exploration and system optimization with SymTA/S - symbolic timing analysis for systems. In Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS'04). IEEE Computer Society, 469--478.
[42]
Hansson, A., Wiggers, M., Moonen, A., Goossens, K., and Bekooij, M. J. G. 2009. Enabling application-level performance guarantees in network-based systems on chip by applying dataflow analysis. IET Comput. Digital Tech. 3, 5, 398--412.
[43]
Hansson, A. and Goossens, K. 2010. On-chip Interconnect with Aelite: Composable and Predictable Systems, Springer.
[44]
Hary, S. L. and Ozguner, F. 1997. Feasibility test for real-time communication using wormhole routing. IEE Proc. Comput. Digital Tech. 144, 5, 273--278.
[45]
Horstmannshoff, J., Grotker, T., and Meyr, H. 1997. Mapping multirate dataflow to complex RT level hardware models. In Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP'97). 283--292.
[46]
Hu, P.-C. and Kleinrock, L. 1997. An analytical model for wormhole routing with finite size input buffers. In Proceedings of the 15th International Teletraffic Congress. 549--560.
[47]
Hu, J., Ogras, U. Y., and Marculescu, R. 2006. System-level buffer allocation for application-specific networks-on-chip router design. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 25, 12, 2919--2933.
[48]
Hur, J. Y., Goossens, K., and Mhamdi, L. 2008. Performance analysis of soft and hard single-hop and multi-hop circuit-switched interconnects for FPGAs. In Proceedings of the IFIP International Conference on Very Large Scale Integration. 224--229.
[49]
Jackson, J. R. 1957. Networks of waiting lines. Oper. Res. 5, 518--521.
[50]
Jafari, F., Lu, Z., Jantsch, A., and Yaghmaee, M. H. 2010. Buffer optimization in network-on-chip through flow regulation. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 29, 12, 1973--1986.
[51]
Jantsch, A., and Sander, I. 2005. Models of computation and languages for embedded system design. IEE Proc. Comput. Digital Tech. 152, 2, 114--129.
[52]
Jiang, Y. and Liu, Y. 2008. Stochastic Network Calculus, Springer-Verlag, Berlin.
[53]
Jiang, Y. 2009. Network calculus and queueing theory: Two sides of one coin. In Proceedings of the 4th International Conference on Performance Evaluation Methodologies and Tools. Article 37.
[54]
Joseph, M. and Pandya, P. 1986. Finding response times in a real-time system. Brit. Comput. Soc. Comp. J. 29, 5, 390--395.
[55]
Kandlur, D. D., Shin, K. G., and Ferrari, D. 1994. Real-time communication in multihop networks. IEEE Trans. Parallel Distrib. Syst. 5, 10, 1044--1056.
[56]
Kiasari, A. E., Sarbazi-Azad, H., and Ould-Khaoua, M. 2008a. An accurate mathematical performance model of adaptive routing in the star graph. Future Gen. Comput. Syst. 24, 6, 461--474.
[57]
Kiasari, A. E., Rahmati, D., Sarbazi-Azad, H., and Hessabi, S. 2008b. A Markovian performance model for networks-on-chip. In Proceedings of the 16th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP'08). 157--164.
[58]
Kiasari, A. E., Sarbazi-Azad, H., and Hessabi, S. 2008c. Caspian: A tunable performance model for multi-core systems. In Proceedings of the 14th European Conference on Parallel and Distributed Computing (Euro-Par'08), Lecture Notes in Computer Science, vol. 5168, Springer, 100--109.
[59]
Kiasari, A. E., Hessabi, S., and Sarbazi-Azad, H. 2008d. PERMAP: A performance-aware mapping for application-specific SoCs. In Proceedings of the International Conference on Application-Specific Systems, Architectures and Processors (ASAP'08). IEEE Computer Society, 73--78.
[60]
Kiasari, A. E., Jantsch, A., and Lu, Z. 2010. A framework for designing congestion-aware deterministic routing. In Proceedings of the 3rd International Workshop on Network-on-Chip Architectures (NoCArc'10). ACM Press, 45--50.
[61]
Kiasari, A. E., Lu, Z., and Jantsch, A. 2012. An analytical latency model for networks-on-chip. IEEE Trans. Very Large Scale Integ. (VLSI) Syst. To appear.
[62]
Kim, J. and Das, C. R. 1994. Hypercube communication delay with wormhole routing. IEEE Trans. Comput. 43, 7, 806--814.
[63]
Kim, B., Kim, J., Hong, S. J., and Lee, S. 1998. A real-time communication method for wormhole switching networks. In Proceedings of the International Conference on Parallel Processing (ICPP'98). IEEE Computer Society, 527--534.
[64]
Kim, J., Park, D., Nicopoulos, C., Vijaykrishnan, N., and Das, C. R. 2005. Design and analysis of an NoC architecture from performance, reliability and energy perspective. In Proceedings of the ACM Symposium on Architecture for Networking and Communications Systems (ANCS'05). ACM Press, 173--182.
[65]
Kim, H. and Hou, J. C. 2009. Enabling network calculus-based simulation for TCP congestion control. Comput. Netw. 53, 11--24.
[66]
Kleinrock, L. 1975. Queueing Systems, vol. 1., John Wiley, Hoboken, NJ.
[67]
Krimer, E., Keslassy, I., Kolodny, A., Walter, I., and Erez, M. 2011. Static timing analysis for modeling QoS in networks-on-chip. J. Parallel Distrib. Comput. 71, 5, 687--699.
[68]
Kumar, A., Mesman, B., Theelen, B. D., Corporaal, H., and Ha, Y. 2008. Analyzing composability of applications on MPSoC platforms. J. Syst. Architec. Embed. Syst. Design 54, 3--4, 369--383.
[69]
Lauwereins, R., Wauters, P., Ade, M., and Peperstraete, J. A. 1994. Geometric parallelism and cyclo-static data flow in GRAPE-II. In Proceedings of the International Workshop on Rapid System Prototyping. 90--107.
[70]
Le Boudec J.-Y. and Thiran, P. 2001. Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Springer-Verlag, Berlin.
[71]
Lee, E. A. and Messerschmitt, D. G. 1987a. Synchronous data flow. Proc. IEEE 75, 9, 1235--1245.
[72]
Lee, E. A. and Messerschmitt, D. G. 1987b. Static scheduling of synchronous data flow programs for digital signal processing. IEEE Trans. Comput. 36, 1, 24--35.
[73]
Lee, E. A. 1991. Consistency in dataflow graphs. IEEE Trans. Parallel Distrib. Syst. 2, 2, 223--235.
[74]
Lee, E. A. and Parks, T. M. 1995. Dataflow process networks. Proc. IEEE 83, 5, 773--799.
[75]
Lehoczky, J. P., Sha, L., and Ding, Y. 1989. The rate monotonic scheduling algorithm: Exact characterization and average case behavior. In Proceedings of the IEEE Real-Time Systems Symposium. 166--171.
[76]
Lehoczky, J. P. 1990. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Proceedings of the IEEE Real Time Systems Symposium. 201--209.
[77]
Leung, J. Y. T. and Whitehead, J. 1982. On the complexity of fixed priority scheduling of periodic, real-time tasks. Perf. Eval. 2, 4, 237--250.
[78]
Li, J.-P. and Mutka, M. W. 1994. Priority based real-time communication for large scale wormhole networks. In Proceedings of the 8th International Symposium on Parallel Processing. IEEE Computer Society, 433--438.
[79]
Li, J.-P. and Mutka, M. W. 1996. Real-time virtual channel flow control. J. Parallel Distrib. Comput. 32, 1, 49--65.
[80]
Lindley, D. V. 1952. The theory of queues with a single server. Proc. Cambridge Philoso. Soci. 48, 2, 277--289.
[81]
Liu C. L. and Layland, J. W. 1973. Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20, 1, 46--61.
[82]
Liu, J. W. S. 2000. Real-Time Systems 1st Ed. Prentice Hall, Upper Saddle River, NJ.
[83]
Lu, Z., Jantsch, A., and Sander, I. 2005. Feasibility analysis of messages for on-chip networks using wormhole routing. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC'05). ACM Press, 960--964.
[84]
Lu, Z., Millberg, M., Jantsch, A., Bruce, A., van der Wolf, P., and Henriksson, T. 2009. Flow regulation for on-chip communication. In Proceedings of the Design, Automation and Test in Europe Conference (DATE'09). 578--581.
[85]
Lu, Z. 2011. Cross clock-domain TDM virtual circuits for networks on chips. In Proceedings of the 5th ACM/IEEE International Symposium on Networks-on-Chip (NoCS'11). ACM Press, 209--216.
[86]
Manabe, Y. and Aoyagi, S. 1995. A feasibility decision algorithm for rate monotonic scheduling of periodic real-time tasks. In Proceedings of the Real-Time Technology and Applications Symposium (RTAS'95). IEEE Computer Society, 212--218.
[87]
Min, G. and Ould-Khaoua, M. 2004. A performance model for wormhole-switched interconnection networks under self-similar traffic. IEEE Trans. Comput. 53, 5, 601--613.
[88]
Moreira, O. M. and Bekooij, M. J. G. 2007. Self-timed scheduling analysis for real-time applications. EURASIP J. Adv. Signal Proces. Article Id: 083710.
[89]
Nelson, A., Hansson, A., Corporaal, H., and Goossens, K. 2010. Conservative application-level performance analysis through simulation of MPSoCs. In Proceedings of the 8th IEEE Workshop on Embedded Systems for Real-Time Multimedia. 51--60.
[90]
Odoni, A. and Roth, E. 1983. An empirical investigation of the transient behavior of stationary queueing systems. Oper. Res. 31, 432--455.
[91]
Ogras, U. Y., Bogdan, P., and Marculescu, R. 2010. An analytical approach for network-on-chip performance analysis. IEEE Trans. Comp.-Aided Des. Integ. Cir. Syst. 29, 12, 2001--2013.
[92]
Oh, D. and Bakker, T. P. 1998. Utilization bounds for n-processor rate monotone scheduling with static processor assignment. Real Time Syst. J. 15, 1, 183-193.
[93]
Oh, Y. and Son, S. H. 1995. Allocating fixed-priority periodic tasks on multiprocessor systems. Real-Time Syst. 9, 3, 207--239.
[94]
Pandit, K., Schmitt, J., and Steinmetz, R. 2004. Network calculus meets queueing theory - a simulation based approach to bounded queues. In Proceedings of the IEEE International Workshop on Quality of Service. 114--120.
[95]
Parhi, K. K. 1989. Algorithm transformation techniques for concurrent processors. Proc. IEEE 77, 12, 1879--1895.
[96]
Peng, D.-T. and Shin, K. G. 1993. A new performance measure for scheduling independent real-time tasks. J. Parallel Distrib. Comput. 19, 1, 11--26.
[97]
Pop, P., Eles, P., and Peng, Z. 2000. Schedulability analysis for systems with data and control dependencies. In Proceedings of the 12th Euromicro Conference on Real-Time Systems (RTS'00). IEEE Computer Society, 201--208.
[98]
Qian, Y., Lu, Z., and Dou, W. 2009a. Applying network calculus for performance analysis of self-similar traffic in on-chip networks. In Proceedings of the 7th IEEE/ACM International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS'09). ACM Press, 453--460.
[99]
Qian, Y., Lu, Z., and Dou, W. 2009b. Analysis of worst-case delay bounds for best-effort communication in wormhole networks on chip. In Proceedings of the 3rd ACM/IEEE International Symposium on Networks-on-Chip (NOCS'09). IEEE Computer Society, 44--53.
[100]
Qian, Y., Lu, Z., and Dou, W. 2009c. Worst case flit and packet delay bounds in wormhole networks on chip. IEICE Trans. Fundamentals Electron. Commun. Comput. Sci. Special Section on VLSI Design and CAD Algorithms E92-A, 12, 3211--3220.
[101]
Qian, Y., Lu, Z., and Dou, W. 2010a. Analysis of worst-case delay bounds for on-chip packet-switching networks. IEEE Trans. Comp.-Aided Des. Integ. Cir. Sys. 29, 5, 802--815.
[102]
Qian, Y., Lu, Z., and Dou, W. 2010b. QoS scheduling for NoCs: Strict priority queueing versus weighted round robin. In Proceedings of the 28th International Conference on Computer Design (ICCD'10). 52--59.
[103]
Rumbaugh, J. 1977. A data flow multiprocessor. IEEE Trans. Comput. 26, 2, 138--146.
[104]
Sathaye, S. S. and Strosnider, J. K. 1994. A real-time scheduling framework for packet-switched networks. In Proceedings of the IEEE International Conference on Distributed Computing. IEEE Computer Society, 182--191.
[105]
Scherrer, A., Fraboulet, A., and Risset, T. 2009. Long-range dependence and on-chip processor traffic. Microprocess. Microsyst. 33, 1, 72--80.
[106]
Schmitt, J. B. and Roedig, U. 2005. Sensor network calculus: A framework for worst case analysis. In Distributed Computing in Sensor Systems, Lecture Notes in Computer Science, vol. 3560, Springer, 141--154.
[107]
Schmitt, J. 2003. On average and worst case behaviour in non-preemptive priority queueing. In Proceedings of the International Symposium on Performance Evaluation of Computer and Telecommunication Systems. 197--204.
[108]
Sha, L., Lehoczky, J. P., and Rajkumar, R. 1986. Solutions for some practical problems in prioritized preemptive scheduling. In Proceedings of the IEEE Real-Time Systems Symposium.181--191.
[109]
She, H., Lu, Z., Jantsch, A., Zhou, D., and Zheng, L. 2009. Analytical evaluation of retransmission schemes in wireless sensor networks. In Proceedings of the 69th IEEE Vehicular Technology Conference (VTC'09).
[110]
Shi, Z. and Burns, A. 2008. Real-time communication analysis for on-chip networks with wormhole switching. In Proceedings of the 2nd ACM/IEEE International Symposium on Networks-on-Chip (NOCS'08). IEEE Computer Society, 161--170.
[111]
Shi, Z. and Burns, A. 2009. Real-time communication analysis with a priority share policy in on-chip networks. In Proceedings of the 21st Euromicro Conference on Real-Time Systems (ECRTS). IEEE Computer Society, 3--12.
[112]
Shi, Z. and Burns, A. 2010. Schedulability analysis and task mapping for real-time on-chip communication. Real-Time Syst. 46, 3, 360--385.
[113]
Sjodin, M. and Hansson, H. 1998. Improved response-time analysis calculations. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS'98). IEEE Computer Society, 399--409.
[114]
Song, H., Kwon, B., and Yoon, H. 1997. Throttle and preempt: A new flow control for real-time communications in wormhole networks. In Proceedings of the International Conference on Parallel Processing (ICPP'97). IEEE Computer Society, 198--202.
[115]
Soteriou, V., Wang, H., and Peh, L.-S. 2006. A statistical traffic model for on-chip interconnection networks. In Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation (MASCOTS'06). IEEE Computer Society, 104--116.
[116]
Sriram, S., and Bhattacharyya, S. S. 2009. Embedded Multiprocessors: Scheduling and Synchronization 2nd Ed. CRC Press, Boca Raton, FL.
[117]
Stiliadis, D. and Varma, A. 1998. Latency-rate servers: A general model for analysis of traffic scheduling algorithms. IEEE/ACM Trans. Netw. 6, 5, 611--624.
[118]
Stuijk, S., Geilen, M. C. W., and Basten, T. 2006. Exploring trade-offs in buffer requirements and throughput constraints for synchronous dataflow graphs. In Proceedings of the 43rd Annual Design Automation Conference (DAC'06). ACM Press, 899--904.
[119]
Stuijk, S., Geilen, M. C. W., Theelen, B. D., and Basten, T. 2011. Scenario-aware dataflow: Modeling, analysis and implementation of dynamic applications. In Proceedings of the International Conference on Embedded Computer Systems. 404--411.
[120]
Theelen, B. D., Geilen, M. C. W., Basten, T., Voeten, J. P. M., Gheorghita, S. V., and Stuijk, S. 2006. A scenario-aware data flow model for combined long-run average and worst-case performance analysis. In Proceedings of the International Conference on Formal Methods and Models for Co-Design. 185--194.
[121]
van As, H. R. 1986. Transient analysis of Markovian queueing systems and its application to congestion-control modeling. IEEE J. Select. Areas Commun. 4, 6, 891--904.
[122]
Varatkar, G. V. and Marculescu, R. 2004. On-chip traffic modeling and synthesis for MPEG-2 video applications. IEEE Trans. Very Large Scale Integr. Syst. 12, 1, 108--119.
[123]
Wang, J., Li, Y., and Peng, Q. 2011. A novel analytical model for network-on-chip using semi-Markov process. Adv. Elect. Comput. Eng. 11, 1, 111--118.
[124]
Wiggers, M. H., Bekooij, M. J. G., and Smit, G. J. M. 2007a. Modeling run-time arbitration by latency-rate servers in dataflow graphs. In Proceedings of the International Workshop on Software and Compilers for Embedded Systems. 11--22.
[125]
Wiggers, M. H., Bekooij, M. J. G., and Smit, G. J. M. 2007b. Efficient computation of buffer capacities for cyclo-static dataflow graphs. In Proceedings of the 44th Annual Design Automation Conference (DAC'07). ACM Press, 658--663.
[126]
Wiggers, M. H., Bekooij, M. J. G., and Smit, G. J. M. 2008. Buffer capacity computation for throughput constrained streaming applications with data-dependent inter-task communication. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'08). IEEE Computer Society, 183--194.
[127]
Wiggers, M. H., Bekooij, M. J. G., and Smit, G. J. M. 2011. Buffer capacity computation for throughput-constrained modal task graphs. ACM Trans. Embed. Comput. Syst. 10, 2, article 17.
[128]
Wu, J., Liu, J.-C., and Zhao, W. 2010. A general framework for parameterized schedulability bound analysis of real-time systems. IEEE Trans. Comput. 59, 6, 776--783.
[129]
Xuan, D., Bettati, R., Chen, J., Zhao, W., and Li, C. 2000. Utilization-based admission control for real-time applications. In Proceedings of the International Conference on Parallel Processing (ICPP'00). IEEE Computer Society, 251--262.
[130]
Yang, F. and Liu, J. 2010. Transient analysis of general queueing systems via simulation-based transfer function modeling, In Proceedings of the Winter Simulation Conference (WSC). IEEE Computer Society, 1110--1122.
[131]
Zhang, H. 1995. Service disciplines for guaranteed performance service in packet-switching networks. Proc. IEEE 83, 10, 1374--1396.

Cited By

View all
  • (2024)Machine learning-driven performance assessment of network-on-chip architecturesThe Journal of Supercomputing10.1007/s11227-024-06340-180:16(24483-24519)Online publication date: 1-Nov-2024
  • (2021)Performance survey of classic and Optic network‐on‐chipIET Circuits, Devices & Systems10.1049/cds2.1202515:4(393-402)Online publication date: 2-Mar-2021
  • (2020)Bounding the delays of the MPPA network-on-chip with network calculus: Models and benchmarksPerformance Evaluation10.1016/j.peva.2020.102124(102124)Online publication date: Jul-2020
  • Show More Cited By

Index Terms

  1. Mathematical formalisms for performance evaluation of networks-on-chip

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Computing Surveys
    ACM Computing Surveys  Volume 45, Issue 3
    June 2013
    575 pages
    ISSN:0360-0300
    EISSN:1557-7341
    DOI:10.1145/2480741
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 03 July 2013
    Accepted: 01 April 2012
    Revised: 01 August 2011
    Received: 01 April 2011
    Published in CSUR Volume 45, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. System-on-chip (SoC)
    2. analytical modeling
    3. network-on-chip (NoC)
    4. performance evaluation

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)33
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Machine learning-driven performance assessment of network-on-chip architecturesThe Journal of Supercomputing10.1007/s11227-024-06340-180:16(24483-24519)Online publication date: 1-Nov-2024
    • (2021)Performance survey of classic and Optic network‐on‐chipIET Circuits, Devices & Systems10.1049/cds2.1202515:4(393-402)Online publication date: 2-Mar-2021
    • (2020)Bounding the delays of the MPPA network-on-chip with network calculus: Models and benchmarksPerformance Evaluation10.1016/j.peva.2020.102124(102124)Online publication date: Jul-2020
    • (2019)Response time analysis of dataflow applications on a many-core processor with shared-memory and network-on-chipProceedings of the 27th International Conference on Real-Time Networks and Systems10.1145/3356401.3356416(61-69)Online publication date: 6-Nov-2019
    • (2019)Performance evaluation of HEVC RCL applications mapped onto NoC-based embedded platformsProceedings of the 32nd Symposium on Integrated Circuits and Systems Design10.1145/3338852.3339868(1-6)Online publication date: 26-Aug-2019
    • (2019)A Survey of Timing Verification Techniques for Multi-Core Real-Time SystemsACM Computing Surveys10.1145/332321252:3(1-38)Online publication date: 18-Jun-2019
    • (2019)Design Space Exploration of HEVC RCL Mapped onto NoC-Based Embedded Platforms2019 14th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC)10.1109/ReCoSoC48741.2019.9034970(1-8)Online publication date: Jul-2019
    • (2019)Implementing Digital Twins of Smart Factories with Interval Algebra2019 IEEE International Conference on Industrial Technology (ICIT)10.1109/ICIT.2019.8755026(941-948)Online publication date: Feb-2019
    • (2019)NoCs in Heterogeneous 3D SoCs: Co-Design of Routing Strategies and MicroarchitecturesIEEE Access10.1109/ACCESS.2019.29421297(135145-135163)Online publication date: 2019
    • (2019)Side-channel protected MPSoC through secure real-time networks-on-chipMicroprocessors & Microsystems10.1016/j.micpro.2019.04.00468:C(34-46)Online publication date: 1-Jul-2019
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media