Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

Stress-Induced Performance Shifts in 3D DRAMs

Published: 26 June 2019 Publication History

Abstract

3D-stacked DRAMs can significantly increase cell density and bandwidth while also lowering power consumption. However, 3D structures experience significant thermomechanical stress due to the differential rate of contraction of the constituent materials, which have different coefficients of thermal expansion. This impacts circuit performance. This article develops a procedure that performs a performance analysis of 3D DRAMs, capturing the impact of both layout-aware stress and layout-independent stress on parameters such as latency, leakage power, refresh power, area, and bus delay. The approach first proposes a semianalytical stress analysis method for the entire 3D DRAM structure, capturing the stress induced by through-silicon-vias (TSVs), micro bumps, package bumps, and warpage. Next, this stress is translated to variations in device mobility and threshold voltage, after which analytical models for latency, leakage power, and refresh power are derived. Finally, a complete analysis of performance variations is performed for various 3D DRAM layout configurations to assess the impact of layout-dependent stress. We explore the use of alternative flexible package substrate options to mitigate the performance impact of stress. Specifically, we explore the use of an alternative bendable package substrate made of polyimide to reduce warpage-induced stress, and show that it reduces stress-induced variations and improves the performance metrics for stacked 3D DRAMs.

References

[1]
C. Herring and E. Vogt. 1956. Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 3 (1956), 944--961.
[2]
C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, and A. Javey. 2013. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12, 10 (2013), 899--904.
[3]
C. F. Coombs and H. T. Holden. 2008. Printed Circuits Handbook. McGraw-Hill, New York, NY.
[4]
C. S. Tan, K.-N. Chen, and S. J. Koester. 2012. 3D Integration for VLSI Systems. Pan Stanford, Singapore.
[5]
D.-U. Jin, J.-S. Lee, T.-W. Kim, S.-G. An, D. Straykhilev, Y.-S. Pyo, H.-S. Kim, D.-B. Lee, Y.-G. Mo, H.-D. Kim, and H.-K. Chung. 2009. World-largest (6.5”) flexible full color top emission AMOLED display on plastic film and its bending properties. In Proceedings of SID Symposium Digest of Technical Papers. 983--985.
[6]
D. U. Lee, K. W. Kim, K. W. Kim, K. S. Lee, S. J. Byeon, J. H. Kim, J. H. Cho, J. Lee, and J. H. Chun. 2015. A 1.2 V 8 Gb 8-channel 128 GB/s high-bandwidth memory (HBM) stacked DRAM with effective I/O test circuits. IEEE J. Solid-State Circuits 50, 1 (2015), 191--203.
[7]
E. Cantatore. 2013. Applications of Organic and Printed Electronics. Springer, New York, NY.
[8]
J. Burghartz. 2010. Ultra-Thin Chip Technology and Applications. Springer, New York, NY.
[9]
J. Macri. 2015. AMD’s next generation GPU and high bandwidth memory architecture: FURY. In Proceedings of IEEE Hot Chips Symposium. 1--26.
[10]
J. H. Lienhard IV and J. H. Lienhard V. 2011. A Heat Transfer Textbook. Dover Publications, Inc, Mineola, NY.
[11]
J.-K. Kim, C. S. Oh, H. Lee, D. Lee, H. R. Hwang, S. Hwang, B. Na, J. Moon, J.-G. Kim, H. Park, J.-W. Ryu, K. Park, S. K. Kang, S.-Y. Kim, H. Kim, J.-M. Bang, H. Cho, M. Jang, C. Han, J.-B. Lee, J. S. Choi, and Y.-H. Jun. 2012. A 1.2 V 12.8 GB/s 2 Gb mobile wide-I/O DRAM with 4 × 128 I/Os using TSV based stacking. IEEE J. Solid-State Circuits 47, 1 (2012), 107--116.
[12]
J. T. Pawlowski. 2011. Hybrid memory cube (HMC). In Proceedings of IEEE Hot Chips Symposium. 1--24.
[13]
K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. 2012. CACTI-3DD: Architecture-level modeling for 3D die-stacked DRAM main memory. In Proceedings of IEEE Design, Automation and Test in Europe. 33--38.
[14]
M. Hasegawa, and S. Horii. 2007. Low-CTE polyimides derived from 2,3,6,7-naphthalenetetracarboxylic dianhydride. Polym. J. 39, 6 (2007), 610--621.
[15]
M. Jung, D. Z. Pan, and S. K. Lim. 2013. Chip/package mechanical stress impact on 3-D IC reliability and mobility variations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32, 11 (2013), 1694--1707.
[16]
M. Jung, J. Mitra, D. Z. Pan, and S. K. Lim. 2014. TSV stress-aware full-chip mechanical reliability analysis and optimization for 3D IC. Commun. ACM 57, 1 (2014), 107--115.
[17]
P. Garrou, C. Bower, and P. Ramm. 2011. Handbook of 3D Integration, Volume 1: Technology and Applications of 3D Integrated Circuits. Wiley, Weinheim, Germany.
[18]
P. Montméat, T. Enot, G. L. De Oliveira, and F. Fournel. 2018. Polymer bonding temperature impact on bonded stack morphology and adherence energy. Microsyst. Technol. 24, 1 (2018), 793--799.
[19]
Q. Zou, T. Zhang, E. Kursun, and Y. Xie. 2013. Thermomechanical stress-aware management for 3D IC designs. In Proceedings of IEEE Design, Automation and Test in Europe. 1255--1258.
[20]
R. C. Jaeger, J. C. Suhling, R. Ramani, A. T. Bradley, and J. Xu. 2000. CMOS stress sensors on {100} silicon. IEEE J. Solid-State Circuits 35, 1 (2000), 85--95.
[21]
R. C. Teixeira, K. De Munck, P. De Moor, K. Baert, B. Swinnen, C. Van Hoof, and A. Knüttel. 2008. Stress analysis on ultra thin ground wafers. J. Integr. Circuits Syst. 3, 2 (2008), 83--89.
[22]
S. Diaham, F. Saysouk, M.-L. Locatelli, B. Belkerk, Y. Scudeller, R. Chiriac, F. Toche, and V. Salles. 2015. Thermal conductivity of polyimide/boron nitride nanocomposite films. J. Appl. Polym. Sci. 132, 34 (2015), 42461--1--42461--9.
[23]
S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. 2008. CACTI 5.1. Technical Report HPL-2008-20. HP Labs, Palo Alto, CA.
[24]
S. Thoziyoor, N. Muralimanohar, J. H. Ahn, S. Wilton, and N. Jouppi. 2009. CACTI tools. Retrieved from http://www.hpl.hp.com/research/cacti/.
[25]
S. K. Marella and S. S. Sapatnekar. 2015. A holistic analysis of circuit performance variations in 3D-ICs with thermal and TSV-induced stress considerations. IEEE Trans. VLSI Syst. 23, 7 (2015), 1308--1321.
[26]
T. Zhang, C. Xu, K. Chen, G. Sun, and Y. Xie. 2014. 3D-SWIFT: A high-performance 3D-stacked wide IO DRAM. In Proceedings of ACM Great Lakes Symposium on VLSI. 51--56.
[27]
T.-L. Li and S. L.-C. Hsu. 2010. Enhanced thermal conductivity of polyimide films via a hybrid of micro-and nano-sized boron nitride. J. Phys. Chem. B 114, 20 (2010), 6825--6829.
[28]
U. Kang, H.-J. Chung, S. Heo, D.-H. Park, H. Lee, J. H. Kim, S.-H. Ahn, S.-H. Cha, J. Ahn, D. Kwon, J.-W. Lee, H.-S. Joo, W.-S. Kim, D. H. Jang, N. S. Kim, J.-H. Choi, T.-G. Chung, J.-H. Yoo, J. S. Choi, C. Kim, and Y. H. Jun. 2010. 8 Gb 3-D DDR3 DRAM using through-silicon-via technology. IEEE J. Solid-State Circuits 45, 1 (2010), 111--119.
[29]
W. Kim, D.-H. Kim, H. I. Hong, L. Milor, and S. K. Lim. 2014. Impact of die partitioning on reliability and yield of 3D DRAM. In Proceedings of IEEE Interconnect Technology Conference/Advanced Metallization Conference. 389--392.
[30]
W. Zhang and J. G. Fossum. 2005. On the threshold voltage of strained-Si-Si1-xGex mosfets. IEEE Trans. Electron Devices 52, 2 (2005), 263--268.
[31]
W. Zhang, M. Ha, D. Braga, M. J. Renn, C. D. Frisbie, and C. H. Kim. 2011. A 1V printed organic DRAM cell based on ion-gel gated transistors with a sub-10nW-per-cell refresh power. In Proceedings of IEEE Solid-State Circuits Conference Digest of Technical Papers. 326--328.
[32]
Y. Sun, S. E. Thompson, and T. Nishida. 2007. Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 101, 10 (2007), 104503--1--104503--22.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems  Volume 24, Issue 5
September 2019
282 pages
ISSN:1084-4309
EISSN:1557-7309
DOI:10.1145/3339837
  • Editor:
  • Naehyuck Chang
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 26 June 2019
Accepted: 01 May 2019
Revised: 01 March 2019
Received: 01 November 2018
Published in TODAES Volume 24, Issue 5

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 3D DRAMs
  2. Stress
  3. finite element analysis
  4. package substrate
  5. performance analysis
  6. wide I/O

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 1,044
    Total Downloads
  • Downloads (Last 12 months)239
  • Downloads (Last 6 weeks)33
Reflects downloads up to 22 Dec 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media