554 results sorted by ID
Possible spell-corrected query: commitment
Post-Quantum Threshold Ring Signature Applications from VOLE-in-the-Head
James Hsin-Yu Chiang, Ivan Damgård, William R. Duro, Sunniva Engan, Sebastian Kolby, Peter Scholl
Public-key cryptography
We propose efficient, post-quantum threshold ring signatures constructed from one-wayness of AES encryption and the VOLE-in-the-Head zero-knowledge proof system. Our scheme scales efficiently to large rings and extends the linkable ring signatures paradigm. We define and construct key-binding deterministic tags for signature linkability, that also enable succinct aggregation with approximate lower bound arguments of knowledge; this allows us to achieve succinct aggregation of our signatures...
Integer Commitments, Old and New Tools
Iftach Haitner, Yehuda Lindell, Nikolaos Makriyannis
Public-key cryptography
This self-contained and detailed tutorial covers RSA-based integer commitments and related protocols. It also presents a new, highly efficient setup protocol for sampling commitment parameters.
Keyed-Verification Anonymous Credentials with Highly Efficient Partial Disclosure
Omid Mirzamohammadi, Jan Bobolz, Mahdi Sedaghat, Emad Heydari Beni, Aysajan Abidin, Dave Singelee, Bart Preneel
Cryptographic protocols
An anonymous credential (AC) system with partial disclosure allows users to prove possession of a credential issued by an issuer while selectively disclosing a subset of their attributes to a verifier in a privacy-preserving manner. In keyed-verification AC (KVAC) systems, the issuer and verifier share a secret key. Existing KVAC schemes rely on computationally expensive zero-knowledge proofs during credential presentation, with the presentation size growing linearly with the number of...
Cauchyproofs: Batch-Updatable Vector Commitment with Easy Aggregation and Application to Stateless Blockchains
Zhongtang Luo, Yanxue Jia, Alejandra Victoria Ospina Gracia, Aniket Kate
Cryptographic protocols
Stateless blockchain designs have emerged to address the challenge of growing blockchain size using succinct global states. Previous works have developed vector commitments that support proof updates and aggregation to be used as such states. However, maintaining proofs for multiple users still demands significant computational resources, particularly to update proofs with every transaction. This paper introduces Cauchyproofs, a batch-updatable vector commitment that enables proof-serving...
Cryptographic Commitments on Anonymizable Data
Xavier Bultel, Céline Chevalier, Charlène Jojon, Diandian Liu, Benjamin Nguyen
Cryptographic protocols
Local Differential Privacy (LDP) mechanisms consist of (locally) adding controlled noise to data in order to protect the privacy of their owner. In this paper, we introduce a new cryptographic primitive called LDP commitment. Usually, a commitment ensures that the committed value cannot be modified before it is revealed. In the case of an LDP commitment, however, the value is revealed after being perturbed by an LDP mechanism. Opening an LDP commitment therefore requires a proof that the...
Orbweaver: Succinct Linear Functional Commitments from Lattices
Ben Fisch, Zeyu Liu, Psi Vesely
Public-key cryptography
We present Orbweaver, a plausibly post-quantum functional commitment for linear relations that achieves quasilinear prover time together with $O(\log n)$ proof size and polylogarithmic verifier time. Orbweaver enables evaluation of linear functions on committed vectors over cyclotomic rings and the integers. It is extractable, preprocessing, non-interactive, structure-preserving, and supports compact public proof aggregation. The security of our scheme is based on the $k$-$R$-ISIS assumption...
Mira: Efficient Folding for Pairing-based Arguments
Josh Beal, Ben Fisch
Cryptographic protocols
Pairing-based arguments offer remarkably small proofs and space-efficient provers, but aggregating such proofs remains costly. Groth16 SNARKs and KZG polynomial commitments are prominent examples of this class of arguments. These arguments are widely deployed in decentralized systems, with millions of proofs generated per day. Recent folding schemes have greatly reduced the cost of proving incremental computations, such as batch proof verification. However, existing constructions require...
Proof of Time: A Method for Verifiable Temporal Commitments Without Timestamp Disclosure
Alexander John Lee
Cryptographic protocols
This paper introduces a cryptographic method that enables users to prove that an event occurred in the past and that a specified amount of time has since elapsed, without disclosing the exact timestamp of the event. The method leverages zero-knowledge proofs and an on-chain Incremental Merkle Tree to store hash commitments. By utilizing the Poseidon hash function and implementing zero-knowledge circuits in Noir, this approach ensures both the integrity and confidentiality of temporal information.
ZK-SNARKs for Ballot Validity: A Feasibility Study
Nicolas Huber, Ralf Kuesters, Julian Liedtke, Daniel Rausch
Cryptographic protocols
Electronic voting (e-voting) systems have become more prevalent in recent years, but security concerns have also increased, especially regarding the privacy and verifiability of votes. As an essential ingredient for constructing secure e-voting systems, designers often employ zero-knowledge proofs (ZKPs), allowing voters to prove their votes are valid without revealing them. Invalid votes can then be discarded to protect verifiability without compromising the privacy of valid...
Hybrid Zero-Knowledge from Garbled Circuits
Masayuki Abe, Miguel Ambrona, Miyako Ohkubo
Cryptographic protocols
We present techniques for constructing zero-knowledge argument systems from garbled circuits, extending the GC-to-ZK compiler by Jawurek, Kerschbaum, and Orlandi (ACM CCS 2023) and the GC-to-Σ compiler by Hazay and Venkitasubramaniam (J. Crypto, 2020) to the following directions:
- Our schemes are hybrid, commit-and-prove zero-knowledge argument systems that establish a connection between secrets embedded in algebraic commitments and a relation represented by a Boolean circuit.
- Our...
Black-Box Timed Commitments from Time-Lock Puzzles
Hamza Abusalah, Gennaro Avitabile
Cryptographic protocols
A Timed Commitment (TC) with time parameter $t$ is hiding for time at most $t$, that is, commitments can be force-opened by any third party within time $t$. In addition to various cryptographic assumptions, the security of all known TC schemes relies on the sequentiality assumption of repeated squarings in hidden-order groups. The repeated squaring assumption is therefore a security bottleneck.
In this work, we give a black-box construction of TCs from any time-lock puzzle (TLP) by...
Critical Round in Multi-Round Proofs: Compositions and Transformation to Trapdoor Commitments
Masayuki Abe, David Balbás, Dung Bui, Miyako Ohkubo, Zehua Shang, Mehdi Tibouchi
Public-key cryptography
In many multi-round public-coin interactive proof systems, challenges in different rounds serve different roles, but a formulation that actively utilizes this aspect has not been studied extensively. In this paper, we propose new notions called critical-round special honest verifier zero-knowledge and critical-round special soundness. Our notions are simple, intuitive, easy to apply, and capture several practical multi-round proof protocols including, but not limited to, those from the...
DEEP Commitments and Their Applications
Alan Szepieniec
Cryptographic protocols
This note studies a method of committing to a polynomial in a way that allows executions of low degree tests such as FRI to be batched and even deferred. In particular, it achieves (unlimited-depth) aggregation for STARKs.
Arc: Accumulation for Reed--Solomon Codes
Benedikt Bünz, Pratyush Mishra, Wilson Nguyen, William Wang
Public-key cryptography
Proof-Carrying Data (PCD) is a foundational tool for ensuring the correctness of incremental distributed computations that has found numerous applications in theory and practice. The state-of-the-art PCD constructions are obtained via accumulation or folding schemes. Unfortunately, almost all known constructions of accumulation schemes rely on homomorphic vector commitments (VCs), which results in relatively high computational costs and insecurity in the face of quantum adversaries. A recent...
CountCrypt: Quantum Cryptography between QCMA and PP
Eli Goldin, Tomoyuki Morimae, Saachi Mutreja, Takashi Yamakawa
Foundations
We construct a quantum oracle relative to which $\mathbf{BQP}=\mathbf{QCMA}$ but quantum-computation-classical-communication (QCCC) key exchange, QCCC commitments, and two-round quantum key distribution exist. We also construct an oracle relative to which $\mathbf{BQP}=\mathbf{QMA}$, but quantum lightning (a stronger variant of quantum money) exists. This extends previous work by Kretschmer [Kretschmer, TQC22], which showed that there is a quantum oracle relative to which...
Dumbo-MPC: Efficient Fully Asynchronous MPC with Optimal Resilience
Yuan Su, Yuan Lu, Jiliang Li, Yuyi Wang, Chengyi Dong, Qiang Tang
Cryptographic protocols
Fully asynchronous multi-party computation (AMPC) has superior robustness in realizing privacy and guaranteed output delivery (G.O.D.) against asynchronous adversaries that can arbitrarily delay communications. However, none of these protocols are truly practical, as they either have sub-optimal resilience, incur cumbersome communication cost, or suffer from an online phase with extra cryptographic overhead. The only attempting implementation---HoneyBadgerMPC (hbMPC)---merely ensures G.O.D....
Consensus on SNARK pre-processed circuit polynomials
Jehyuk Jang
Applications
This paper addresses verifiable consensus of pre-processed circuit polynomials for succinct non-interactive argument of knowledge (SNARK). More specifically, we focus on parts of circuits, referred to as wire maps, which may change based on program inputs or statements being argued. Preparing commitments to wire maps in advance is essential for certain SNARK protocols to maintain their succinctness, but it can be costly. SNARK verifiers can alternatively consider receiving wire maps from an...
zkFFT: Extending Halo2 with Vector Commitments & More
Aram Jivanyan, Gohar Hovhannisyan, Hayk Hovhannisyan, Nerses Asaturyan
Cryptographic protocols
This paper introduces zkFFT, a novel zero-knowledge argument designed to efficiently generate proofs for FFT (Fast Fourier Transform) relations. Our approach enables the verification that one committed vector is the FFT of another, addressing an efficiency need in general-purpose non-interactive zero-knowledge proof systems where the proof relation utilizes vector commitments inputs.
We present a concrete enhancement to the Halo2 proving system, demonstrating how zkFFT optimizes proofs in...
Structure-Preserving Compressing Primitives: Vector Commitments, Accumulators and Applications
Stephan Krenn, Omid Mir, Daniel Slamanig
Public-key cryptography
Compressing primitives such as accumulators and vector commitments, allow to rep- resent large data sets with some compact, ideally constant-sized value. Moreover, they support operations like proving membership or non-membership with minimal, ideally also constant- sized, storage and communication overhead. In recent years, these primitives have found numerous practical applications, with many constructions based on various hardness assumptions. So far, however, it has been elusive to...
Oracle Separation Between Quantum Commitments and Quantum One-wayness
John Bostanci, Boyang Chen, Barak Nehoran
Foundations
We show that there exists a unitary quantum oracle relative to which quantum commitments exist but no (efficiently verifiable) one-way state generators exist. Both have been widely considered candidates for replacing one-way functions as the minimal assumption for cryptography—the weakest cryptographic assumption implied by all of computational cryptography. Recent work has shown that commitments can be constructed from one-way state generators, but the other direction has remained open. Our...
Dynamic zk-SNARKs
Weijie Wang, Charalampos Papamanthou, Shravan Srinivasan, Dimitrios Papadopoulos
Cryptographic protocols
In this work, we put forth the notion of dynamic zk-SNARKs. A dynamic zk-SNARK is a zk-SNARK that has an additional update algorithm. The update algorithm takes as input a valid source statement-witness pair $(x,w)\in \mathcal{L}$ along with a verifying proof $\pi$, and a valid target statement-witness pair $(x',w')\in \mathcal{L}$. It outputs a verifying proof $\pi'$ for $(x',w')$ in sublinear time (for $(x,w)$ and $(x',w')$ with small Hamming distance) potentially with the help of a data...
Revisiting Keyed-Verification Anonymous Credentials
Michele Orrù
Cryptographic protocols
Keyed-verification anonymous credentials are widely recognized as among the most efficient tools for anonymous authentication. In this work, we revisit two prominent credential systems: the scheme by Chase et al. (CCS 2014), commonly referred to as CMZ or PS MAC, and the scheme by Barki et al. (SAC 2016), known as BBDT or BBS MAC. We show how to make CMZ statistically anonymous and BBDT compatible with the BBS RFC draft. We provide a comprehensive security analysis for strong(er) properties...
Fully-Succinct Arguments over the Integers from First Principles
Matteo Campanelli, Mathias Hall-Andersen
Cryptographic protocols
Succinct arguments of knowledge allow an untrusted prover to establish that they know a witness for an NP relation. Many recent efficient constructions of such schemes work over arithmetic computations expressed in finite fields.
Several common settings, however, have an extremely simple representation when expressed over the integers (e.g., RSA signatures/accumulators, range checks for committed values, computations over rational numbers). Efficient arguments of knowledge working natively...
Quantum Cryptography from Meta-Complexity
Taiga Hiroka, Tomoyuki Morimae
Foundations
In classical cryptography, one-way functions (OWFs) are the minimal assumption, while recent active studies have demonstrated that OWFs are not necessarily the minimum assumption in quantum cryptography. Several new primitives have been introduced such as pseudorandom unitaries (PRUs), pseudorandom function-like state generators (PRFSGs), pseudorandom state generators (PRSGs), one-way state generators (OWSGs), one-way puzzles (OWPuzzs), and EFI pairs. They are believed to be weaker than...
Cryptographic Characterization of Quantum Advantage
Tomoyuki Morimae, Yuki Shirakawa, Takashi Yamakawa
Foundations
Quantum computational advantage refers to an existence of computational tasks that are easy for quantum computing but hard for classical one. Unconditionally showing quantum advantage is beyond our current understanding of complexity theory, and therefore some computational assumptions are needed. Which complexity assumption is necessary and sufficient for quantum advantage? In this paper, we show that inefficient-verifier proofs of quantumness (IV-PoQ) exist if and only if...
Hard Quantum Extrapolations in Quantum Cryptography
Luowen Qian, Justin Raizes, Mark Zhandry
Foundations
Although one-way functions are well-established as the minimal primitive for classical cryptography, a minimal primitive for quantum cryptography is still unclear. Universal extrapolation, first considered by Impagliazzo and Levin (1990), is hard if and only if one-way functions exist. Towards better understanding minimal assumptions for quantum cryptography, we study the quantum analogues of the universal extrapolation task. Specifically, we put forth the classical$\rightarrow$quantum...
Founding Quantum Cryptography on Quantum Advantage, or, Towards Cryptography from $\#\mathsf{P}$-Hardness
Dakshita Khurana, Kabir Tomer
Foundations
Recent oracle separations [Kretschmer, TQC'21, Kretschmer et. al., STOC'23] have raised the tantalizing possibility of building quantum cryptography from sources of hardness that persist even if the polynomial hierarchy collapses. We realize this possibility by building quantum bit commitments and secure computation from unrelativized, well-studied mathematical problems that are conjectured to be hard for $\mathsf{P}^{\#\mathsf{P}}$ -- such as approximating the permanents of complex Gaussian...
Asynchronous Verifiable Secret Sharing with Elastic Thresholds and Distributed Key Generation
Junming Li, Zhi Lu, Renfei Shen, Yuanqing Feng, Songfeng Lu
Public-key cryptography
Distributed Key Generation (DKG) is a technique that enables the generation of threshold cryptography keys among a set of mutually untrusting nodes. DKG generates keys for a range of decentralized applications such as threshold signatures, multiparty computation, and Byzantine consensus. Over the past five years, research on DKG has focused on optimizing network communication protocols to improve overall system efficiency by reducing communication complexity. However, SOTA asynchronous...
The Black-Box Simulation Barrier Persists in a Fully Quantum World
Nai-Hui Chia, Kai-Min Chung, Xiao Liang, Jiahui Liu
Foundations
Zero-Knowledge (ZK) protocols have been a subject of intensive study due to their fundamental importance and versatility in modern cryptography. However, the inherently different nature of quantum information significantly alters the landscape, necessitating a re-examination of ZK designs.
A crucial aspect of ZK protocols is their round complexity, intricately linked to $\textit{simulation}$, which forms the foundation of their formal definition and security proofs. In the...
VECTIS: Efficient Batching Framework for Group-based CP-SNARKs
Byeongjun Jang, Gweonho Jeong, Hyuktae Kwon, Hyunok Oh, Jihye Kim
Cryptographic protocols
Blockchain applications in finance and identity management increasingly require scalable and privacy-preserving solutions. Cryptographic commitments secure sensitive data on-chain, but verifying properties of these commitments efficiently remains challenging, particularly in large-scale scenarios. For multiple commitments, CP-SNARKs, a family of zk-SNARKs, enhance prover efficiency by shifting large-cost operations outside the circuit and verifying linkages between commitments, but incur...
New Techniques for Preimage Sampling: Improved NIZKs and More from LWE
Brent Waters, Hoeteck Wee, David J. Wu
Foundations
Recent constructions of vector commitments and non-interactive zero-knowledge (NIZK) proofs from LWE implicitly solve the following /shifted multi-preimage sampling problem/: given matrices $\mathbf{A}_1, \ldots, \mathbf{A}_\ell \in \mathbb{Z}_q^{n \times m}$ and targets $\mathbf{t}_1, \ldots, \mathbf{t}_\ell \in \mathbb{Z}_q^n$, sample a shift $\mathbf{c} \in \mathbb{Z}_q^n$ and short preimages $\boldsymbol{\pi}_1, \ldots, \boldsymbol{\pi}_\ell \in \mathbb{Z}_q^m$ such that $\mathbf{A}_i...
A Documentation of Ethereum’s PeerDAS
Benedikt Wagner, Arantxa Zapico
Public-key cryptography
Data availability sampling allows clients to verify availability of data on a peer-to-peer network provided by an untrusted source. This is achieved without downloading the full data by sampling random positions of the encoded data.
The long-term vision of the Ethereum community includes a comprehensive data availability protocol using polynomial commitments and tensor codes. As the next step towards this vision, an intermediate solution called PeerDAS is about to integrated, to bridge...
Direct Range Proofs for Paillier Cryptosystem and Their Applications
Zhikang Xie, Mengling Liu, Haiyang Xue, Man Ho Au, Robert H. Deng, Siu-Ming Yiu
Public-key cryptography
The Paillier cryptosystem is renowned for its applications in electronic voting, threshold ECDSA, multi-party computation, and more, largely due to its additive homomorphism. In these applications, range proofs for the Paillier cryptosystem are crucial for maintaining security, because of the mismatch between the message space in the Paillier system and the operation space in application scenarios.
In this paper, we present novel range proofs for the Paillier cryptosystem, specifically...
Greyhound: Fast Polynomial Commitments from Lattices
Ngoc Khanh Nguyen, Gregor Seiler
Cryptographic protocols
In this paper, we propose Greyhound, the first concretely efficient polynomial commitment scheme from standard lattice assumptions. At the core of our construction lies a simple three-round protocol for proving evaluations for polynomials of bounded degree $N$ with verifier time complexity $O(\sqrt{N})$. By composing it with the LaBRADOR proof system (CRYPTO 2023), we obtain a succinct proof of polynomial evaluation (i.e. polylogarithmic in $N$) that admits a sublinear verifier...
Improved Polynomial Division in Cryptography
Kostas Kryptos Chalkias, Charanjit Jutla, Jonas Lindstrom, Varun Madathil, Arnab Roy
Cryptographic protocols
Several cryptographic primitives, especially succinct proofs of various forms, transform the satisfaction of high-level properties to the existence of a polynomial quotient between a polynomial that interpolates a set of values with a cleverly arranged divisor. Some examples are SNARKs, like Groth16, and polynomial commitments, such as KZG. Such a polynomial division naively takes $O(n \log n)$ time with Fast Fourier Transforms, and is usually the asymptotic bottleneck for these...
Improved YOSO Randomness Generation with Worst-Case Corruptions
Chen-Da Liu-Zhang, Elisaweta Masserova, João Ribeiro, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Cryptographic protocols
We study the problem of generating public unbiased randomness in a distributed manner within the recent You Only Speak Once (YOSO) framework for stateless multiparty computation, introduced by Gentry et al. in CRYPTO 2021. Such protocols are resilient to adaptive denial-of-service attacks and are, by their stateless nature, especially attractive in permissionless environments. While most works in the YOSO setting focus on independent random corruptions, we consider YOSO protocols with...
Succinct Non-Subsequence Arguments
San Ling, Khai Hanh Tang, Khu Vu, Huaxiong Wang, Yingfei Yan
Public-key cryptography
Lookup arguments have recently attracted a lot of developments due to their applications in the constructions of succinct non-interactive arguments of knowledge (SNARKs). A closely related topic is subsequence arguments in which one can prove that string $\mathbf{s}$ is a subsequence of another string $\mathbf{t}$, i.e., deleting some characters in $\mathbf{t}$ can achieve $\mathbf{s}$. A dual notion, namely, non-subsequence arguments, is to prove that $\mathbf{s}$ is not a subsequence of...
Garuda and Pari: Faster and Smaller SNARKs via Equifficient Polynomial Commitments
Michel Dellepere, Pratyush Mishra, Alireza Shirzad
Cryptographic protocols
SNARKs are powerful cryptographic primitives that allow a prover to produce a succinct proof of a computation. Two key goals of SNARK research are to minimize the size of the proof and to minimize the time required to generate the proof. In this work, we present new SNARK constructions that push the frontier on both of these goals.
Our first construction, Pari, is a SNARK that achieves the smallest proof size amongst *all* known SNARKs. Specifically, Pari achieves a proof size...
Efficient and Privacy-Preserving Collective Remote Attestation for NFV
Ghada Arfaoui, Thibaut Jacques, Cristina Onete
Cryptographic protocols
The virtualization of network functions is a promising technology, which can enable mobile network operators to provide more flexibility and better resilience for their infrastructure and services. Yet, virtualization comes with challenges, as 5G operators will require a means of verifying the state of the virtualized network components (e.g. Virtualized Network Functions (VNFs) or managing hypervisors) in order to fulfill security and privacy commitments. One such means is the use of...
SIGNITC: Supersingular Isogeny Graph Non-Interactive Timed Commitments
Knud Ahrens
Public-key cryptography
Non-Interactive Timed Commitment schemes (NITC) allow to open any commitment after a specified delay $t_{\mathrm{fd}}$. This is useful for sealed bid auctions and as primitive for more complex protocols. We present the first NITC without repeated squaring or theoretical black box algorithms like NIZK proofs or one-way functions. It has fast verification, almost arbitrary delay and satisfies IND-CCA hiding and perfect binding. Our protocol is based on isogenies between supersingular elliptic...
Mova: Nova folding without committing to error terms
Nikolaos Dimitriou, Albert Garreta, Ignacio Manzur, Ilia Vlasov
Cryptographic protocols
We present Mova, a folding scheme for R1CS instances that does not require committing to error or cross terms, nor makes use of the sumcheck protocol. We compute concrete costs and provide benchmarks showing that, for reasonable parameter choices, Mova's Prover is about $5$ to $10$ times faster than Nova's Prover, and about $1.05$ to $1.3$ times faster than Hypernova's Prover (applied to R1CS instances) -- assuming the R1CS witness vector contains only small elements. Mova's Verifier has a...
AQQUA: Augmenting Quisquis with Auditability
George Papadoulis, Danai Balla, Panagiotis Grontas, Aris Pagourtzis
Applications
We propose AQQUA: a digital payment system that combines auditability and privacy. AQQUA extends Quisquis by adding two authorities; one for registration and one for auditing. These authorities do not intervene in the everyday transaction processing; as a consequence, the decentralized nature of the cryptocurrency is not disturbed. Our construction is account-based. An account consists of an updatable public key which functions as a cryptographically unlinkable pseudonym, and of commitments...
Enabling Complete Atomicity for Cross-chain Applications Through Layered State Commitments
Yuandi Cai, Ru Cheng, Yifan Zhou, Shijie Zhang, Jiang Xiao, Hai Jin
Applications
Cross-chain Decentralized Applications (dApps) are increasingly popular for their ability to handle complex tasks across various blockchains, extending beyond simple asset transfers or swaps. However, ensuring all dependent transactions execute correctly together, known as complete atomicity, remains a challenge. Existing works provide financial atomicity, protecting against monetary loss, but lack the ability to ensure correctness for complex tasks. In this paper, we introduce Avalon, a...
Insta-Pok3r: Real-time Poker on Blockchain
Sanjam Garg, Aniket Kate, Pratyay Mukherjee, Rohit Sinha, Sriram Sridhar
Cryptographic protocols
We develop a distributed service for generating correlated randomness (e.g. permutations) for multiple parties, where each party’s output is private but publicly verifiable. This service provides users with a low-cost way to play online poker in real-time, without a trusted party.
Our service is backed by a committee of compute providers, who run a multi-party computation (MPC) protocol to produce an (identity-based) encrypted permutation of a deck of cards, in an offline phase well ahead...
Adaptor Signatures: New Security Definition and A Generic Construction for NP Relations
Xiangyu Liu, Ioannis Tzannetos, Vassilis Zikas
Public-key cryptography
An adaptor signatures (AS) scheme is an extension of digital signatures that allows the signer to generate a pre-signature for an instance of a hard relation. This pre-signature can later be adapted to a full signature with a corresponding witness. Meanwhile, the signer can extract a witness from both the pre-signature and the signature. AS have recently garnered more attention due to its scalability and interoperability. Dai et al. [INDOCRYPT 2022] proved that AS can be constructed for any...
A Practical Protocol for Quantum Oblivious Transfer from One-Way Functions
Eleni Diamanti, Alex B. Grilo, Adriano Innocenzi, Pascal Lefebvre, Verena Yacoub, Álvaro Yángüez
Cryptographic protocols
We present a new simulation-secure quantum oblivious transfer (QOT) protocol based on one-way functions in the plain model. With a focus on practical implementation, our protocol surpasses prior works in efficiency, promising feasible experimental realization. We address potential experimental errors and their correction, offering analytical expressions to facilitate the analysis of the required quantum resources. Technically, we achieve simulation security for QOT through an equivocal and...
Tempora-Fusion: Time-Lock Puzzle with Efficient Verifiable Homomorphic Linear Combination
Aydin Abadi
To securely transmit sensitive information into the future, Time-Lock Puzzles (TLPs) have been developed. Their applications include scheduled payments, timed commitments, e-voting, and sealed-bid auctions. Homomorphic TLP is a key variant of TLP that enables computation on puzzles from different clients. This allows a solver/server to tackle only a single puzzle encoding the computation's result. However, existing homomorphic TLPs lack support for verifying the correctness of the...
Relaxed Vector Commitment for Shorter Signatures
Seongkwang Kim, Byeonghak Lee, Mincheol Son
Public-key cryptography
MPC-in-the-Head (MPCitH) has recently gained traction as a foundation for post-quantum signature schemes, offering robust security without trapdoors. Despite its strong security profile, MPCitH-based schemes suffer from high computational overhead and large signature sizes, limiting their practical application.
This work addresses these inefficiencies by relaxing vector commitments within MPCitH-based schemes. We introduce the concept of vector semi-commitment, which relaxes the binding...
Certifying Private Probabilistic Mechanisms
Zoë Ruha Bell, Shafi Goldwasser, Michael P. Kim, Jean-Luc Watson
Cryptographic protocols
In past years, entire research communities have arisen to address concerns of privacy and fairness in data analysis. At present, however, the public must trust that institutions will re-implement algorithms voluntarily to account for these social concerns. Due to additional cost, widespread adoption is unlikely without effective legal enforcement. A technical challenge for enforcement is that the methods proposed are often probabilistic mechanisms, whose output must be drawn according to...
Multi-Hop Multi-Key Homomorphic Signatures with Context Hiding from Standard Assumptions
Abtin Afshar, Jiaqi Cheng, Rishab Goyal
Public-key cryptography
Fully homomorphic signatures are a significant strengthening of digital signatures, enabling computations on \emph{secretly} signed data. Today, we have multiple approaches to design fully homomorphic signatures such as from lattices, or succinct functional commitments, or indistinguishability obfuscation, or mutable batch arguments. Unfortunately, all existing constructions for homomorphic signatures suffer from one or more limitations. We do not have homomorphic signatures with features...
Fully-Succinct Multi-Key Homomorphic Signatures from Standard Assumptions
Gaspard Anthoine, David Balbás, Dario Fiore
Foundations
Multi-Key Homomorphic Signatures (MKHS) allow one to evaluate a function on data signed by distinct users while producing a succinct and publicly-verifiable certificate of the correctness of the result. All the constructions of MKHS in the state of the art achieve a weak level of succinctness where signatures are succinct in the total number of inputs but grow linearly with the number of users involved in the computation. The only exception is a SNARK-based construction which relies on a...
Distributing Keys and Random Secrets with Constant Complexity
Benny Applebaum, Benny Pinkas
Cryptographic protocols
In the *Distributed Secret Sharing Generation* (DSG) problem $n$ parties wish to obliviously sample a secret-sharing of a random value $s$ taken from some finite field, without letting any of the parties learn $s$. *Distributed Key Generation* (DKG) is a closely related variant of the problem in which, in addition to their private shares, the parties also generate a public ``commitment'' $g^s$ to the secret. Both DSG and DKG are central primitives in the domain of secure multiparty...
Simulation-Extractable KZG Polynomial Commitments and Applications to HyperPlonk
Benoit Libert
Cryptographic protocols
HyperPlonk is a recent SNARK proposal (Eurocrypt'23) that features a linear-time prover and supports custom gates of larger degree than Plonk. For the time being, its instantiations are only proven to be knowledge-sound (meaning that soundness is only guaranteed when the prover runs in isolation) while many applications motivate the stronger notion of simulation-extractability (SE). Unfortunately, the most efficient SE compilers are not immediately applicable to multivariate polynomial...
Multivariate Multi-Polynomial Commitment and its Applications
Xiao Yang, Chengru Zhang, Mark Ryan, Gao Meng
Cryptographic protocols
We introduce and formally define Multivariate Multi-Polynomial (MMP) commitment, a commitment scheme on multiple multivariate polynomials, and illustrate the concept with an efficient construction, which enjoys constant commitment size and logarithmic proof size. We further enhance our MMP scheme to achieve the zero-knowledge property.
Additionally, combined with a novel zero-knowledge range proof for Pedersen subvector commitment, we present a Zero-Knowledge Range Proof (ZKRP) for MMP...
Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy
David Pointcheval
Cryptographic protocols
Universal verifiability is a must-to-have for electronic voting schemes. It is essential to ensure honest behavior of all the players during the whole process, together with the eligibility. However, it should not endanger the privacy of the individual votes, which is another major requirement.
Whereas the first property prevents attacks during the voting process, privacy of the votes should hold forever, which has been called everlasting privacy.
A classical approach for universal...
Real-world Universal zkSNARKs are non-malleable
Antonio Faonio, Dario Fiore, Luigi Russo
Cryptographic protocols
Simulation extractability is a strong security notion of zkSNARKs that guarantees that an attacker who produces a valid proof must know the corresponding witness, even if the attacker had prior access to proofs generated by other users. Notably, simulation extractability implies that proofs are non-malleable and is of fundamental importance for applications of zkSNARKs in distributed systems. In this work, we study sufficient and necessary conditions for constructing simulation-extractable...
Succinct Functional Commitments for Circuits from k-Lin
Hoeteck Wee, David J. Wu
Foundations
A functional commitment allows a user to commit to an input $\mathbf{x}$ and later, open the commitment to an arbitrary function $\mathbf{y} = f(\mathbf{x})$. The size of the commitment and the opening should be sublinear in $|\mathbf{x}|$ and $|f|$.
In this work, we give the first pairing-based functional commitment for arbitrary circuits where the size of the commitment and the size of the opening consist of a constant number of group elements. Security relies on the standard bilateral...
Universal Vector Commitments
Ojaswi Acharya, Foteini Baldimtsi, Samuel Dov Gordon, Daniel McVicker, Aayush Yadav
Cryptographic protocols
We propose a new notion of vector commitment schemes with proofs of (non-)membership that we call universal vector commitments. We show how to build them directly from (i) Merkle commitments, and (ii) a universal accumulator and a plain vector commitment scheme. We also present a generic construction for universal accumulators over large domains from any vector commitment scheme, using cuckoo hashing. Leveraging the aforementioned generic constructions, we show that universal vector...
Succinctly Verifiable Computation over Additively-Homomorphically Encrypted Data with Applications to Privacy-Preserving Blueprints
Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, Meghna Sengupta
Cryptographic protocols
With additively homomorphic encryption (AHE), one can compute, from input ciphertexts $\mathsf{Enc}(x_1),\ldots,\mathsf{Enc}(x_n)$, and additional inputs $y_1,\ldots,y_k$, a ciphertext $c_\textit{f}=\mathsf{Enc}(f(x_1,\ldots,x_n,y_1,\ldots, y_k))$ for any polynomial $f$ in which each monomial has total degree at most $1$ in the $x$-variables (but can be arbitrary in the $y$-variables). For AHE that satisfies a set of natural requirements, we give a non-interactive zero-knowledge proof...
Implementation and Performance Analysis of Homomorphic Signature Schemes
Davide Carnemolla, Dario Catalano, Mario Di Raimondo, Federico Savasta
Implementation
Homomorphic signatures allow to validate computation on signed data. Alice, holding a dataset, $\{m_1 , \ldots , m_t \}$ uses her secret key $\sf sk$ to sign these data and stores the authenticated dataset on a remote server. The server can later (publicly) compute $m = f(m_1,...,m_t)$ together with a signature $\sigma$ certifying that $m$ is indeed the correct output of the computation $f$. Over the last fifteen years, the problem of realizing homomorphic signatures has been the focus of...
Lattice-Based Succinct Mercurial Functional Commitment for Boolean Circuits: Definitions and Constructions
Hongxiao Wang, Siu-Ming Yiu, Yanmin Zhao, Zoe L. Jiang, Min Xie
Foundations
Vector commitments (VC) have gained significant attention due to their extensive use in applications such as blockchain and accumulators. Mercurial vector commitments (MVC) and mercurial functional commitments (MFC), as variants of VC, are central techniques for constructing more advanced cryptographic primitives, such as zero-knowledge sets and zero-knowledge functional elementary databases (ZK-FEDB). However, existing MFCs $\textit{only support linear functions}$, which limits their...
Hadamard Product Argument from Lagrange-Based Univariate Polynomials
Jie Xie, Yuncong Hu, Yu Yu
Cryptographic protocols
Hadamard product is a point-wise product for two vectors. This paper presents a new scheme to prove Hadamard-product relation as a sub-protocol for SNARKs based on univariate polynomials. Prover uses linear cryptographic operations to generate the proof containing logarithmic field elements. The verification takes logarithmic cryptographic operations with constant numbers of pairings in bilinear group. The construction of the scheme is based on the Lagrange-based KZG commitments (Kate,...
Practical Delegatable Attribute-Based Anonymous Credentials with Chainable Revocation
Min Xie, Peichen Ju, Yanqi Zhao, Zoe Lin Jiang, Junbin Fang, Yong Yu, Xuan Wang, Man Ho Au
Cryptographic protocols
Delegatable Anonymous Credentials (DAC) are an enhanced Anonymous Credentials (AC) system that allows credential owners to use credentials anonymously, as well as anonymously delegate them to other users. In this work, we introduce a new concept called Delegatable Attribute-based Anonymous Credentials with Chainable Revocation (DAAC-CR), which extends the functionality of DAC by allowing 1) fine-grained attribute delegation, 2) issuers to restrict the delegation capabilities of the delegated...
Classical Commitments to Quantum States
Sam Gunn, Yael Tauman Kalai, Anand Natarajan, Agi Villanyi
Cryptographic protocols
We define the notion of a classical commitment scheme to quantum states, which allows a quantum prover to compute a classical commitment to a quantum state, and later open each qubit of the state in either the standard or the Hadamard basis. Our notion is a strengthening of the measurement protocol from Mahadev (STOC 2018). We construct such a commitment scheme from the post-quantum Learning With Errors (LWE) assumption, and more generally from any noisy trapdoor claw-free function family...
Avoiding Trusted Setup in Isogeny-based Commitments
Gustave Tchoffo Saah, Tako Boris Fouotsa, Emmanuel Fouotsa, Célestin Nkuimi-Jugnia
Cryptographic protocols
In 2021, Sterner proposed a commitment scheme based on supersingular isogenies. For this scheme to be binding, one relies on a trusted party to generate a starting supersingular elliptic curve of unknown endomorphism ring. In fact, the knowledge of the endomorphism ring allows one to compute an endomorphism of degree a power of a given small prime. Such an endomorphism can then be split into two to obtain two different messages with the same commitment. This is the reason why one needs a...
Two-Round Threshold Signature from Algebraic One-More Learning with Errors
Thomas Espitau, Shuichi Katsumata, Kaoru Takemure
Cryptographic protocols
Threshold signatures have recently seen a renewed interest due to applications in cryptocurrency while NIST has released a call for multi-party threshold schemes, with a deadline for submission expected for the first half of 2025. So far, all lattice-based threshold signatures requiring less than two-rounds are based on heavy tools such as (fully) homomorphic encryption (FHE) and homomorphic trapdoor commitments (HTDC). This is not unexpected considering that most efficient two-round...
Reckle Trees: Updatable Merkle Batch Proofs with Applications
Charalampos Papamanthou, Shravan Srinivasan, Nicolas Gailly, Ismael Hishon-Rezaizadeh, Andrus Salumets, Stjepan Golemac
Cryptographic protocols
We propose Reckle trees, a new vector commitment based on succinct RECursive arguments and MerKLE trees. Reckle trees' distinguishing feature is their support for succinct batch proofs that are updatable - enabling new applications in the blockchain setting where a proof needs to be computed and efficiently maintained over a moving stream of blocks. Our technical approach is based on embedding the computation of the batch hash inside the recursive Merkle verification via a hash-based...
Accumulation without Homomorphism
Benedikt Bünz, Pratyush Mishra, Wilson Nguyen, William Wang
Cryptographic protocols
Accumulation schemes are a simple yet powerful primitive that enable highly efficient constructions of incrementally verifiable computation (IVC). Unfortunately, all prior accumulation schemes rely on homomorphic vector commitments whose security is based on public-key assumptions.
It is an interesting open question to construct efficient accumulation schemes that avoid the need for such assumptions.
In this paper, we answer this question affirmatively by constructing an accumulation...
Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures
Rutchathon Chairattana-Apirom, Stefano Tessaro, Chenzhi Zhu
Cryptographic protocols
This paper gives the first lattice-based two-round threshold signature based on lattice assumptions for which the first message is independent of the message being signed without relying on fully-homomorphic encryption, and our construction supports arbitrary thresholds.
Our construction provides a careful instantiation of a generic threshold signature construction by Tessaro and Zhu (EUROCRYPT ’23) based on specific linear hash functions, which in turns can be seen as a generalization of...
Practical Lattice-Based Distributed Signatures for a Small Number of Signers
Nabil Alkeilani Alkadri, Nico Döttling, Sihang Pu
Public-key cryptography
$n$-out-of-$n$ distributed signatures are a special type of threshold $t$-out-of-$n$ signatures. They are created by a group of $n$ signers, each holding a share of the secret key, in a collaborative way. This kind of signatures has been studied intensively in recent years, motivated by different applications such as reducing the risk of compromising secret keys in cryptocurrencies. Towards maintaining security in the presence of quantum adversaries, Damgård et al. (J Cryptol 35(2), 2022)...
Atomic and Fair Data Exchange via Blockchain
Ertem Nusret Tas, István András Seres, Yinuo Zhang, Márk Melczer, Mahimna Kelkar, Joseph Bonneau, Valeria Nikolaenko
Cryptographic protocols
We introduce a blockchain Fair Data Exchange (FDE) protocol, enabling a storage server to transfer a data file to a client atomically: the client receives the file if and only if the server receives an agreed-upon payment. We put forth a new definition for a cryptographic scheme that we name verifiable encryption under committed key (VECK), and we propose two instantiations for this scheme. Our protocol relies on a blockchain to enforce the atomicity of the exchange and uses VECK to ensure...
Stateless and Verifiable Execution Layer for Meta-Protocols on Bitcoin
Hongbo Wen, Hanzhi Liu, Shuyang Tang, Tianyue Li, Shuhan Cao, Domo, Yanju Chen, Yu Feng
Applications
The Bitcoin ecosystem has continued to evolve beyond its initial promises of decentralization, transparency, and security. Recent advancements have notably been made with the integration of Layer-2 solutions, which address scalability issues by offloading transactions from the main blockchain. This facilitates faster and more cost-effective transactions while maintaining integrity. The advent of inscriptions and ordinal protocols has further broadened the spectrum of capabilities, enabling...
On Central Primitives for Quantum Cryptography with Classical Communication
Kai-Min Chung, Eli Goldin, Matthew Gray
Foundations
Recent work has introduced the "Quantum-Computation Classical-Communication"
(QCCC) (Chung et. al.) setting for cryptography. There has been some evidence that
One Way Puzzles (OWPuzz) are the natural central cryptographic primitive for this
setting (Khurana and Tomer). For a primitive to be considered central it should
have several characteristics. It should be well behaved (which for this paper we will
think of as having amplification, combiners, and universal constructions); it...
An Efficient Hash Function for Imaginary Class Groups
Kostas Kryptos Chalkias, Jonas Lindstrøm, Arnab Roy
Implementation
This paper presents a new efficient hash function for imaginary class groups. Many class group based protocols, such as verifiable delay functions, timed commitments and accumulators, rely on the existence of an efficient and secure hash function, but there are not many concrete constructions available in the literature, and existing constructions are too inefficient for practical use cases.
Our novel approach, building on Wesolowski's initial scheme, achieves a 200 fold increase in...
Polynomial Commitments from Lattices: Post-Quantum Security, Fast Verification and Transparent Setup
Valerio Cini, Giulio Malavolta, Ngoc Khanh Nguyen, Hoeteck Wee
Cryptographic protocols
Polynomial commitment scheme allows a prover to commit to a polynomial $f \in \mathcal{R}[X]$ of degree $L$, and later prove that the committed function was correctly evaluated at a specified point $x$; in other words $f(x)=u$ for public $x,u \in\mathcal{R}$. Most applications of polynomial commitments, e.g. succinct non-interactive arguments of knowledge (SNARKs), require that (i) both the commitment and evaluation proof are succinct (i.e., polylogarithmic in the degree $L$) - with the...
Extractable Witness Encryption for KZG Commitments and Efficient Laconic OT
Nils Fleischhacker, Mathias Hall-Andersen, Mark Simkin
Cryptographic protocols
We present a concretely efficient and simple extractable witness encryption scheme for KZG polynomial commitments.
It allows to encrypt a message towards a triple $(\mathsf{com}, \alpha, \beta)$, where $\mathsf{com}$ is a KZG commitment for some polynomial $f$.
Anyone with an opening for the commitment attesting $f(\alpha) = \beta$ can decrypt, but without knowledge of a valid opening the message is computationally hidden.
Our construction is simple and highly efficient. The ciphertext is...
Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions
Rafael del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, Markku-Juhani Saarinen
Cryptographic protocols
Threshold signatures improve both availability and security of digital signatures by splitting the signing key into $N$ shares handed out to different parties. Later on, any subset of at least $T$ parties can cooperate to produce a signature on a given message. While threshold signatures have been extensively studied in the pre-quantum setting, they remain sparse from quantum-resilient assumptions.
We present the first efficient lattice-based threshold signatures with signature size 13...
Zero-Knowledge Proofs of Training for Deep Neural Networks
Kasra Abbaszadeh, Christodoulos Pappas, Jonathan Katz, Dimitrios Papadopoulos
Cryptographic protocols
A zero-knowledge proof of training (zkPoT) enables a party to prove that they have correctly trained a committed model based on a committed dataset without revealing any additional information about the model or the dataset. An ideal zkPoT should offer provable security and privacy guarantees, succinct proof size and verifier runtime, and practical prover efficiency. In this work, we present \name, a zkPoT targeted for deep neural networks (DNNs) that achieves all these goals at once. Our...
HiSE: Hierarchical (Threshold) Symmetric-key Encryption
Pousali Dey, Pratyay Mukherjee, Swagata Sasmal, Rohit Sinha
Cryptographic protocols
Threshold symmetric encryption (TSE), introduced by Agrawal et al. [DiSE, CCS 2018], provides scalable and decentralized solution for symmetric encryption by ensuring that the secret-key stays distributed at all times. They avoid having a single point of attack or failure, while achieving the necessary security requirements. TSE was further improved by Christodorescu et al. [ATSE, CCS 2021] to support an amortization feature which enables a “more privileged” client to encrypt records in bulk...
How (not) to hash into class groups of imaginary quadratic fields?
István András Seres, Péter Burcsi, Péter Kutas
Secret-key cryptography
Class groups of imaginary quadratic fields (class groups for short) have seen a resurgence in cryptography as transparent groups of unknown order. They are a prime candidate for being a trustless alternative to RSA groups because class groups do not need a (distributed) trusted setup to sample a cryptographically secure group of unknown order. Class groups have recently found many applications in verifiable secret sharing, secure multiparty computation, transparent polynomial commitments,...
Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis
Hoeteck Wee, David J. Wu
Foundations
A functional commitment allows a user to commit to an input $\mathbf{x} \in \{0,1\}^\ell$ and later open up the commitment to a value $y = f(\mathbf{x})$ with respect to some function $f$. In this work, we focus on schemes that support fast verification. Specifically, after a preprocessing step that depends only on $f$, the verification time as well as the size of the commitment and opening should be sublinear in the input length $\ell$, We also consider the dual setting where the user...
Updatable, Aggregatable, Succinct Mercurial Vector Commitment from Lattice
Hongxiao Wang, Siu-Ming Yiu, Yanmin Zhao, Zoe L. Jiang
Foundations
Vector commitments (VC) and their variants attract a lot of attention due to their wide range of usage in applications such as blockchain and accumulator. Mercurial vector commitment (MVC), as one of the important variants of VC, is the core technique for building more complicated cryptographic applications, such as the zero-knowledge set (ZKS) and zero-knowledge elementary database (ZK-EDB). However, to the best of our knowledge, the only post-quantum MVC construction is trivially implied...
Unconditionally Secure Commitments with Quantum Auxiliary Inputs
Tomoyuki Morimae, Barak Nehoran, Takashi Yamakawa
Foundations
We show the following unconditional results on quantum commitments in two related yet different models:
1. We revisit the notion of quantum auxiliary-input commitments introduced by Chailloux, Kerenidis, and Rosgen (Comput. Complex. 2016) where both the committer and receiver take the same quantum state, which is determined by the security parameter,
as quantum auxiliary inputs. We show that computationally-hiding and statistically-binding quantum auxiliary-input commitments exist...
Unconditionally secure quantum commitments with preprocessing
Luowen Qian
Cryptographic protocols
We demonstrate how to build computationally secure commitment schemes with the aid of quantum auxiliary inputs without unproven complexity assumptions. Furthermore, the quantum auxiliary input can be either sampled in uniform exponential time or prepared in at most doubly exponential time, without relying on an external trusted third party. Classically, this remains impossible without first proving $\mathsf{P} \neq \mathsf{NP}$.
Vector Commitments with Efficient Updates
Ertem Nusret Tas, Dan Boneh
Cryptographic protocols
Dynamic vector commitments that enable local updates of opening proofs have applications ranging from verifiable databases with membership changes to stateless clients on blockchains. In these applications, each user maintains a relevant subset of the committed messages and the corresponding opening proofs with the goal of ensuring a succinct global state. When the messages are updated, users are given some global update information and update their opening proofs to match the new vector...
Pairing-Free Blind Signatures from Standard Assumptions in the ROM
Julia Kastner, Ky Nguyen, Michael Reichle
Public-key cryptography
Blind Signatures are a useful primitive for privacy preserving applications such as electronic payments, e-voting, anonymous credentials, and more.
However, existing practical blind signature schemes based on standard assumptions require either pairings or lattices. We present the first practical construction of a round-optimal blind signature in the random oracle model based on standard assumptions without resorting to pairings or lattices. In particular, our construction is secure under...
Fully Malicious Authenticated PIR
Marian Dietz, Stefano Tessaro
Cryptographic protocols
Authenticated PIR enables a server to initially commit to a database of $N$ items, for which a client can later privately obtain individual items with complexity sublinear in $N$, with the added guarantee that the retrieved item is consistent with the committed database. A crucial requirement is privacy with abort, i.e., the server should not learn anything about a query even if it learns whether the client aborts.
This problem was recently considered by Colombo et al. (USENIX '23), who...
Robust Combiners and Universal Constructions for Quantum Cryptography
Taiga Hiroka, Fuyuki Kitagawa, Ryo Nishimaki, Takashi Yamakawa
Foundations
A robust combiner combines many candidates for a cryptographic primitive and generates a new candidate for the same primitive. Its correctness and security hold as long as one of the original candidates satisfies correctness and security. A universal construction is a closely related notion to a robust combiner. A universal construction for a primitive is an explicit construction of the primitive that is correct and secure as long as the primitive exists. It is known that a universal...
Dora: A Simple Approach to Zero-Knowledge for RAM Programs
Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk
Cryptographic protocols
Existing protocols for proving the correct execution of a RAM program in zero-knowledge are plagued by a processor expressiveness tradeoff: supporting fewer instructions results in smaller processor circuits (which improves performance), but may result in more program execution steps because non-supported instruction must be emulated over multiple processor steps (diminishing performance).
We present Dora, a very simple and concretely efficient zero-knowledge protocol for RAM programs...
Pseudorandom Isometries
Prabhanjan Ananth, Aditya Gulati, Fatih Kaleoglu, Yao-Ting Lin
Foundations
We introduce a new notion called ${\cal Q}$-secure pseudorandom isometries (PRI). A pseudorandom isometry is an efficient quantum circuit that maps an $n$-qubit state to an $(n+m)$-qubit state in an isometric manner. In terms of security, we require that the output of a $q$-fold PRI on $\rho$, for $ \rho \in {\cal Q}$, for any polynomial $q$, should be computationally indistinguishable from the output of a $q$-fold Haar isometry on $\rho$.
By fine-tuning ${\cal Q}$, we recover many...
On the Security of Succinct Interactive Arguments from Vector Commitments
Alessandro Chiesa, Marcel Dall'Agnol, Ziyi Guan, Nicholas Spooner
Foundations
We study the security of a fundamental family of succinct interactive arguments in the standard model, stemming from the works of Kilian (1992) and Ben-Sasson, Chiesa, and Spooner (``BCS'', 2016). These constructions achieve succinctness by combining probabilistic proofs and vector commitments.
Our first result concerns the succinct interactive argument of Kilian, realized with any probabilistically-checkable proof (PCP) and any vector commitment. We establish the tightest known bounds on...
Malleable Commitments from Group Actions and Zero-Knowledge Proofs for Circuits based on Isogenies
Mingjie Chen, Yi-Fu Lai, Abel Laval, Laurane Marco, Christophe Petit
Cryptographic protocols
Zero-knowledge proofs for NP statements are an essential tool
for building various cryptographic primitives and have been extensively
studied in recent years. In a seminal result from Goldreich, Micali and
Wigderson (JACM'91), zero-knowledge proofs for NP statements can be built
from any one-way function, but this construction leads very inefficient
proofs. To yield practical constructions, one often uses the additional
structure provided by homomorphic commitments.
In this paper, we...
$\Pi$: A Unified Framework for Verifiable Secret Sharing
Karim Baghery
Foundations
An $(n, t)$-Verifiable Secret Sharing (VSS) scheme allows a dealer to share a secret among $n$ parties, s.t. all the parties can verify the validity of their shares and only a set of them, i.e., more than $t$, can access the secret. In this paper, we present $\Pi$, as a unified framework for building VSS schemes in the honest majority setting. Notably, $\Pi$ does not rely on homomorphic commitments; instead requires a random oracle and any commitment scheme that extra to its core attributes...
Commitments from Quantum One-Wayness
Dakshita Khurana, Kabir Tomer
Foundations
One-way functions are central to classical cryptography. They are both necessary for the existence of non-trivial classical cryptosystems, and sufficient to realize meaningful primitives including commitments, pseudorandom generators and digital signatures. At the same time, a mounting body of evidence suggests that assumptions even weaker than one-way functions may suffice for many cryptographic tasks of interest in a quantum world, including bit commitments and secure multi-party...
The Uber-Knowledge Assumption: A Bridge to the AGM
Balthazar Bauer, Pooya Farshim, Patrick Harasser, Markulf Kohlweiss
Foundations
The generic-group model (GGM) and the algebraic-group model (AGM) have been exceptionally successful in proving the security of many classical and modern cryptosystems. These models, however, come with standard-model uninstantiability results, raising the question whether the schemes analyzed under them can be based on firmer standard-model footing.
We formulate the uber-knowledge (UK) assumption, a standard-model assumption that naturally extends the uber-assumption family to...
Jackpot: Non-Interactive Aggregatable Lotteries
Nils Fleischhacker, Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner
Public-key cryptography
In proof-of-stake blockchains, liveness is ensured by repeatedly selecting random groups of parties as leaders, who are then in charge of proposing new blocks and driving consensus forward.
The lotteries that elect those leaders need to ensure that adversarial parties are not elected disproportionately often and that an adversary can not tell who was elected before those parties decide to speak, as this would potentially allow for denial-of-service attacks.
Whenever an elected party...
Cornucopia: Distributed randomness beacons at scale
Miranda Christ, Kevin Choi, Joseph Bonneau
Cryptographic protocols
We propose Cornucopia, a distributed randomness beacon protocol combining accumulators and verifiable delay functions. Cornucopia extends the Unicorn protocol of Lenstra and Wesolowski, utilizing an accumulator to enable efficient verification by each participant that their randomness contribution has been included in the beacon output. The output is unpredictable as long as at least one participant is honest, yielding a highly scalable distributed randomness beacon with strong security...
Unclonable Commitments and Proofs
Vipul Goyal, Giulio Malavolta, Justin Raizes
Foundations
Non-malleable cryptography, proposed by Dolev, Dwork, and Naor (SICOMP '00), has numerous applications in protocol composition. In the context of proofs, it guarantees that an adversary who receives a proof cannot maul it into another valid proof. However, non-malleable cryptography (particularly in the non-interactive setting) suffers from an important limitation: An attacker can always copy the proof and resubmit it to another verifier (or even multiple verifiers).
In this work, we...
Naysayer proofs
István András Seres, Noemi Glaeser, Joseph Bonneau
Applications
This work introduces the notion of naysayer proofs. We observe that in numerous (zero-knowledge) proof systems, it is significantly more efficient for the verifier to be convinced by a so-called naysayer that a false proof is invalid than it is to check that a genuine proof is valid. We show that every NP language has constant-size and constant-time naysayer proofs. We also show practical constructions for several example proof systems, including FRI polynomial commitments, post-quantum...
Zero-Knowledge Systems from MPC-in-the-Head and Oblivious Transfer
Cyprien Delpech de Saint Guilhem, Ehsan Ebrahimi, Barry van Leeuwen
Cryptographic protocols
Zero-knowledge proof or argument systems for generic NP statements (such as circuit satisfiability) have typically been instantiated with cryptographic commitment schemes; this implies that the security of the proof system (e.g., computational or statistical) depends on that of the chosen commitment scheme. The MPC-in-the-Head paradigm (Ishai et al., JoC 2009) uses the same approach to construct zero-knowledge systems from the simulated execution of secure multiparty computation...
We propose efficient, post-quantum threshold ring signatures constructed from one-wayness of AES encryption and the VOLE-in-the-Head zero-knowledge proof system. Our scheme scales efficiently to large rings and extends the linkable ring signatures paradigm. We define and construct key-binding deterministic tags for signature linkability, that also enable succinct aggregation with approximate lower bound arguments of knowledge; this allows us to achieve succinct aggregation of our signatures...
This self-contained and detailed tutorial covers RSA-based integer commitments and related protocols. It also presents a new, highly efficient setup protocol for sampling commitment parameters.
An anonymous credential (AC) system with partial disclosure allows users to prove possession of a credential issued by an issuer while selectively disclosing a subset of their attributes to a verifier in a privacy-preserving manner. In keyed-verification AC (KVAC) systems, the issuer and verifier share a secret key. Existing KVAC schemes rely on computationally expensive zero-knowledge proofs during credential presentation, with the presentation size growing linearly with the number of...
Stateless blockchain designs have emerged to address the challenge of growing blockchain size using succinct global states. Previous works have developed vector commitments that support proof updates and aggregation to be used as such states. However, maintaining proofs for multiple users still demands significant computational resources, particularly to update proofs with every transaction. This paper introduces Cauchyproofs, a batch-updatable vector commitment that enables proof-serving...
Local Differential Privacy (LDP) mechanisms consist of (locally) adding controlled noise to data in order to protect the privacy of their owner. In this paper, we introduce a new cryptographic primitive called LDP commitment. Usually, a commitment ensures that the committed value cannot be modified before it is revealed. In the case of an LDP commitment, however, the value is revealed after being perturbed by an LDP mechanism. Opening an LDP commitment therefore requires a proof that the...
We present Orbweaver, a plausibly post-quantum functional commitment for linear relations that achieves quasilinear prover time together with $O(\log n)$ proof size and polylogarithmic verifier time. Orbweaver enables evaluation of linear functions on committed vectors over cyclotomic rings and the integers. It is extractable, preprocessing, non-interactive, structure-preserving, and supports compact public proof aggregation. The security of our scheme is based on the $k$-$R$-ISIS assumption...
Pairing-based arguments offer remarkably small proofs and space-efficient provers, but aggregating such proofs remains costly. Groth16 SNARKs and KZG polynomial commitments are prominent examples of this class of arguments. These arguments are widely deployed in decentralized systems, with millions of proofs generated per day. Recent folding schemes have greatly reduced the cost of proving incremental computations, such as batch proof verification. However, existing constructions require...
This paper introduces a cryptographic method that enables users to prove that an event occurred in the past and that a specified amount of time has since elapsed, without disclosing the exact timestamp of the event. The method leverages zero-knowledge proofs and an on-chain Incremental Merkle Tree to store hash commitments. By utilizing the Poseidon hash function and implementing zero-knowledge circuits in Noir, this approach ensures both the integrity and confidentiality of temporal information.
Electronic voting (e-voting) systems have become more prevalent in recent years, but security concerns have also increased, especially regarding the privacy and verifiability of votes. As an essential ingredient for constructing secure e-voting systems, designers often employ zero-knowledge proofs (ZKPs), allowing voters to prove their votes are valid without revealing them. Invalid votes can then be discarded to protect verifiability without compromising the privacy of valid...
We present techniques for constructing zero-knowledge argument systems from garbled circuits, extending the GC-to-ZK compiler by Jawurek, Kerschbaum, and Orlandi (ACM CCS 2023) and the GC-to-Σ compiler by Hazay and Venkitasubramaniam (J. Crypto, 2020) to the following directions: - Our schemes are hybrid, commit-and-prove zero-knowledge argument systems that establish a connection between secrets embedded in algebraic commitments and a relation represented by a Boolean circuit. - Our...
A Timed Commitment (TC) with time parameter $t$ is hiding for time at most $t$, that is, commitments can be force-opened by any third party within time $t$. In addition to various cryptographic assumptions, the security of all known TC schemes relies on the sequentiality assumption of repeated squarings in hidden-order groups. The repeated squaring assumption is therefore a security bottleneck. In this work, we give a black-box construction of TCs from any time-lock puzzle (TLP) by...
In many multi-round public-coin interactive proof systems, challenges in different rounds serve different roles, but a formulation that actively utilizes this aspect has not been studied extensively. In this paper, we propose new notions called critical-round special honest verifier zero-knowledge and critical-round special soundness. Our notions are simple, intuitive, easy to apply, and capture several practical multi-round proof protocols including, but not limited to, those from the...
This note studies a method of committing to a polynomial in a way that allows executions of low degree tests such as FRI to be batched and even deferred. In particular, it achieves (unlimited-depth) aggregation for STARKs.
Proof-Carrying Data (PCD) is a foundational tool for ensuring the correctness of incremental distributed computations that has found numerous applications in theory and practice. The state-of-the-art PCD constructions are obtained via accumulation or folding schemes. Unfortunately, almost all known constructions of accumulation schemes rely on homomorphic vector commitments (VCs), which results in relatively high computational costs and insecurity in the face of quantum adversaries. A recent...
We construct a quantum oracle relative to which $\mathbf{BQP}=\mathbf{QCMA}$ but quantum-computation-classical-communication (QCCC) key exchange, QCCC commitments, and two-round quantum key distribution exist. We also construct an oracle relative to which $\mathbf{BQP}=\mathbf{QMA}$, but quantum lightning (a stronger variant of quantum money) exists. This extends previous work by Kretschmer [Kretschmer, TQC22], which showed that there is a quantum oracle relative to which...
Fully asynchronous multi-party computation (AMPC) has superior robustness in realizing privacy and guaranteed output delivery (G.O.D.) against asynchronous adversaries that can arbitrarily delay communications. However, none of these protocols are truly practical, as they either have sub-optimal resilience, incur cumbersome communication cost, or suffer from an online phase with extra cryptographic overhead. The only attempting implementation---HoneyBadgerMPC (hbMPC)---merely ensures G.O.D....
This paper addresses verifiable consensus of pre-processed circuit polynomials for succinct non-interactive argument of knowledge (SNARK). More specifically, we focus on parts of circuits, referred to as wire maps, which may change based on program inputs or statements being argued. Preparing commitments to wire maps in advance is essential for certain SNARK protocols to maintain their succinctness, but it can be costly. SNARK verifiers can alternatively consider receiving wire maps from an...
This paper introduces zkFFT, a novel zero-knowledge argument designed to efficiently generate proofs for FFT (Fast Fourier Transform) relations. Our approach enables the verification that one committed vector is the FFT of another, addressing an efficiency need in general-purpose non-interactive zero-knowledge proof systems where the proof relation utilizes vector commitments inputs. We present a concrete enhancement to the Halo2 proving system, demonstrating how zkFFT optimizes proofs in...
Compressing primitives such as accumulators and vector commitments, allow to rep- resent large data sets with some compact, ideally constant-sized value. Moreover, they support operations like proving membership or non-membership with minimal, ideally also constant- sized, storage and communication overhead. In recent years, these primitives have found numerous practical applications, with many constructions based on various hardness assumptions. So far, however, it has been elusive to...
We show that there exists a unitary quantum oracle relative to which quantum commitments exist but no (efficiently verifiable) one-way state generators exist. Both have been widely considered candidates for replacing one-way functions as the minimal assumption for cryptography—the weakest cryptographic assumption implied by all of computational cryptography. Recent work has shown that commitments can be constructed from one-way state generators, but the other direction has remained open. Our...
In this work, we put forth the notion of dynamic zk-SNARKs. A dynamic zk-SNARK is a zk-SNARK that has an additional update algorithm. The update algorithm takes as input a valid source statement-witness pair $(x,w)\in \mathcal{L}$ along with a verifying proof $\pi$, and a valid target statement-witness pair $(x',w')\in \mathcal{L}$. It outputs a verifying proof $\pi'$ for $(x',w')$ in sublinear time (for $(x,w)$ and $(x',w')$ with small Hamming distance) potentially with the help of a data...
Keyed-verification anonymous credentials are widely recognized as among the most efficient tools for anonymous authentication. In this work, we revisit two prominent credential systems: the scheme by Chase et al. (CCS 2014), commonly referred to as CMZ or PS MAC, and the scheme by Barki et al. (SAC 2016), known as BBDT or BBS MAC. We show how to make CMZ statistically anonymous and BBDT compatible with the BBS RFC draft. We provide a comprehensive security analysis for strong(er) properties...
Succinct arguments of knowledge allow an untrusted prover to establish that they know a witness for an NP relation. Many recent efficient constructions of such schemes work over arithmetic computations expressed in finite fields. Several common settings, however, have an extremely simple representation when expressed over the integers (e.g., RSA signatures/accumulators, range checks for committed values, computations over rational numbers). Efficient arguments of knowledge working natively...
In classical cryptography, one-way functions (OWFs) are the minimal assumption, while recent active studies have demonstrated that OWFs are not necessarily the minimum assumption in quantum cryptography. Several new primitives have been introduced such as pseudorandom unitaries (PRUs), pseudorandom function-like state generators (PRFSGs), pseudorandom state generators (PRSGs), one-way state generators (OWSGs), one-way puzzles (OWPuzzs), and EFI pairs. They are believed to be weaker than...
Quantum computational advantage refers to an existence of computational tasks that are easy for quantum computing but hard for classical one. Unconditionally showing quantum advantage is beyond our current understanding of complexity theory, and therefore some computational assumptions are needed. Which complexity assumption is necessary and sufficient for quantum advantage? In this paper, we show that inefficient-verifier proofs of quantumness (IV-PoQ) exist if and only if...
Although one-way functions are well-established as the minimal primitive for classical cryptography, a minimal primitive for quantum cryptography is still unclear. Universal extrapolation, first considered by Impagliazzo and Levin (1990), is hard if and only if one-way functions exist. Towards better understanding minimal assumptions for quantum cryptography, we study the quantum analogues of the universal extrapolation task. Specifically, we put forth the classical$\rightarrow$quantum...
Recent oracle separations [Kretschmer, TQC'21, Kretschmer et. al., STOC'23] have raised the tantalizing possibility of building quantum cryptography from sources of hardness that persist even if the polynomial hierarchy collapses. We realize this possibility by building quantum bit commitments and secure computation from unrelativized, well-studied mathematical problems that are conjectured to be hard for $\mathsf{P}^{\#\mathsf{P}}$ -- such as approximating the permanents of complex Gaussian...
Distributed Key Generation (DKG) is a technique that enables the generation of threshold cryptography keys among a set of mutually untrusting nodes. DKG generates keys for a range of decentralized applications such as threshold signatures, multiparty computation, and Byzantine consensus. Over the past five years, research on DKG has focused on optimizing network communication protocols to improve overall system efficiency by reducing communication complexity. However, SOTA asynchronous...
Zero-Knowledge (ZK) protocols have been a subject of intensive study due to their fundamental importance and versatility in modern cryptography. However, the inherently different nature of quantum information significantly alters the landscape, necessitating a re-examination of ZK designs. A crucial aspect of ZK protocols is their round complexity, intricately linked to $\textit{simulation}$, which forms the foundation of their formal definition and security proofs. In the...
Blockchain applications in finance and identity management increasingly require scalable and privacy-preserving solutions. Cryptographic commitments secure sensitive data on-chain, but verifying properties of these commitments efficiently remains challenging, particularly in large-scale scenarios. For multiple commitments, CP-SNARKs, a family of zk-SNARKs, enhance prover efficiency by shifting large-cost operations outside the circuit and verifying linkages between commitments, but incur...
Recent constructions of vector commitments and non-interactive zero-knowledge (NIZK) proofs from LWE implicitly solve the following /shifted multi-preimage sampling problem/: given matrices $\mathbf{A}_1, \ldots, \mathbf{A}_\ell \in \mathbb{Z}_q^{n \times m}$ and targets $\mathbf{t}_1, \ldots, \mathbf{t}_\ell \in \mathbb{Z}_q^n$, sample a shift $\mathbf{c} \in \mathbb{Z}_q^n$ and short preimages $\boldsymbol{\pi}_1, \ldots, \boldsymbol{\pi}_\ell \in \mathbb{Z}_q^m$ such that $\mathbf{A}_i...
Data availability sampling allows clients to verify availability of data on a peer-to-peer network provided by an untrusted source. This is achieved without downloading the full data by sampling random positions of the encoded data. The long-term vision of the Ethereum community includes a comprehensive data availability protocol using polynomial commitments and tensor codes. As the next step towards this vision, an intermediate solution called PeerDAS is about to integrated, to bridge...
The Paillier cryptosystem is renowned for its applications in electronic voting, threshold ECDSA, multi-party computation, and more, largely due to its additive homomorphism. In these applications, range proofs for the Paillier cryptosystem are crucial for maintaining security, because of the mismatch between the message space in the Paillier system and the operation space in application scenarios. In this paper, we present novel range proofs for the Paillier cryptosystem, specifically...
In this paper, we propose Greyhound, the first concretely efficient polynomial commitment scheme from standard lattice assumptions. At the core of our construction lies a simple three-round protocol for proving evaluations for polynomials of bounded degree $N$ with verifier time complexity $O(\sqrt{N})$. By composing it with the LaBRADOR proof system (CRYPTO 2023), we obtain a succinct proof of polynomial evaluation (i.e. polylogarithmic in $N$) that admits a sublinear verifier...
Several cryptographic primitives, especially succinct proofs of various forms, transform the satisfaction of high-level properties to the existence of a polynomial quotient between a polynomial that interpolates a set of values with a cleverly arranged divisor. Some examples are SNARKs, like Groth16, and polynomial commitments, such as KZG. Such a polynomial division naively takes $O(n \log n)$ time with Fast Fourier Transforms, and is usually the asymptotic bottleneck for these...
We study the problem of generating public unbiased randomness in a distributed manner within the recent You Only Speak Once (YOSO) framework for stateless multiparty computation, introduced by Gentry et al. in CRYPTO 2021. Such protocols are resilient to adaptive denial-of-service attacks and are, by their stateless nature, especially attractive in permissionless environments. While most works in the YOSO setting focus on independent random corruptions, we consider YOSO protocols with...
Lookup arguments have recently attracted a lot of developments due to their applications in the constructions of succinct non-interactive arguments of knowledge (SNARKs). A closely related topic is subsequence arguments in which one can prove that string $\mathbf{s}$ is a subsequence of another string $\mathbf{t}$, i.e., deleting some characters in $\mathbf{t}$ can achieve $\mathbf{s}$. A dual notion, namely, non-subsequence arguments, is to prove that $\mathbf{s}$ is not a subsequence of...
SNARKs are powerful cryptographic primitives that allow a prover to produce a succinct proof of a computation. Two key goals of SNARK research are to minimize the size of the proof and to minimize the time required to generate the proof. In this work, we present new SNARK constructions that push the frontier on both of these goals. Our first construction, Pari, is a SNARK that achieves the smallest proof size amongst *all* known SNARKs. Specifically, Pari achieves a proof size...
The virtualization of network functions is a promising technology, which can enable mobile network operators to provide more flexibility and better resilience for their infrastructure and services. Yet, virtualization comes with challenges, as 5G operators will require a means of verifying the state of the virtualized network components (e.g. Virtualized Network Functions (VNFs) or managing hypervisors) in order to fulfill security and privacy commitments. One such means is the use of...
Non-Interactive Timed Commitment schemes (NITC) allow to open any commitment after a specified delay $t_{\mathrm{fd}}$. This is useful for sealed bid auctions and as primitive for more complex protocols. We present the first NITC without repeated squaring or theoretical black box algorithms like NIZK proofs or one-way functions. It has fast verification, almost arbitrary delay and satisfies IND-CCA hiding and perfect binding. Our protocol is based on isogenies between supersingular elliptic...
We present Mova, a folding scheme for R1CS instances that does not require committing to error or cross terms, nor makes use of the sumcheck protocol. We compute concrete costs and provide benchmarks showing that, for reasonable parameter choices, Mova's Prover is about $5$ to $10$ times faster than Nova's Prover, and about $1.05$ to $1.3$ times faster than Hypernova's Prover (applied to R1CS instances) -- assuming the R1CS witness vector contains only small elements. Mova's Verifier has a...
We propose AQQUA: a digital payment system that combines auditability and privacy. AQQUA extends Quisquis by adding two authorities; one for registration and one for auditing. These authorities do not intervene in the everyday transaction processing; as a consequence, the decentralized nature of the cryptocurrency is not disturbed. Our construction is account-based. An account consists of an updatable public key which functions as a cryptographically unlinkable pseudonym, and of commitments...
Cross-chain Decentralized Applications (dApps) are increasingly popular for their ability to handle complex tasks across various blockchains, extending beyond simple asset transfers or swaps. However, ensuring all dependent transactions execute correctly together, known as complete atomicity, remains a challenge. Existing works provide financial atomicity, protecting against monetary loss, but lack the ability to ensure correctness for complex tasks. In this paper, we introduce Avalon, a...
We develop a distributed service for generating correlated randomness (e.g. permutations) for multiple parties, where each party’s output is private but publicly verifiable. This service provides users with a low-cost way to play online poker in real-time, without a trusted party. Our service is backed by a committee of compute providers, who run a multi-party computation (MPC) protocol to produce an (identity-based) encrypted permutation of a deck of cards, in an offline phase well ahead...
An adaptor signatures (AS) scheme is an extension of digital signatures that allows the signer to generate a pre-signature for an instance of a hard relation. This pre-signature can later be adapted to a full signature with a corresponding witness. Meanwhile, the signer can extract a witness from both the pre-signature and the signature. AS have recently garnered more attention due to its scalability and interoperability. Dai et al. [INDOCRYPT 2022] proved that AS can be constructed for any...
We present a new simulation-secure quantum oblivious transfer (QOT) protocol based on one-way functions in the plain model. With a focus on practical implementation, our protocol surpasses prior works in efficiency, promising feasible experimental realization. We address potential experimental errors and their correction, offering analytical expressions to facilitate the analysis of the required quantum resources. Technically, we achieve simulation security for QOT through an equivocal and...
To securely transmit sensitive information into the future, Time-Lock Puzzles (TLPs) have been developed. Their applications include scheduled payments, timed commitments, e-voting, and sealed-bid auctions. Homomorphic TLP is a key variant of TLP that enables computation on puzzles from different clients. This allows a solver/server to tackle only a single puzzle encoding the computation's result. However, existing homomorphic TLPs lack support for verifying the correctness of the...
MPC-in-the-Head (MPCitH) has recently gained traction as a foundation for post-quantum signature schemes, offering robust security without trapdoors. Despite its strong security profile, MPCitH-based schemes suffer from high computational overhead and large signature sizes, limiting their practical application. This work addresses these inefficiencies by relaxing vector commitments within MPCitH-based schemes. We introduce the concept of vector semi-commitment, which relaxes the binding...
In past years, entire research communities have arisen to address concerns of privacy and fairness in data analysis. At present, however, the public must trust that institutions will re-implement algorithms voluntarily to account for these social concerns. Due to additional cost, widespread adoption is unlikely without effective legal enforcement. A technical challenge for enforcement is that the methods proposed are often probabilistic mechanisms, whose output must be drawn according to...
Fully homomorphic signatures are a significant strengthening of digital signatures, enabling computations on \emph{secretly} signed data. Today, we have multiple approaches to design fully homomorphic signatures such as from lattices, or succinct functional commitments, or indistinguishability obfuscation, or mutable batch arguments. Unfortunately, all existing constructions for homomorphic signatures suffer from one or more limitations. We do not have homomorphic signatures with features...
Multi-Key Homomorphic Signatures (MKHS) allow one to evaluate a function on data signed by distinct users while producing a succinct and publicly-verifiable certificate of the correctness of the result. All the constructions of MKHS in the state of the art achieve a weak level of succinctness where signatures are succinct in the total number of inputs but grow linearly with the number of users involved in the computation. The only exception is a SNARK-based construction which relies on a...
In the *Distributed Secret Sharing Generation* (DSG) problem $n$ parties wish to obliviously sample a secret-sharing of a random value $s$ taken from some finite field, without letting any of the parties learn $s$. *Distributed Key Generation* (DKG) is a closely related variant of the problem in which, in addition to their private shares, the parties also generate a public ``commitment'' $g^s$ to the secret. Both DSG and DKG are central primitives in the domain of secure multiparty...
HyperPlonk is a recent SNARK proposal (Eurocrypt'23) that features a linear-time prover and supports custom gates of larger degree than Plonk. For the time being, its instantiations are only proven to be knowledge-sound (meaning that soundness is only guaranteed when the prover runs in isolation) while many applications motivate the stronger notion of simulation-extractability (SE). Unfortunately, the most efficient SE compilers are not immediately applicable to multivariate polynomial...
We introduce and formally define Multivariate Multi-Polynomial (MMP) commitment, a commitment scheme on multiple multivariate polynomials, and illustrate the concept with an efficient construction, which enjoys constant commitment size and logarithmic proof size. We further enhance our MMP scheme to achieve the zero-knowledge property. Additionally, combined with a novel zero-knowledge range proof for Pedersen subvector commitment, we present a Zero-Knowledge Range Proof (ZKRP) for MMP...
Universal verifiability is a must-to-have for electronic voting schemes. It is essential to ensure honest behavior of all the players during the whole process, together with the eligibility. However, it should not endanger the privacy of the individual votes, which is another major requirement. Whereas the first property prevents attacks during the voting process, privacy of the votes should hold forever, which has been called everlasting privacy. A classical approach for universal...
Simulation extractability is a strong security notion of zkSNARKs that guarantees that an attacker who produces a valid proof must know the corresponding witness, even if the attacker had prior access to proofs generated by other users. Notably, simulation extractability implies that proofs are non-malleable and is of fundamental importance for applications of zkSNARKs in distributed systems. In this work, we study sufficient and necessary conditions for constructing simulation-extractable...
A functional commitment allows a user to commit to an input $\mathbf{x}$ and later, open the commitment to an arbitrary function $\mathbf{y} = f(\mathbf{x})$. The size of the commitment and the opening should be sublinear in $|\mathbf{x}|$ and $|f|$. In this work, we give the first pairing-based functional commitment for arbitrary circuits where the size of the commitment and the size of the opening consist of a constant number of group elements. Security relies on the standard bilateral...
We propose a new notion of vector commitment schemes with proofs of (non-)membership that we call universal vector commitments. We show how to build them directly from (i) Merkle commitments, and (ii) a universal accumulator and a plain vector commitment scheme. We also present a generic construction for universal accumulators over large domains from any vector commitment scheme, using cuckoo hashing. Leveraging the aforementioned generic constructions, we show that universal vector...
With additively homomorphic encryption (AHE), one can compute, from input ciphertexts $\mathsf{Enc}(x_1),\ldots,\mathsf{Enc}(x_n)$, and additional inputs $y_1,\ldots,y_k$, a ciphertext $c_\textit{f}=\mathsf{Enc}(f(x_1,\ldots,x_n,y_1,\ldots, y_k))$ for any polynomial $f$ in which each monomial has total degree at most $1$ in the $x$-variables (but can be arbitrary in the $y$-variables). For AHE that satisfies a set of natural requirements, we give a non-interactive zero-knowledge proof...
Homomorphic signatures allow to validate computation on signed data. Alice, holding a dataset, $\{m_1 , \ldots , m_t \}$ uses her secret key $\sf sk$ to sign these data and stores the authenticated dataset on a remote server. The server can later (publicly) compute $m = f(m_1,...,m_t)$ together with a signature $\sigma$ certifying that $m$ is indeed the correct output of the computation $f$. Over the last fifteen years, the problem of realizing homomorphic signatures has been the focus of...
Vector commitments (VC) have gained significant attention due to their extensive use in applications such as blockchain and accumulators. Mercurial vector commitments (MVC) and mercurial functional commitments (MFC), as variants of VC, are central techniques for constructing more advanced cryptographic primitives, such as zero-knowledge sets and zero-knowledge functional elementary databases (ZK-FEDB). However, existing MFCs $\textit{only support linear functions}$, which limits their...
Hadamard product is a point-wise product for two vectors. This paper presents a new scheme to prove Hadamard-product relation as a sub-protocol for SNARKs based on univariate polynomials. Prover uses linear cryptographic operations to generate the proof containing logarithmic field elements. The verification takes logarithmic cryptographic operations with constant numbers of pairings in bilinear group. The construction of the scheme is based on the Lagrange-based KZG commitments (Kate,...
Delegatable Anonymous Credentials (DAC) are an enhanced Anonymous Credentials (AC) system that allows credential owners to use credentials anonymously, as well as anonymously delegate them to other users. In this work, we introduce a new concept called Delegatable Attribute-based Anonymous Credentials with Chainable Revocation (DAAC-CR), which extends the functionality of DAC by allowing 1) fine-grained attribute delegation, 2) issuers to restrict the delegation capabilities of the delegated...
We define the notion of a classical commitment scheme to quantum states, which allows a quantum prover to compute a classical commitment to a quantum state, and later open each qubit of the state in either the standard or the Hadamard basis. Our notion is a strengthening of the measurement protocol from Mahadev (STOC 2018). We construct such a commitment scheme from the post-quantum Learning With Errors (LWE) assumption, and more generally from any noisy trapdoor claw-free function family...
In 2021, Sterner proposed a commitment scheme based on supersingular isogenies. For this scheme to be binding, one relies on a trusted party to generate a starting supersingular elliptic curve of unknown endomorphism ring. In fact, the knowledge of the endomorphism ring allows one to compute an endomorphism of degree a power of a given small prime. Such an endomorphism can then be split into two to obtain two different messages with the same commitment. This is the reason why one needs a...
Threshold signatures have recently seen a renewed interest due to applications in cryptocurrency while NIST has released a call for multi-party threshold schemes, with a deadline for submission expected for the first half of 2025. So far, all lattice-based threshold signatures requiring less than two-rounds are based on heavy tools such as (fully) homomorphic encryption (FHE) and homomorphic trapdoor commitments (HTDC). This is not unexpected considering that most efficient two-round...
We propose Reckle trees, a new vector commitment based on succinct RECursive arguments and MerKLE trees. Reckle trees' distinguishing feature is their support for succinct batch proofs that are updatable - enabling new applications in the blockchain setting where a proof needs to be computed and efficiently maintained over a moving stream of blocks. Our technical approach is based on embedding the computation of the batch hash inside the recursive Merkle verification via a hash-based...
Accumulation schemes are a simple yet powerful primitive that enable highly efficient constructions of incrementally verifiable computation (IVC). Unfortunately, all prior accumulation schemes rely on homomorphic vector commitments whose security is based on public-key assumptions. It is an interesting open question to construct efficient accumulation schemes that avoid the need for such assumptions. In this paper, we answer this question affirmatively by constructing an accumulation...
This paper gives the first lattice-based two-round threshold signature based on lattice assumptions for which the first message is independent of the message being signed without relying on fully-homomorphic encryption, and our construction supports arbitrary thresholds. Our construction provides a careful instantiation of a generic threshold signature construction by Tessaro and Zhu (EUROCRYPT ’23) based on specific linear hash functions, which in turns can be seen as a generalization of...
$n$-out-of-$n$ distributed signatures are a special type of threshold $t$-out-of-$n$ signatures. They are created by a group of $n$ signers, each holding a share of the secret key, in a collaborative way. This kind of signatures has been studied intensively in recent years, motivated by different applications such as reducing the risk of compromising secret keys in cryptocurrencies. Towards maintaining security in the presence of quantum adversaries, Damgård et al. (J Cryptol 35(2), 2022)...
We introduce a blockchain Fair Data Exchange (FDE) protocol, enabling a storage server to transfer a data file to a client atomically: the client receives the file if and only if the server receives an agreed-upon payment. We put forth a new definition for a cryptographic scheme that we name verifiable encryption under committed key (VECK), and we propose two instantiations for this scheme. Our protocol relies on a blockchain to enforce the atomicity of the exchange and uses VECK to ensure...
The Bitcoin ecosystem has continued to evolve beyond its initial promises of decentralization, transparency, and security. Recent advancements have notably been made with the integration of Layer-2 solutions, which address scalability issues by offloading transactions from the main blockchain. This facilitates faster and more cost-effective transactions while maintaining integrity. The advent of inscriptions and ordinal protocols has further broadened the spectrum of capabilities, enabling...
Recent work has introduced the "Quantum-Computation Classical-Communication" (QCCC) (Chung et. al.) setting for cryptography. There has been some evidence that One Way Puzzles (OWPuzz) are the natural central cryptographic primitive for this setting (Khurana and Tomer). For a primitive to be considered central it should have several characteristics. It should be well behaved (which for this paper we will think of as having amplification, combiners, and universal constructions); it...
This paper presents a new efficient hash function for imaginary class groups. Many class group based protocols, such as verifiable delay functions, timed commitments and accumulators, rely on the existence of an efficient and secure hash function, but there are not many concrete constructions available in the literature, and existing constructions are too inefficient for practical use cases. Our novel approach, building on Wesolowski's initial scheme, achieves a 200 fold increase in...
Polynomial commitment scheme allows a prover to commit to a polynomial $f \in \mathcal{R}[X]$ of degree $L$, and later prove that the committed function was correctly evaluated at a specified point $x$; in other words $f(x)=u$ for public $x,u \in\mathcal{R}$. Most applications of polynomial commitments, e.g. succinct non-interactive arguments of knowledge (SNARKs), require that (i) both the commitment and evaluation proof are succinct (i.e., polylogarithmic in the degree $L$) - with the...
We present a concretely efficient and simple extractable witness encryption scheme for KZG polynomial commitments. It allows to encrypt a message towards a triple $(\mathsf{com}, \alpha, \beta)$, where $\mathsf{com}$ is a KZG commitment for some polynomial $f$. Anyone with an opening for the commitment attesting $f(\alpha) = \beta$ can decrypt, but without knowledge of a valid opening the message is computationally hidden. Our construction is simple and highly efficient. The ciphertext is...
Threshold signatures improve both availability and security of digital signatures by splitting the signing key into $N$ shares handed out to different parties. Later on, any subset of at least $T$ parties can cooperate to produce a signature on a given message. While threshold signatures have been extensively studied in the pre-quantum setting, they remain sparse from quantum-resilient assumptions. We present the first efficient lattice-based threshold signatures with signature size 13...
A zero-knowledge proof of training (zkPoT) enables a party to prove that they have correctly trained a committed model based on a committed dataset without revealing any additional information about the model or the dataset. An ideal zkPoT should offer provable security and privacy guarantees, succinct proof size and verifier runtime, and practical prover efficiency. In this work, we present \name, a zkPoT targeted for deep neural networks (DNNs) that achieves all these goals at once. Our...
Threshold symmetric encryption (TSE), introduced by Agrawal et al. [DiSE, CCS 2018], provides scalable and decentralized solution for symmetric encryption by ensuring that the secret-key stays distributed at all times. They avoid having a single point of attack or failure, while achieving the necessary security requirements. TSE was further improved by Christodorescu et al. [ATSE, CCS 2021] to support an amortization feature which enables a “more privileged” client to encrypt records in bulk...
Class groups of imaginary quadratic fields (class groups for short) have seen a resurgence in cryptography as transparent groups of unknown order. They are a prime candidate for being a trustless alternative to RSA groups because class groups do not need a (distributed) trusted setup to sample a cryptographically secure group of unknown order. Class groups have recently found many applications in verifiable secret sharing, secure multiparty computation, transparent polynomial commitments,...
A functional commitment allows a user to commit to an input $\mathbf{x} \in \{0,1\}^\ell$ and later open up the commitment to a value $y = f(\mathbf{x})$ with respect to some function $f$. In this work, we focus on schemes that support fast verification. Specifically, after a preprocessing step that depends only on $f$, the verification time as well as the size of the commitment and opening should be sublinear in the input length $\ell$, We also consider the dual setting where the user...
Vector commitments (VC) and their variants attract a lot of attention due to their wide range of usage in applications such as blockchain and accumulator. Mercurial vector commitment (MVC), as one of the important variants of VC, is the core technique for building more complicated cryptographic applications, such as the zero-knowledge set (ZKS) and zero-knowledge elementary database (ZK-EDB). However, to the best of our knowledge, the only post-quantum MVC construction is trivially implied...
We show the following unconditional results on quantum commitments in two related yet different models: 1. We revisit the notion of quantum auxiliary-input commitments introduced by Chailloux, Kerenidis, and Rosgen (Comput. Complex. 2016) where both the committer and receiver take the same quantum state, which is determined by the security parameter, as quantum auxiliary inputs. We show that computationally-hiding and statistically-binding quantum auxiliary-input commitments exist...
We demonstrate how to build computationally secure commitment schemes with the aid of quantum auxiliary inputs without unproven complexity assumptions. Furthermore, the quantum auxiliary input can be either sampled in uniform exponential time or prepared in at most doubly exponential time, without relying on an external trusted third party. Classically, this remains impossible without first proving $\mathsf{P} \neq \mathsf{NP}$.
Dynamic vector commitments that enable local updates of opening proofs have applications ranging from verifiable databases with membership changes to stateless clients on blockchains. In these applications, each user maintains a relevant subset of the committed messages and the corresponding opening proofs with the goal of ensuring a succinct global state. When the messages are updated, users are given some global update information and update their opening proofs to match the new vector...
Blind Signatures are a useful primitive for privacy preserving applications such as electronic payments, e-voting, anonymous credentials, and more. However, existing practical blind signature schemes based on standard assumptions require either pairings or lattices. We present the first practical construction of a round-optimal blind signature in the random oracle model based on standard assumptions without resorting to pairings or lattices. In particular, our construction is secure under...
Authenticated PIR enables a server to initially commit to a database of $N$ items, for which a client can later privately obtain individual items with complexity sublinear in $N$, with the added guarantee that the retrieved item is consistent with the committed database. A crucial requirement is privacy with abort, i.e., the server should not learn anything about a query even if it learns whether the client aborts. This problem was recently considered by Colombo et al. (USENIX '23), who...
A robust combiner combines many candidates for a cryptographic primitive and generates a new candidate for the same primitive. Its correctness and security hold as long as one of the original candidates satisfies correctness and security. A universal construction is a closely related notion to a robust combiner. A universal construction for a primitive is an explicit construction of the primitive that is correct and secure as long as the primitive exists. It is known that a universal...
Existing protocols for proving the correct execution of a RAM program in zero-knowledge are plagued by a processor expressiveness tradeoff: supporting fewer instructions results in smaller processor circuits (which improves performance), but may result in more program execution steps because non-supported instruction must be emulated over multiple processor steps (diminishing performance). We present Dora, a very simple and concretely efficient zero-knowledge protocol for RAM programs...
We introduce a new notion called ${\cal Q}$-secure pseudorandom isometries (PRI). A pseudorandom isometry is an efficient quantum circuit that maps an $n$-qubit state to an $(n+m)$-qubit state in an isometric manner. In terms of security, we require that the output of a $q$-fold PRI on $\rho$, for $ \rho \in {\cal Q}$, for any polynomial $q$, should be computationally indistinguishable from the output of a $q$-fold Haar isometry on $\rho$. By fine-tuning ${\cal Q}$, we recover many...
We study the security of a fundamental family of succinct interactive arguments in the standard model, stemming from the works of Kilian (1992) and Ben-Sasson, Chiesa, and Spooner (``BCS'', 2016). These constructions achieve succinctness by combining probabilistic proofs and vector commitments. Our first result concerns the succinct interactive argument of Kilian, realized with any probabilistically-checkable proof (PCP) and any vector commitment. We establish the tightest known bounds on...
Zero-knowledge proofs for NP statements are an essential tool for building various cryptographic primitives and have been extensively studied in recent years. In a seminal result from Goldreich, Micali and Wigderson (JACM'91), zero-knowledge proofs for NP statements can be built from any one-way function, but this construction leads very inefficient proofs. To yield practical constructions, one often uses the additional structure provided by homomorphic commitments. In this paper, we...
An $(n, t)$-Verifiable Secret Sharing (VSS) scheme allows a dealer to share a secret among $n$ parties, s.t. all the parties can verify the validity of their shares and only a set of them, i.e., more than $t$, can access the secret. In this paper, we present $\Pi$, as a unified framework for building VSS schemes in the honest majority setting. Notably, $\Pi$ does not rely on homomorphic commitments; instead requires a random oracle and any commitment scheme that extra to its core attributes...
One-way functions are central to classical cryptography. They are both necessary for the existence of non-trivial classical cryptosystems, and sufficient to realize meaningful primitives including commitments, pseudorandom generators and digital signatures. At the same time, a mounting body of evidence suggests that assumptions even weaker than one-way functions may suffice for many cryptographic tasks of interest in a quantum world, including bit commitments and secure multi-party...
The generic-group model (GGM) and the algebraic-group model (AGM) have been exceptionally successful in proving the security of many classical and modern cryptosystems. These models, however, come with standard-model uninstantiability results, raising the question whether the schemes analyzed under them can be based on firmer standard-model footing. We formulate the uber-knowledge (UK) assumption, a standard-model assumption that naturally extends the uber-assumption family to...
In proof-of-stake blockchains, liveness is ensured by repeatedly selecting random groups of parties as leaders, who are then in charge of proposing new blocks and driving consensus forward. The lotteries that elect those leaders need to ensure that adversarial parties are not elected disproportionately often and that an adversary can not tell who was elected before those parties decide to speak, as this would potentially allow for denial-of-service attacks. Whenever an elected party...
We propose Cornucopia, a distributed randomness beacon protocol combining accumulators and verifiable delay functions. Cornucopia extends the Unicorn protocol of Lenstra and Wesolowski, utilizing an accumulator to enable efficient verification by each participant that their randomness contribution has been included in the beacon output. The output is unpredictable as long as at least one participant is honest, yielding a highly scalable distributed randomness beacon with strong security...
Non-malleable cryptography, proposed by Dolev, Dwork, and Naor (SICOMP '00), has numerous applications in protocol composition. In the context of proofs, it guarantees that an adversary who receives a proof cannot maul it into another valid proof. However, non-malleable cryptography (particularly in the non-interactive setting) suffers from an important limitation: An attacker can always copy the proof and resubmit it to another verifier (or even multiple verifiers). In this work, we...
This work introduces the notion of naysayer proofs. We observe that in numerous (zero-knowledge) proof systems, it is significantly more efficient for the verifier to be convinced by a so-called naysayer that a false proof is invalid than it is to check that a genuine proof is valid. We show that every NP language has constant-size and constant-time naysayer proofs. We also show practical constructions for several example proof systems, including FRI polynomial commitments, post-quantum...
Zero-knowledge proof or argument systems for generic NP statements (such as circuit satisfiability) have typically been instantiated with cryptographic commitment schemes; this implies that the security of the proof system (e.g., computational or statistical) depends on that of the chosen commitment scheme. The MPC-in-the-Head paradigm (Ishai et al., JoC 2009) uses the same approach to construct zero-knowledge systems from the simulated execution of secure multiparty computation...