Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                



Dates are inconsistent

Dates are inconsistent

406 results sorted by ID

Possible spell-corrected query: vector
2024/1390 (PDF) Last updated: 2024-09-04
Cache Timing Leakages in Zero-Knowledge Protocols
Shibam Mukherjee, Christian Rechberger, Markus Schofnegger
Attacks and cryptanalysis

The area of modern zero-knowledge proof systems has seen a significant rise in popularity over the last couple of years, with new techniques and optimized constructions emerging on a regular basis. As the field matures, the aspect of implementation attacks becomes more relevant, however side-channel attacks on zero-knowledge proof systems have seen surprisingly little treatment so far. In this paper we give an overview of potential attack vectors and show that some of the underlying...

2024/1376 (PDF) Last updated: 2024-09-02
FDFB$^2$: Functional Bootstrapping via Sparse Polynomial Multiplication
Kamil Kluczniak, Leonard Schild
Public-key cryptography

Fully homomorphic encryption schemes are methods to perform compu- tations over encrypted data. Since its introduction by Gentry, there has been a plethora of research optimizing the originally inefficient cryptosystems. Over time, different families have emerged. On the one hand, schemes such as BGV, BFV, or CKKS excel at performing coefficient-wise addition or multiplication over vectors of encrypted data. In contrast, accumulator-based schemes such as FHEW and TFHE provide efficient...

2024/1337 (PDF) Last updated: 2024-08-26
Construction bent functions using the Maiorana McFarland class
Juan Carlos Ku-Cauich, Javier Diaz-Vargas
Attacks and cryptanalysis

We are using the extended Maiorana-McFarland construction to create new bent functions. When we start with a bent function of dimension s-r, we can produce a new function of dimension s+r while ensuring that its balance is limited to the set of vectors with an even Hamming weight in its domain. We also compare this approach with the case where r=1 and apply it multiple times. Finally, we provide an algorithm as an example, focusing on the case where r=2 and another algorithm using r=1 two times.

2024/1317 (PDF) Last updated: 2024-08-22
MAESTRO: Multi-party AES using Lookup Tables
Hiraku Morita, Erik Pohle, Kunihiko Sadakane, Peter Scholl, Kazunari Tozawa, Daniel Tschudi
Cryptographic protocols

Secure multi-party computation (MPC) enables multiple distrusting parties to jointly compute a function while keeping their inputs private. Computing the AES block cipher in MPC, where the key and/or the input are secret-shared among the parties is important for various applications, particularly threshold cryptography. In this work, we propose a family of dedicated, high-performance MPC protocols to compute the non-linear S-box part of AES in the honest majority setting. Our protocols...

2024/1274 (PDF) Last updated: 2024-08-16
Generation of Authenticated Secret-Shared Scaled Unit Vectors for Beaver Triples
Vincent Rieder
Cryptographic protocols

For secure multi-party computation in the line of the secret-sharing based SPDZ protocol, actively secure multiplications consume correlated randomness in the form of authenticated Beaver triples, which need to be generated in advance. Although it is a well-studied problem, the generation of Beaver triples is still a bottleneck in practice. In the two-party setting, the best solution with low communication overhead is the protocol by Boyle et al. (Crypto 2020), which is derived from...

2024/1267 (PDF) Last updated: 2024-08-09
Chrysalis Cipher Suite
Ian Malloy, Dennis Hollenbeck
Foundations

The formal verification of architectural strength in terms of computational complexity is achieved through reduction of the Non-Commutative Grothendieck problem in the form of a quadratic lattice. This multivariate form relies on equivalences derived from a k-clique problem within a multigraph. The proposed scheme reduces the k-clique problem as an input function, resulting in the generation of a quadratic used as parameters for the lattice. By Grothendieck’s inequality, the satisfiability...

2024/1262 (PDF) Last updated: 2024-08-09
Dilithium-Based Verifiable Timed Signature Scheme
Erkan Uslu, Oğuz Yayla
Cryptographic protocols

Verifiable Timed Signatures (VTS) are cryptographic constructs that enable obtaining a signature at a specific time in the future and provide evidence that the signature is legitimate. This framework particularly finds utility in applications such as payment channel networks, multiparty signing operations, or multiparty computation, especially within blockchain architectures. Currently, VTS schemes are based on signature algorithms such as BLS signature, Schnorr signature, and ECDSA. These...

2024/1261 (PDF) Last updated: 2024-08-09
A Key-Recovery Attack on a Leaky Seasign Variant
Shai Levin
Attacks and cryptanalysis

We present a key-recovery attack on a variant of the Seasign signature scheme presented by [Kim24], which attempts to avoid rejection sampling by presampling vectors $\mathbf{f}$ such that the $\mathbf{f}-\mathbf{e}$ is contained in an acceptable bound, where $\mathbf{e}$ is the secret key. We show that this choice leads to a bias of these vectors such that, in a small number of signatures, the secret key can either be completely recovered or its keyspace substantially reduced. In...

2024/1214 (PDF) Last updated: 2024-07-29
Less Effort, More Success: Efficient Genetic Algorithm-Based Framework for Side-channel Collision Attacks
Jiawei Zhang, Jiangshan Long, Changhai Ou, Kexin Qiao, Fan Zhang, Shi Yan
Attacks and cryptanalysis

By introducing collision information, the existing side-channel Correlation-Enhanced Collision Attacks (CECAs) performed collision-chain detection, and reduced a given candidate space to a significantly smaller collision-chain space, leading to more efficient key recovery. However, they are still limited by low collision detection speed and low success rate of key recovery. To address these issues, we first give a Collision Detection framework with Genetic Algorithm (CDGA), which exploits ...

2024/1192 (PDF) Last updated: 2024-07-24
Towards ML-KEM & ML-DSA on OpenTitan
Amin Abdulrahman, Felix Oberhansl, Hoang Nguyen Hien Pham, Jade Philipoom, Peter Schwabe, Tobias Stelzer, Andreas Zankl
Implementation

This paper presents extensions to the OpenTitan hardware root of trust that aim at enabling high-performance lattice-based cryptography. We start by carefully optimizing ML-KEM and ML-DSA - the two primary algorithms selected by NIST for standardization - in software targeting the OTBN accelerator. Based on profiling results of these implementations, we propose tightly integrated extensions to OTBN, specifically an interface from OTBN to OpenTitan's Keccak accelerator (KMAC core) and...

2024/1160 (PDF) Last updated: 2024-07-17
Post-Quantum Access Control with Application to Secure Data Retrieval
Behzad Abdolmaleki, Hannes Blümel, Giacomo Fenzi, Homa Khajeh, Stefan Köpsell, Maryam Zarezadeh
Cryptographic protocols

Servan-Schreiber et al. (S&P 2023) presented a new notion called private access control lists (PACL) for function secret sharing (FSS), where the FSS evaluators can ensure that the FSS dealer is authorized to share the given function. Their construction relies on costly non-interactive secret-shared proofs and is not secure in post-quantum setting. We give a construction of PACL from publicly verifiable secret sharing (PVSS) under short integer solution (SIS). Our construction adapts the...

2024/1138 (PDF) Last updated: 2024-07-12
Dot-Product Proofs and Their Applications
Nir Bitansky, Prahladh Harsha, Yuval Ishai, Ron D. Rothblum, David J. Wu
Foundations

A dot-product proof (DPP) is a simple probabilistic proof system in which the input statement $\mathbf{x}$ and the proof $\boldsymbol{\pi}$ are vectors over a finite field $\mathbb{F}$, and the proof is verified by making a single dot-product query $\langle \mathbf{q},(\mathbf{x} \| \boldsymbol{\pi}) \rangle$ jointly to $\mathbf{x}$ and $\boldsymbol{\pi}$. A DPP can be viewed as a 1-query fully linear PCP. We study the feasibility and efficiency of DPPs, obtaining the following results: -...

2024/1106 (PDF) Last updated: 2024-07-07
Masked Vector Sampling for HQC
Maxime Spyropoulos, David Vigilant, Fabrice Perion, Renaud Pacalet, Laurent Sauvage
Implementation

Anticipating the advent of large quantum computers, NIST started a worldwide competition in 2016 aiming to define the next cryptographic standards. HQC is one of these post-quantum schemes still in contention, with four others already in the process of being standardized. In 2022, Guo et al. introduced a timing attack that exploited an inconsistency in HQC rejection sampling function to recover its secret key in 866,000 calls to an oracle. The authors of HQC updated its specification by...

2024/981 (PDF) Last updated: 2024-06-18
Hadamard Product Arguments and Their Applications
Kyeongtae Lee, Donghwan Oh, Hankyung Ko, Jihye Kim, Hyunok Oh
Cryptographic protocols

This paper introduces transparent and efficient arguments for Hadamard products between committed vectors from two source groups. For vectors of length $n$, the proofs consist of $\mathcal{O}(\log n)$ target group elements and $\mathcal{O}(1)$ additional elements. The verifier's workload is dominated by $\mathcal{O}(\log n)$ multi-exponentiations in the target group and $\mathcal{O}(1)$ pairings. We prove our security under the standard SXDH assumption. Additionally, we propose an aggregator...

2024/919 (PDF) Last updated: 2024-06-09
Multi-Input Functional Encryption for Unbounded Inner Products
Bishnu Charan Behera, Somindu C. Ramanna
Cryptographic protocols

In this work, we propose a construction for $ Multi~Input~Inner ~Product ~Encryption$ (MIPFE) that can handle vectors of variable length in different encryption slots. This construction is the first of its kind, as all existing MIPFE schemes allow only equal length vectors. The scheme is constructed in the private key setting, providing privacy for both message as well as the function, thereby achieving the so-called $full-hiding$ security. Our MIPFE scheme uses bilinear groups of prime...

2024/917 (PDF) Last updated: 2024-06-09
Unbounded Non-Zero Inner Product Encryption
Bishnu Charan Behera, Somindu C. Ramanna
Cryptographic protocols

In a non-zero inner product encryption (NIPE) scheme, ciphertexts and keys are associated with vectors from some inner-product space. Decryption of a ciphertext for $\vec{x}$ is allowed by a key for $\vec{y}$ if and only if the inner product $\langle{\vec{x}},{\vec{y}}\rangle \neq 0$. Existing constructions of NIPE assume the length of the vectors are fixed apriori. We present the first constructions of $ unbounded $ non-zero inner product encryption (UNIPE) with constant sized keys....

2024/913 (PDF) Last updated: 2024-08-02
SoK: Model Reverse Engineering Threats for Neural Network Hardware
Seetal Potluri, Farinaz Koushanfar
Implementation

There has been significant progress over the past seven years in model reverse engineering (RE) for neural network (NN) hardware. Although there has been systematization of knowledge (SoK) in an overall sense, however, the treatment from the hardware perspective has been far from adequate. To bridge this gap, this paper systematically categorizes the types of NN hardware used prevalently by the industry/academia, and also the model RE attacks/defenses published in each category. Further, we...

2024/909 (PDF) Last updated: 2024-06-07
Approximate CRT-Based Gadget Decomposition and Application to TFHE Blind Rotation
Olivier Bernard, Marc Joye
Implementation

One of the main issues to deal with for fully homomorphic encryption is the noise growth when operating on ciphertexts. To some extent, this can be controlled thanks to a so-called gadget decomposition. A gadget decomposition typically relies on radix- or CRT-based representations to split elements as vectors of smaller chunks whose inner products with the corresponding gadget vector rebuilds (an approximation of) the original elements. Radix-based gadget decompositions present the advantage...

2024/884 (PDF) Last updated: 2024-06-03
Security of Fixed-Weight Repetitions of Special-Sound Multi-Round Proofs
Michele Battagliola, Riccardo Longo, Federico Pintore, Edoardo Signorini, Giovanni Tognolini
Foundations

Interactive proofs are a cornerstone of modern cryptography and as such used in many areas, from digital signatures to multy-party computation. Often the knowledge error $\kappa$ of an interactive proof is not small enough, and thus needs to be reduced. This is usually achieved by repeating the interactive proof in parallel t times. Recently, it was shown that parallel repetition of any $(k_1, \ldots , k_\mu)$-special-sound multi-round public-coin interactive proof reduces the knowledge...

2024/870 (PDF) Last updated: 2024-06-01
Computationally Secure Aggregation and Private Information Retrieval in the Shuffle Model
Adrià Gascón, Yuval Ishai, Mahimna Kelkar, Baiyu Li, Yiping Ma, Mariana Raykova
Cryptographic protocols

The shuffle model has recently emerged as a popular setting for differential privacy, where clients can communicate with a central server using anonymous channels or an intermediate message shuffler. This model was also explored in the context of cryptographic tasks such as secure aggregation and private information retrieval (PIR). However, this study was almost entirely restricted to the stringent notion of information-theoretic security. In this work, we study computationally secure...

2024/832 (PDF) Last updated: 2024-05-28
Hamming Weight Proofs of Proximity with One-Sided Error
Gal Arnon, Shany Ben-David, Eylon Yogev
Foundations

We provide a wide systematic study of proximity proofs with one-sided error for the Hamming weight problem $\mathsf{Ham}_{\alpha}$ (the language of bit vectors with Hamming weight at least $\alpha$), surpassing previously known results for this problem. We demonstrate the usefulness of the one-sided error property in applications: no malicious party can frame an honest prover as cheating by presenting verifier randomness that leads to a rejection. We show proofs of proximity for...

2024/787 (PDF) Last updated: 2024-05-22
A new attack against search-LWE using Diophantine approximations
Robin Frot, Daniel Zentai
Attacks and cryptanalysis

In this paper, we present a new attack against search-LWE instances with a small secret key. The method consists of lifting the public key to $\mathbb Z$ and finding a good Diophantine approximation of the public key divided by the modulus $a$. This is done using lattice reduction algorithms. The lattice considered, and the approximation quality needed is similar to known decision-LWE attacks for small keys. However, we do not require an in-depth analysis of the reduction algorithm (any...

2024/747 (PDF) Last updated: 2024-05-27
Scaling Lattice Sieves across Multiple Machines
Martin R. Albrecht, Joe Rowell
Implementation

Lattice sieves are algorithms for finding short vectors in lattices. We present an implementation of two such sieves – known as “BGJ1” and “BDGL” in the literature – that scales across multiple servers (with varying success). This class of algorithms requires exponential memory which had put into question their ability to scale across sieving nodes. We discuss our architecture and optimisations and report experimental evidence of the efficiency of our approach.

2024/740 (PDF) Last updated: 2024-05-15
Multi-Client Functional Encryption with Public Inputs and Strong Security
Ky Nguyen, Duong Hieu Phan, David Pointcheval
Public-key cryptography

Recent years have witnessed a significant development for functional encryption (FE) in the multi-user setting, particularly with multi-client functional encryption (MCFE). The challenge becomes more important when combined with access control, such as attribute-based encryption (ABE), which was actually not covered by the FE and MCFE frameworks. On the other hand, as for complex primitives, many works have studied the admissibility of adversaries to ensure that the security model...

2024/689 (PDF) Last updated: 2024-07-10
Automated Creation of Source Code Variants of a Cryptographic Hash Function Implementation Using Generative Pre-Trained Transformer Models
Elijah Pelofske, Vincent Urias, Lorie M. Liebrock
Implementation

Generative pre-trained transformers (GPT's) are a type of large language machine learning model that are unusually adept at producing novel, and coherent, natural language. Notably, these technologies have also been extended to computer programming languages with great success. However, GPT model outputs in general are stochastic and not always correct. For programming languages, the exact specification of the computer code, syntactically and algorithmically, is strictly required in order to...

2024/682 (PDF) Last updated: 2024-05-04
Approximate PSI with Near-Linear Communication
Wutichai Chongchitmate, Steve Lu, Rafail Ostrovsky
Cryptographic protocols

Private Set Intersection (PSI) is a protocol where two parties with individually held confidential sets want to jointly learn (or secret-share) the intersection of these two sets and reveal nothing else to each other. In this paper, we introduce a natural extension of this notion to approximate matching. Specifically, given a distance metric between elements, an approximate PSI (Approx-PSI) allows to run PSI where ``close'' elements match. Assuming that elements are either ``close'' or...

2024/662 (PDF) Last updated: 2024-07-17
Faster Private Decision Tree Evaluation for Batched Input from Homomorphic Encryption
Kelong Cong, Jiayi Kang, Georgio Nicolas, Jeongeun Park
Applications

Privacy-preserving decision tree evaluation (PDTE) allows a client that holds feature vectors to perform inferences against a decision tree model on the server side without revealing feature vectors to the server. Our work focuses on the non-interactive batched setting where the client sends a batch of encrypted feature vectors and then obtains classifications, without any additional interaction. This is useful in privacy-preserving credit scoring, biometric authentication, and many more...

2024/637 (PDF) Last updated: 2024-04-25
Towards Permissionless Consensus in the Standard Model via Fine-Grained Complexity
Marshall Ball, Juan Garay, Peter Hall, Aggelos Kiayias, Giorgos Panagiotakos
Cryptographic protocols

We investigate the feasibility of permissionless consensus (aka Byzantine agreement) under standard assumptions. A number of protocols have been proposed to achieve permissionless consensus, most notably based on the Bitcoin protocol; however, to date no protocol is known that can be provably instantiated outside of the random oracle model. In this work, we take the first steps towards achieving permissionless consensus in the standard model. In particular, we demonstrate that worst-case...

2024/613 (PDF) Last updated: 2024-04-24
Hadamard Product Argument from Lagrange-Based Univariate Polynomials
Jie Xie, Yuncong Hu, Yu Yu
Cryptographic protocols

Hadamard product is a point-wise product for two vectors. This paper presents a new scheme to prove Hadamard-product relation as a sub-protocol for SNARKs based on univariate polynomials. Prover uses linear cryptographic operations to generate the proof containing logarithmic field elements. The verification takes logarithmic cryptographic operations with constant numbers of pairings in bilinear group. The construction of the scheme is based on the Lagrange-based KZG commitments (Kate,...

2024/601 (PDF) Last updated: 2024-04-18
Improved Provable Reduction of NTRU and Hypercubic Lattices
Henry Bambury, Phong Q. Nguyen
Attacks and cryptanalysis

Lattice-based cryptography typically uses lattices with special properties to improve efficiency. We show how blockwise reduction can exploit lattices with special geometric properties, effectively reducing the required blocksize to solve the shortest vector problem to half of the lattice's rank, and in the case of the hypercubic lattice $\mathbb{Z}^n$, further relaxing the approximation factor of blocks to $\sqrt{2}$. We study both provable algorithms and the heuristic well-known primal...

2024/547 (PDF) Last updated: 2024-05-21
Efficient Permutation Correlations and Batched Random Access for Two-Party Computation
Stanislav Peceny, Srinivasan Raghuraman, Peter Rindal, Harshal Shah
Cryptographic protocols

In this work we formalize the notion of a two-party permutation correlation $(A, B), (C, \pi)$ s.t. $\pi(A)=B+C$ for a random permutation $\pi$ of $n$ elements and vectors $A,B,C\in \mathbb{F}^n$. This correlation can be viewed as an abstraction and generalization of the Chase et al. (Asiacrypt 2020) share translation protocol. We give a systematization of knowledge for how such a permutation correlation can be derandomized to allow the parties to perform a wide range of oblivious...

2024/474 (PDF) Last updated: 2024-03-25
Accumulation without Homomorphism
Benedikt Bünz, Pratyush Mishra, Wilson Nguyen, William Wang
Cryptographic protocols

Accumulation schemes are a simple yet powerful primitive that enable highly efficient constructions of incrementally verifiable computation (IVC). Unfortunately, all prior accumulation schemes rely on homomorphic vector commitments whose security is based on public-key assumptions. It is an interesting open question to construct efficient accumulation schemes that avoid the need for such assumptions. In this paper, we answer this question affirmatively by constructing an accumulation...

2024/422 (PDF) Last updated: 2024-03-11
A Class of Weightwise Almost Perfectly Balanced Boolean Functions with High Weightwise Nonlinearity
Deepak Kumar Dalai, Krishna Mallick
Secret-key cryptography

A Boolean function with good cryptographic properties over a set of vectors with constant Hamming weight is significant for stream ciphers like FLIP [MJSC16]. This paper presents a construction weightwise almost perfectly balanced (WAPB) Boolean functions by perturbing the support vectors of a highly nonlinear function in the construction presented in [DM]. As a result, the nonlinearity and weightwise nonlinearities of the modified functions improve substantially.

2024/413 (PDF) Last updated: 2024-08-21
Bent functions construction using extended Maiorana-McFarland’s class
Juan Carlos Ku-Cauich, Javier Diaz-Vargas, Sara Mandujano-Velazquez
Attacks and cryptanalysis

We use the extended Maiorana-McFarland's class to obtain bent functions. Additionally, we obtain balanced functions when we restrict its domain to vectors with even Hamming weight, i.e., an equal number of pre-images for 0 and 1. We have defined a bent function on an affine space to achieve this. Additionally, we demonstrate that the bent functions, in general, are balanced by restricting them to vectors of even Hamming or odd Hamming weight. Since that we have all the necessary tools, we...

2024/277 (PDF) Last updated: 2024-02-19
Fault Attacks on UOV and Rainbow
Juliane Krämer, Mirjam Loiero
Attacks and cryptanalysis

Multivariate cryptography is one of the main candidates for creating post-quantum public key cryptosystems. Especially in the area of digital signatures, there exist many practical and secure multivariate schemes. The signature schemes UOV and Rainbow are two of the most promising and best studied multivariate schemes which have proven secure for more than a decade. However, so far the security of multivariate signature schemes towards physical attacks has not been appropriately assessed....

2024/211 (PDF) Last updated: 2024-02-11
INSPECT: Investigating Supply Chain and Cyber-Physical Security of Battery Systems
Tao Zhang, Shang Shi, Md Habibur Rahman, Nitin Varshney, Akshay Kulkarni, Farimah Farahmandi, Mark Tehranipoor
Applications

Battery-operated applications have been ubiquitous all over the world ranging from power-intensive electric cars down to low-power smart terminals and embedded devices. Meanwhile, serious incidents around batteries such as swelling, fire, and explosion have been witnessed, which resulted in horribly huge financial and even life loss. People used to attribute such aftermaths to unintentional design mistakes or insufficient quality inspection of original battery manufacturers. However, this is...

2024/183 (PDF) Last updated: 2024-02-07
On Security Proofs of Existing Equivalence Class Signature Schemes
Balthazar Bauer, Georg Fuchsbauer
Public-key cryptography

Equivalence class signatures (EQS), introduced by Hanser and Slamanig (AC'14), sign vectors of elements from a bilinear group. Signatures can be ``adapted'', meaning that anyone can transform a signature on a vector to a (random) signature on any multiple of that vector. (Signatures thus authenticate equivalence classes.) A transformed signature/message pair is then indistinguishable from a random signature on a random message. EQS have been used to efficiently instantiate (delegatable)...

2024/009 (PDF) Last updated: 2024-01-03
Distributed Protocols for Oblivious Transfer and Polynomial Evaluation
Aviad Ben Arie, Tamir Tassa
Cryptographic protocols

A secure multiparty computation (MPC) allows several parties to compute a function over their inputs while keeping their inputs private. In its basic setting, the protocol involves only parties that hold inputs. In distributed MPC, there are also external servers who perform a distributed protocol that executes the needed computation, without learning information on the inputs and outputs. Here we propose distributed protocols for several fundamental MPC functionalities. We begin with a...

2023/1931 (PDF) Last updated: 2023-12-20
Single-Trace Side-Channel Attacks on CRYSTALS-Dilithium: Myth or Reality?
Ruize Wang, Kalle Ngo, Joel Gärtner, Elena Dubrova
Attacks and cryptanalysis

We present a side-channel attack on CRYSTALS-Dilithium, a post-quantum secure digital signature scheme, with two variants of post-processing. The side-channel attack exploits information leakage in the secret key unpacking procedure of the signing algorithm to recover the coefficients of the polynomials in the secret key vectors ${\bf s}_1$ and ${\bf s}_2$ by profiled deep learning-assisted power analysis. In the first variant, one half of the coefficients of ${\bf s}_1$ and ${\bf s}_2$ is...

2023/1912 (PDF) Last updated: 2023-12-13
Dishonest Majority Multiparty Computation over Matrix Rings
Hongqing Liu, Chaoping Xing, Chen Yuan, Taoxu Zou
Cryptographic protocols

The privacy-preserving machine learning (PPML) has gained growing importance over the last few years. One of the biggest challenges is to improve the efficiency of PPML so that the communication and computation costs of PPML are affordable for large machine learning models such as deep learning. As we know, linear algebra such as matrix multiplication occupies a significant part of the computation in the deep learning such as deep convolutional neural networks (CNN). Thus, it is desirable to...

2023/1850 (PDF) Last updated: 2023-12-01
Accurate Score Prediction for Dual-Sieve Attacks
Léo Ducas, Ludo N. Pulles
Attacks and cryptanalysis

The Dual-Sieve Attack on Learning with Errors (LWE), or more generally Bounded Distance Decoding (BDD), has seen many improvements in the recent years, and ultimately led to claims that it outperforms the primal attack against certain lattice-based schemes in the PQC standardization process organised by NIST. However, the work of Ducas--Pulles (Crypto '23) revealed that the so-called "Independence Heuristic", which all recent dual attacks used, leads to wrong predictions in a contradictory...

2023/1824 (PDF) Last updated: 2023-12-01
Learning with Errors over Group Rings Constructed by Semi-direct Product
Jiaqi Liu, Fang-Wei Fu
Public-key cryptography

The Learning with Errors (LWE) problem has been widely utilized as a foundation for numerous cryptographic tools over the years. In this study, we focus on an algebraic variant of the LWE problem called Group ring LWE (GR-LWE). We select group rings (or their direct summands) that underlie specific families of finite groups constructed by taking the semi-direct product of two cyclic groups. Unlike the Ring-LWE problem described in \cite{lyubashevsky2010ideal}, the multiplication operation in...

2023/1795 (PDF) Last updated: 2024-03-15
Efficiently Testable Circuits without Conductivity
Mirza Ahad Baig, Suvradip Chakraborty, Stefan Dziembowski, Małgorzata Gałązka, Tomasz Lizurej, Krzysztof Pietrzak
Foundations

The notion of ``efficiently testable circuits'' (ETC) was recently put forward by Baig et al.~(ITCS'23). Informally, an ETC compiler takes as input any Boolean circuit $C$ and outputs a circuit/inputs tuple $(C',\mathbb{T})$ where (completeness) $C'$ is functionally equivalent to $C$ and (security) if $C'$ is tampered in some restricted way, then this can be detected as $C'$ will err on at least one input in the small test set $\mathbb{T}$. The compiler of Baig et al. detects tampering...

2023/1735 (PDF) Last updated: 2023-11-09
Exploiting the Symmetry of $\mathbb{Z}^n$: Randomization and the Automorphism Problem
Kaijie Jiang, Anyu Wang, Hengyi Luo, Guoxiao Liu, Yang Yu, Xiaoyun Wang
Foundations

$\mathbb{Z}^n$ is one of the simplest types of lattices, but the computational problems on its rotations, such as $\mathbb{Z}$SVP and $\mathbb{Z}$LIP, have been of great interest in cryptography. Recent advances have been made in building cryptographic primitives based on these problems, as well as in developing new algorithms for solving them. However, the theoretical complexity of $\mathbb{Z}$SVP and $\mathbb{Z}$LIP are still not well understood. In this work, we study the problems on...

2023/1709 (PDF) Last updated: 2023-11-03
Signal Leakage Attack Meets Depth First Search: an Improved Approach on DXL Key Exchange Protocol
Zhiwei Li, Jun Xu, Lei Hu

In 2012, Ding, Xie and Lin designed a key exchange protocol based on Ring-LWE problem, called the DXL key exchange protocol, which can be seen as an extended version of the Diffie-Hellman key exchange. In this protocol, Ding et al. achieved key exchange between the communicating parties according to the associativity of matrix multiplications, that is, $(x^T\cdot A)\cdot y = x^T\cdot (A\cdot y)$, where $x,y$ are column vectors and $A$ is a square matrix. However, the DXL key exchange...

2023/1690 (PDF) Last updated: 2023-11-01
Efficient VOLE based Multi-Party PSI with Lower Communication Cost
Shuqing Zhang
Cryptographic protocols

We present a new method for doing multi-party private set intersection against a malicious adversary, which reduces the total communication cost to $ O(nl\kappa) $. Additionally, our method can also be used to build a multi-party Circuit-PSI without payload. Our protocol is based on Vector-OLE(VOLE) and oblivious key-value store(OKVS). To meet the requirements of the protocol, we first promote the definition of VOLE to a multi-party version. After that, we use the new primitive to construct...

2023/1684 (PDF) Last updated: 2024-04-18
Nomadic: Normalising Maliciously-Secure Distance with Cosine Similarity for Two-Party Biometric Authentication
Nan Cheng, Melek Önen, Aikaterini Mitrokotsa, Oubaïda Chouchane, Massimiliano Todisco, Alberto Ibarrondo
Cryptographic protocols

Computing the distance between two non-normalized vectors $\mathbfit{x}$ and $\mathbfit{y}$, represented by $\Delta(\mathbfit{x},\mathbfit{y})$ and comparing it to a predefined public threshold $\tau$ is an essential functionality used in privacy-sensitive applications such as biometric authentication, identification, machine learning algorithms ({\em e.g.,} linear regression, k-nearest neighbors, etc.), and typo-tolerant password-based authentication. Tackling a widely used distance...

2023/1679 (PDF) Last updated: 2023-10-30
Plug Your Volt: Protecting Intel Processors against Dynamic Voltage Frequency Scaling based Fault Attacks
Nimish Mishra, Rahul Arvind Mool, Anirban Chakraborty, Debdeep Mukhopadhyay
Implementation

The need for energy optimizations in modern systems forces CPU vendors to provide Dynamic Voltage Frequency Scaling (DVFS) interfaces that allow software to control the voltage and frequency of CPU cores. In recent years, the accessibility of such DVFS interfaces to adversaries has amounted to a plethora of fault attack vectors. In response, the current countermeasures involve either restricting access to DVFS interfaces or including additional compiler-based checks that let the DVFS fault...

2023/1596 (PDF) Last updated: 2023-10-16
A Black Box Attack Using Side Channel Analysis and Hardware Trojans
Raja Adhithan Radhakrishnan
Attacks and cryptanalysis

The emergence of hardware trojans as significant threats in various aspects of hardware design, including Firmware, open-source IP, and PCB design, has raised serious concerns. Simultaneously, AI technologies have been employed to simplify the complexity of Side Channel Analysis (SCA) attacks. Due to the increasing risk posed by these threats, it becomes essential to test hardware by considering all possible attack vectors. This paper aims to propose a black box attack using...

2023/1493 (PDF) Last updated: 2023-10-03
Measuring the Concentration of Control in Contemporary Ethereum
Simon Brown
Foundations

Ethereum is undergoing significant changes to its architecture as it evolves. These changes include its switch to PoS consensus and the introduction of significant infrastructural changes that do not require a change to the core protocol, but that fundamentally affect the way users interact with the network. These changes represent an evolution toward a more modular architecture, in which there exists new exogenous vectors for centralization. This paper builds on previous studies of...

2023/1424 (PDF) Last updated: 2023-09-20
PRIVATON - Privacy Preserving Automaton for Proof of Computations
Bala Subramanyan
Applications

Amid the landscape of confidential computing, where security and privacy reign supreme, PRIVATON emerges as a pioneering and practical solution to safeguard sensitive data and computations. A verifiable proof of computation model, with one of its variant built upon the dual sandbox strategy, PRIVATON combines Trusted Execution Environment (TEE) technologies with WebAssembly (WASM) runtime environments to establish an ecosystem for privacy-preserving computations. This approach involves fine...

2023/1264 (PDF) Last updated: 2024-03-08
An optimization of the addition gate count in Plonkish circuits
Steve Thakur
Cryptographic protocols

We slightly generalize Plonk's ([GWC19]) permutation argument by replacing permutations with (possibly non-injective) self-maps of an interval. We then use this succinct argument to obtain a protocol for weighted sums on committed vectors, which, in turn, allows us to eliminate the intermediate gates arising from high fan-in additions in Plonkish circuits. We use the KZG10 polynomial commitment scheme, which allows for a universal updateable CRS linear in the circuit size. In keeping...

2023/1158 (PDF) Last updated: 2023-11-25
Improved Polynomial Secret-Sharing Schemes
Amos Beimel, Oriol Farràs, Or Lasri
Cryptographic protocols

Despite active research on secret-sharing schemes for arbitrary access structures for more than 35 years, we do not understand their share size $-$ the best known upper bound for an arbitrary n-party access structure is $2^{O(n)}$ while the best known lower bound is $\Omega(n/\log(n))$. Consistent with our knowledge, the share size can be anywhere between these bounds. To better understand this question, one can study specific families of secret-sharing schemes. For example, linear...

2023/1137 (PDF) Last updated: 2023-07-22
A New Sieving Approach for Solving the HNP with One Bit of Nonce by Using Built-in Modulo Arithmetic
Yao Sun, Shuai Chang
Public-key cryptography

The Hidden Number Problem (HNP) has been extensively used in the side-channel attacks against (EC)DSA and Diffie-Hellman. The lattice approach is a primary method of solving the HNP. In EUROCRYPT 2021, Albrecht and Heninger constructed a new lattice to solve the HNP, which converts the HNP to the SVP. After that, their approach became the state-of-the-art lattice method of solving the HNP. But Albrecht and Heninger's approach has a high failure rate for solving the HNP with one bit of nonce...

2023/1131 (PDF) Last updated: 2024-05-15
One vector to rule them all: Key recovery from one vector in UOV schemes
Pierre Pébereau
Attacks and cryptanalysis

Unbalanced Oil and Vinegar is a multivariate signature scheme that was introduced in 1999. Most multivariate candidates for signature schemes at NIST's PQC standardization process are either based on UOV or closely related to it. The UOV trapdoor is a secret subspace, the "oil subspace". We show how to recover an equivalent secret key from the knowledge of a single vector in the oil subspace in any characteristic. The reconciliation attack was sped-up by adding some bilinear equations...

2023/1073 (PDF) Last updated: 2023-07-10
The Reality of Backdoored S-Boxes - An Eye Opener
Shah Fahd, Mehreen Afzal, Waseem Iqbal, Dawood Shah, Ijaz Khalid
Foundations

The analysis of real-life incidents has revealed that state-level efforts are made to camouflage the intentional flaws in the mathematical layer of an S-Box to exploit the information-theoretic properties, i.e., Kuznyechik. To extract and investigate the common features in the backdoored S-Box(es), this research thoroughly examines them from the perspective of 24 cryptanalytic attack vectors available in the open literature. We have debunked the earlier claims by the backdoor engineers that...

2023/1035 (PDF) Last updated: 2023-07-03
Short Signatures from Regular Syndrome Decoding in the Head
Eliana Carozza, Geoffroy Couteau, Antoine Joux
Cryptographic protocols

We introduce a new candidate post-quantum digital signature scheme from the regular syndrome decoding (RSD) assumption, an established variant of the syndrome decoding assumption which asserts that it is hard to find $w$-regular solutions to systems of linear equations over $\mathbb{F}_2$ (a vector is regular if it is a concatenation of $w$ unit vectors). Our signature is obtained by introducing and compiling a new 5-round zero-knowledge proof system constructed using the MPC-in-the-head...

2023/1012 (PDF) Last updated: 2023-07-24
Arithmetic Sketching
Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, Yuval Ishai
Cryptographic protocols

This paper introduces arithmetic sketching, an abstraction of a primitive that several previous works use to achieve lightweight, low-communication zero-knowledge verification of secret-shared vectors. An arithmetic sketching scheme for a language $\mathcal{L} \in \mathbb{F}^n$ consists of (1) a randomized linear function compressing a long input x to a short “sketch,” and (2) a small arithmetic circuit that accepts the sketch if and only if $x \in \mathcal{L}$, up to some small error. If...

2023/988 (PDF) Last updated: 2023-06-24
On the Hardness of Scheme-Switching Between SIMD FHE Schemes
Karim Eldefrawy, Nicholas Genise, Nathan Manohar
Public-key cryptography

Fully homomorphic encryption (FHE) schemes are either lightweight and can evaluate boolean circuits or are relatively heavy and can evaluate arithmetic circuits on encrypted vectors, i.e., they perform single instruction multiple data operations (SIMD). SIMD FHE schemes can either perform exact modular arithmetic in the case of the Brakerski-Gentry-Vaikuntanathan (BGV) and Brakerski-Fan-Vercauteren (BFV) schemes or approximate arithmetic in the case of the Cheon-Kim-Kim-Song (CKKS) scheme....

2023/958 (PDF) Last updated: 2023-06-19
Faster TFHE Bootstrapping with Block Binary Keys
Changmin Lee, Seonhong Min, Jinyeong Seo, Yongsoo Song
Public-key cryptography

Fully Homomorphic Encryption over the Torus (TFHE) is a homomorphic encryption scheme which supports efficient Boolean operations over encrypted bits. TFHE has a unique feature in that the evaluation of each binary gate is followed by a bootstrapping procedure to refresh the noise of a ciphertext. In particular, this gate bootstrapping involves two algorithms called the blind rotation and key-switching. In this work, we introduce several optimization techniques for the TFHE bootstrapping....

2023/948 (PDF) Last updated: 2024-01-12
Compact Circuits for Efficient Mobius Transform
Subhadeep Banik, Francesco Regazzoni
Implementation

The Mobius transform is a linear circuit used to compute the evaluations of a Boolean function over all points on its input domain. The operation is very useful in finding the solution of a system of polynomial equations over GF(2) for obvious reasons. However the operation, although linear, needs exponential number of logic operations (around $n\cdot 2^{n-1}$ bit xors) for an $n$-variable Boolean function. As such, the only known hardware circuit to efficiently compute the Mobius transform...

2023/946 (PDF) Last updated: 2023-06-16
Compressing Encrypted Data Over Small Fields
Nils Fleischhacker, Kasper Green Larsen, Mark Simkin
Foundations

$\newcommand{\gen}{\mathsf{Gen}}\newcommand{\enc}{\mathsf{Enc}}\newcommand{\dec}{\mathsf{Dec}}$ A recent work of Fleischhacker, Larsen, and Simkin (Eurocrypt 2023) shows how to efficiently compress encrypted sparse vectors. Subsequently, Fleischhacker, Larsen, Obremski, and Simkin (Eprint 2023) improve upon their work and provide more efficient constructions solving the same problem. Being able to efficiently compress such vectors is very useful in a variety of applications, such as...

2023/894 (PDF) Last updated: 2023-06-09
Differentially Private Selection from Secure Distributed Computing
Ivan Damgård, Hannah Keller, Boel Nelson, Claudio Orlandi, Rasmus Pagh
Cryptographic protocols

Given a collection of vectors $\mathbf{x}^{(1)},\dots,\mathbf{x}^{(n)} \in \{0,1\}^d$, the selection problem asks to report the index of an "approximately largest" entry in $\mathbf{x}=\sum_{j=1}^n \mathbf{x}^{(j)}$. Selection abstracts a host of problems; in machine learning it can be used for hyperparameter tuning, feature selection, or to model empirical risk minimization. We study selection under differential privacy, where a released index guarantees privacy for individual vectors....

2023/890 (PDF) Last updated: 2023-06-09
Efficient Evaluation of Frequency Test for Overlapping Vectors Statistic
Krzysztof MAŃK
Foundations

Randomness testing is one of the essential and easiest tools for evaluating cryptographic primitives. The faster we can test, the greater volume of data that can be tested. Thus a more detailed analysis is possible. This paper presents a range of observations made for a well-known frequency test for overlapping vectors in binary sequence testing. We have obtained precise chi-square statistic computed in $O \left(dt 2^{dt} \right)$ instead of $O\left( 2^{2dt}\right)$ time, without precomputed tables.

2023/800 (PDF) Last updated: 2023-10-20
Vector Commitments With Proofs of Smallness: Short Range Proofs and More
Benoit Libert
Public-key cryptography

Vector commitment schemes are compressing commitments to vectors that make it possible to succinctly open a commitment for individual vector positions without revealing anything about other positions. We describe vector commitments enabling constant-size proofs that the committed vector is small (i.e., binary, ternary, or of small norm). As a special case, we obtain range proofs featuring the shortest proof length in the literature with only $3$ group elements per proof. As another...

2023/728 (PDF) Last updated: 2023-05-21
SoK: Distributed Randomness Beacons
Kevin Choi, Aathira Manoj, Joseph Bonneau
Foundations

Motivated and inspired by the emergence of blockchains, many new protocols have recently been proposed for generating publicly verifiable randomness in a distributed yet secure fashion. These protocols work under different setups and assumptions, use various cryptographic tools, and entail unique trade-offs and characteristics. In this paper, we systematize the design of distributed randomness beacons (DRBs) as well as the cryptographic building blocks they rely on. We evaluate protocols on...

2023/565 (PDF) Last updated: 2023-04-20
Decentralized Multi-Authority Attribute-Based Inner-Product FE: Large Universe and Unbounded
Pratish Datta, Tapas Pal
Public-key cryptography

This paper presents the first decentralized multi-authority attribute-based inner product functional encryption (MA-ABIPFE) schemes supporting vectors of a priori unbounded lengths. The notion of AB-IPFE, introduced by Abdalla et al. [ASIACRYPT 2020], combines the access control functionality of attribute-based encryption (ABE) with the possibility of evaluating linear functions on encrypted data. A decentralized MA-ABIPFE defined by Agrawal et al. [TCC 2021] essentially enhances the ABE...

2023/523 (PDF) Last updated: 2023-12-03
Adding more parallelism to the AEGIS authenticated encryption algorithms
Frank Denis
Secret-key cryptography

While the round function of the AEGIS authenticated encryption algorithms is highly parallelizable, their mode of operation is not. We introduce two new modes to overcome that limitation: AEGIS-128X and AEGIS-256X, that require minimal changes to existing implementations and retain the security properties of AEGIS-128L and AEGIS-256.

2023/511 (PDF) Last updated: 2023-09-06
$\text{MP}\ell\circ \mathrm{C}$: Privacy-Preserving IP Verification Using Logic Locking and Secure Multiparty Computation
Dimitris Mouris, Charles Gouert, Nektarios Georgios Tsoutsos
Applications

The global supply chain involves multiple independent entities, and potential adversaries can exploit different attack vectors to steal proprietary designs and information. As a result, intellectual property (IP) owners and consumers have reasons to keep their designs private. Without a trusted third party, this mutual mistrust can lead to a deadlock where IP owners are unwilling to disclose their IP core before a financial agreement is reached, while consumers need assurance that the...

2023/483 (PDF) Last updated: 2023-04-04
Unbounded Predicate Inner Product Functional Encryption from Pairings
Uddipana Dowerah, Subhranil Dutta, Aikaterini Mitrokotsa, Sayantan Mukherjee, Tapas Pal
Public-key cryptography

Predicate inner product functional encryption (P-IPFE) is essentially attribute-based IPFE (AB-IPFE) which additionally hides attributes associated to ciphertexts. In a P-IPFE, a message x is encrypted under an attribute w and a secret key is generated for a pair (y, v) such that recovery of ⟨x, y⟩ requires the vectors w, v to satisfy a linear relation. We call a P-IPFE unbounded if it can encrypt unbounded length attributes and message vectors. • zero predicate IPFE. We construct the first...

2023/460 (PDF) Last updated: 2023-03-30
A unified construction of weightwise perfectly balanced Boolean functions
Qinglan Zhao, Mengran Li, Zhixiong Chen, Baodong Qin, Dong Zheng
Secret-key cryptography

At Eurocrypt 2016, Méaux et al. presented FLIP, a new family of stream ciphers {that aimed to enhance the efficiency of homomorphic encryption frameworks. Motivated by FLIP, recent research has focused on the study of Boolean functions with good cryptographic properties when restricted to subsets of the space $\mathbb{F}_2^n$. If an $n$-variable Boolean function has the property of balancedness when restricted to each set of vectors with fixed Hamming weight between $1$ and $n-1$, it is a ...

2023/422 (PDF) Last updated: 2023-03-23
A Differential Fault Attack against Deterministic Falcon Signatures
Sven Bauer, Fabrizio De Santis
Attacks and cryptanalysis

We describe a fault attack against the deterministic variant of the Falcon signature scheme. It is the first fault attack that exploits specific properties of deterministic Falcon. The attack works under a very liberal and realistic single fault random model. The main idea is to inject a fault into the pseudo-random generator of the pre-image trapdoor sampler, generate different signatures for the same input, find reasonably short lattice vectors this way, and finally use lattice reduction...

2023/385 (PDF) Last updated: 2024-01-22
Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem
Marco Baldi, Sebastian Bitzer, Alessio Pavoni, Paolo Santini, Antonia Wachter-Zeh, Violetta Weger
Public-key cryptography

The Restricted Syndrome Decoding Problem (R-SDP) corresponds to the Syndrome Decoding Problem (SDP) with the additional constraint that all entries of the solution error vector must live in a fixed subset of the finite field. In this paper, we study how this problem can be applied to the construction of signatures derived from Zero-Knowledge (ZK) protocols. First, we show that R-SDP appears to be well-suited for this type of application: ZK protocols relying on SDP can easily be modified to...

2023/270 (PDF) Last updated: 2023-02-23
Actively Secure Arithmetic Computation and VOLE with Constant Computational Overhead
Benny Applebaum, Niv Konstantini
Foundations

We study the complexity of two-party secure arithmetic computation where the goal is to evaluate an arithmetic circuit over a finite field $F$ in the presence of an active (aka malicious) adversary. In the passive setting, Applebaum et al. (Crypto 2017) constructed a protocol that only makes a *constant* (amortized) number of field operations per gate. This protocol uses the underlying field $F$ as a black box, makes black-box use of (standard) oblivious transfer, and its security is based...

2023/261 (PDF) Last updated: 2023-07-11
A Greedy Global Framework for LLL
Sanjay Bhattacherjee, Julio Hernandez-Castro, Jack Moyler
Foundations

LLL-style lattice reduction algorithms iteratively employ size reduction and reordering on ordered basis vectors to find progressively shorter, more orthogonal vectors. These algorithms work with a designated measure of basis quality and perform reordering by inserting a vector in an earlier position depending on the basis quality before and after reordering. DeepLLL was introduced alongside the BKZ reduction algorithm, however the latter has emerged as the state-of-the-art and has therefore...

2023/247 (PDF) Last updated: 2023-10-09
A New Sieving-Style Information-Set Decoding Algorithm
Qian Guo, Thomas Johansson, Vu Nguyen
Attacks and cryptanalysis

The problem of decoding random codes is a fundamental problem for code-based cryptography, including recent code-based candidates in the NIST post-quantum standardization process. In this paper, we present a novel sieving-style information-set decoding (ISD) algorithm, addressing the task of solving the syndrome decoding problem. Our approach involves maintaining a list of weight-$2p$ solution vectors to a partial syndrome decoding problem and then creating new vectors by identifying pairs...

2023/200 (PDF) Last updated: 2023-08-02
Classical and quantum 3 and 4-sieves to solve SVP with low memory
Johanna Loyer, André Chailloux
Attacks and cryptanalysis

The Shortest Vector Problem (SVP) is at the foundation of lattice-based cryptography. The fastest known method to solve SVP in dimension $d$ is by lattice sieving, which runs in time $2^{td+o(d)}$ with $2^{md+o(d)}$ memory for constants $t,m \in \Theta(1)$. Searching reduced vectors in the sieve is a problem reduced to the configuration problem, \ie searching $k$ vectors satisfying given constraints over their scalar products. In this work, we present a framework for $k$-sieve...

2023/149 (PDF) Last updated: 2023-08-24
Demystifying Bootstrapping in Fully Homomorphic Encryption
Ahmad Al Badawi, Yuriy Polyakov
Implementation

Bootstrapping is a term used very often in the context of Fully Homomorphic Encryption (FHE). Anyone who is familiar with FHE knows that bootstrapping is the most sophisticated and compute-intensive component of an FHE scheme. However, very few non-FHE-experts understand what the bootstrapping operation really is and that there are various bootstrapping methods, each with its own tradeoffs. The goal of this paper is to provide a high-level introduction to common bootstrapping methods and...

2023/138 (PDF) Last updated: 2023-02-06
Tracing a Linear Subspace: Application to Linearly-Homomorphic Group Signatures
Chloé Hébant, David Pointcheval, Robert Schädlich
Public-key cryptography

When multiple users have power or rights, there is always the risk of corruption or abuse. Whereas there is no solution to avoid those malicious behaviors, from the users themselves or from external adversaries, one can strongly deter them with tracing capabilities that will later help to revoke the rights or negatively impact the reputation. On the other hand, privacy is an important issue in many applications, which seems in contradiction with traceability. In this paper, we first extend...

2023/102 (PDF) Last updated: 2023-04-14
Cache-timing attack against HQC
Senyang Huang, Rui Qi Sim, Chitchanok Chuengsatiansup, Qian Guo, Thomas Johansson
Attacks and cryptanalysis

In this paper, we present the first chosen-ciphertext (CC) cache-timing attacks on the reference implementation of HQC. We build a cache-timing based distinguisher for implementing a plaintext-checking (PC) oracle. The PC oracle uses side-channel information to check if a given ciphertext decrypts to a given message. This is done by identifying a vulnerability during the generating process of two vectors in the reference implementation of HQC. We also propose a new method of using PC...

2023/091 (PDF) Last updated: 2024-08-26
Satisfiability Modulo Finite Fields
Alex Ozdemir, Gereon Kremer, Cesare Tinelli, Clark Barrett
Implementation

We study satisfiability modulo the theory of finite fields and give a decision procedure for this theory. We implement our procedure for prime fields inside the cvc5 SMT solver. Using this theory, we con- struct SMT queries that encode translation validation for various zero knowledge proof compilers applied to Boolean computations. We evalu- ate our procedure on these benchmarks. Our experiments show that our implementation is superior to previous approaches (which encode...

2023/072 (PDF) Last updated: 2023-01-22
Non-Interactive Secure Computation of Inner-Product from LPN and LWE
Geoffroy Couteau, Maryam Zarezadeh
Cryptographic protocols

We put forth a new cryptographic primitive for securely computing inner-products in a scalable, non-interactive fashion: any party can broadcast a public (computationally hiding) encoding of its input, and store a secret state. Given their secret state and the other party's public encoding, any pair of parties can non-interactively compute additive shares of the inner-product between the encoded vectors. We give constructions of this primitive from a common template, which can be...

2023/009 (PDF) Last updated: 2023-01-03
Efficient Privacy-Preserving Viral Strain Classification via k-mer Signatures and FHE
Adi Akavia, Ben Galili, Hayim Shaul, Mor Weiss, Zohar Yakhini
Cryptographic protocols

With the development of sequencing technologies, viral strain classification -- which is critical for many applications, including disease monitoring and control -- has become widely deployed. Typically, a lab (client) holds a viral sequence, and requests classification services from a centralized repository of labeled viral sequences (server). However, such ``classification as a service'' raises privacy concerns. In this paper we propose a privacy-preserving viral strain classification...

2022/1747 (PDF) Last updated: 2023-02-26
Duoram: A Bandwidth-Efficient Distributed ORAM for 2- and 3-Party Computation
Adithya Vadapalli, Ryan Henry, Ian Goldberg
Cryptographic protocols

We design, analyze, and implement Duoram, a fast and bandwidth-efficient distributed ORAM protocol suitable for secure 2- and 3-party computation settings. Following Doerner and shelat's Floram construction (CCS 2017), Duoram leverages (2,2)-distributed point functions (DPFs) to represent PIR and PIR-writing queries compactly—but with a host of innovations that yield massive asymptotic reductions in communication cost and notable speedups in practice, even for modestly sized instances....

2022/1732 (PDF) Last updated: 2023-04-18
TreeSync: Authenticated Group Management for Messaging Layer Security
Théophile Wallez, Jonathan Protzenko, Benjamin Beurdouche, Karthikeyan Bhargavan
Cryptographic protocols

Messaging Layer Security (MLS), currently undergoing standardization at the IETF, is an asynchronous group messaging protocol that aims to be efficient for large dynamic groups, while providing strong guarantees like forward secrecy (FS) and post-compromise security (PCS). While prior work on MLS has extensively studied its group key establishment component (called TreeKEM), many flaws in early designs of MLS have stemmed from its group integrity and authentication mechanisms that are not as...

2022/1705 (PDF) Last updated: 2022-12-09
Careful with MAc-then-SIGn: A Computational Analysis of the EDHOC Lightweight Authenticated Key Exchange Protocol
Felix Günther, Marc Ilunga Tshibumbu Mukendi
Cryptographic protocols

EDHOC is a lightweight authenticated key exchange protocol for IoT communication, currently being standardized by the IETF. Its design is a trimmed-down version of similar protocols like TLS 1.3, building on the SIGn-then-MAc (SIGMA) rationale. In its trimming, however, EDHOC notably deviates from the SIGMA design by sending only short, non-unique credential identifiers, and letting recipients perform trial verification to determine the correct communication partner. Done naively, this can...

2022/1690 (PDF) Last updated: 2024-06-05
LUNA: Quasi-Optimally Succinct Designated-Verifier Zero-Knowledge Arguments from Lattices
Ron Steinfeld, Amin Sakzad, Muhammed F. Esgin, Veronika Kuchta, Mert Yassi, Raymond K. Zhao
Cryptographic protocols

We introduce the first candidate Lattice-based designated verifier (DV) zero knowledge sUccinct Non-interactive Argument (ZK-SNARG) protocol, LUNA, with quasi-optimal proof length (quasi-linear in the security/privacy parameter). By simply relying on mildly stronger security assumptions, LUNA is also a candidate ZK-SNARK (i.e. argument of knowledge). LUNA achieves significant improvements in concrete proof sizes, reaching below 6 KB (compared to >32 KB in prior work) for 128-bit...

2022/1661 (PDF) Last updated: 2022-12-01
Enhancing the Dual Attack against MLWE: Constructing More Short Vectors Using Its Algebraic Structure
Han Wu, Guangwu Xu
Attacks and cryptanalysis

Primal attack, BKW attack, and dual attack are three well-known attacks to LWE. To build efficient post-quantum cryptosystems in practice, the structured variants of LWE (i.e. MLWE/RLWE) are often used. Some efforts have been spent on addressing concerns about additional vulnerabilities introduced by algebraic structures and no effective attack method based on ideal lattices or module lattices has been proposed so far; these include refining primal attack and BKW attack to MLWE/RLWE. It is...

2022/1600 (PDF) Last updated: 2022-11-16
Secret-Shared Joins with Multiplicity from Aggregation Trees
Saikrishna Badrinarayanan, Sourav Das, Gayathri Garimella, Srinivasan Raghuraman, Peter Rindal
Cryptographic protocols

We present novel protocols to compute SQL-like join operations on secret shared database tables with non-unique join keys. Previous approaches to the problem had the restriction that the join keys of both the input tables must be unique or had quadratic overhead. Our work lifts this restriction, allowing one or both of the secret shared input tables to have an unknown and unbounded number of repeating join keys while achieving efficient $O(n\log n)$ asymptotic communication/computation and...

2022/1594 (PDF) Last updated: 2022-11-16
Compact FE for Unbounded Attribute-Weighted Sums for Logspace from SXDH
Pratish Datta, Tapas Pal, Katsuyuki Takashima
Public-key cryptography

This paper presents the first functional encryption (FE) scheme for the attribute-weighted sum (AWS) functionality that supports the uniform model of computation. In such an FE scheme, encryption takes as input a pair of attributes (x,z) where the attribute x is public while the attribute z is private. A secret key corresponds to some weight function f, and decryption recovers the weighted sum f(x)z. This is an important functionality with a wide range of potential real life applications,...

2022/1461 (PDF) Last updated: 2023-08-08
ACORN: Input Validation for Secure Aggregation
James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meiklejohn, Mariana Raykova, Cathie Yun
Cryptographic protocols

Secure aggregation enables a server to learn the sum of client-held vectors in a privacy-preserving way, and has been successfully applied to distributed statistical analysis and machine learning. In this paper, we both introduce a more efficient secure aggregation construction and extend secure aggregation by enabling input validation, in which the server can check that clients' inputs satisfy required constraints such as $L_0$, $L_2$, and $L_\infty$ bounds. This prevents malicious clients...

2022/1378 (PDF) Last updated: 2022-10-12
A Fast Hash Family for Memory Integrity
Qiming Li, Sampo Sovio
Secret-key cryptography

We give a first construction of an ϵ-balanced hash family based on linear transformations of vectors in $\mathbb{F}_2$, where ϵ = 1/(2n − 1) for n-bit hash values, regardless of the message size. The parameter n is also the bit length of the input blocks and the internal state, and can be chosen arbitrarily without design changes, This hash family is fast, easily parallelized, and requires no initial setup. A secure message authentication code can be obtained by combining the hash...

2022/1360 (PDF) Last updated: 2023-12-22
One for All, All for One: A Unified Evaluation Framework for Univariate DPA Attacks
Jiangshan Long, Chenxu Wang, Changhai Ou, Zhu Wang, Yongbin Zhou, Ming Tang
Applications

Success Rate (SR) is one of the most popular security metrics measuring the efficiency of side-channel attacks. Theoretical expression reveals the functional dependency on critical parameters such as number of measurements and Signal-to-Noise Ratio (SNR), helping evaluators understand the threat of an attack as well as how one can mitigate it with proper countermeasures. However so far, existing works have exposed fundamental problems such as: (i) the evaluations are restricted to a very...

2022/1203 (PDF) Last updated: 2022-09-15
On Module Unique-SVP and NTRU
Joël Felderhoff, Alice Pellet-Mary, Damien Stehlé
Foundations

The NTRU problem can be viewed as an instance of finding a short non-zero vector in a lattice, under the promise that it contains an exceptionally short vector. Further, the lattice under scope has the structure of a rank-2 module over the ring of integers of a number field. Let us refer to this problem as the module unique Shortest Vector Problem,or mod-uSVP for short. We exhibit two reductions that together provide evidence the NTRU problem is not just a particular case of mod-uSVP, but...

2022/1196 (PDF) Last updated: 2022-11-10
Embedded Identity Traceable Identity-Based IPFE from Pairings and Lattices
Subhranil Dutta, Tapas Pal, Amit Kumar Singh, Sourav Mukhopadhyay
Public-key cryptography

We present the first fully collusion resistant traitor tracing (TT) scheme for identity-based inner product functional encryption (IBIPFE) that directly traces user identities through an efficient tracing procedure. We name such a scheme as embedded identity traceable IBIPFE (EI-TIBIPFE), where secret keys and ciphertexts are computed for vectors u and v respectively. Additionally, each secret key is associated with a user identification information tuple (i , id, gid) that specifies user...

2022/1142 (PDF) Last updated: 2023-02-20
Secure Message Authentication in the Presence of Leakage and Faults
Francesco Berti, Chun Guo, Thomas Peters, Yaobin Shen, François-Xavier Standaert
Secret-key cryptography

Security against side-channels and faults is a must for the deployment of embedded cryptography. A wide body of research has investigated solutions to secure implementations against these attacks at different abstraction levels. Yet, to a large extent, current solutions focus on one or the other threat. In this paper, we initiate a mode-level study of cryptographic primitives that can ensure security in a (new and practically-motivated) adversarial model combining leakage and faults. Our...

2022/1120 (PDF) Last updated: 2022-08-29
VMEO: Vector Modeling Errors and Operands for Approximate adders
Vishesh Mishra, Urbi Chatterjee
Implementation

Approximate computing techniques are extensively used in computationally intensive applications. Addition architecture being the basic component of computational unit, has received a lot of interest from approximate computing community. Approximate adders are designed with the motivation to reduce area, power and delay of their accurate versions at the cost of bounded loss in accuracy. A major class of approximate adders are implemented using binary logic circuits that operate with a high...

2022/1043 (PDF) Last updated: 2022-08-11
A Study of Error Floor Behavior in QC-MDPC Codes
Sarah Arpin, Tyler Raven Billingsley, Daniel Rayor Hast, Jun Bo Lau, Ray Perlner, Angela Robinson
Public-key cryptography

We present experimental findings on the decoding failure rate (DFR) of BIKE, a fourth-round candidate in the NIST Post-Quantum Standardization process, at the 20-bit security level. We select parameters according to BIKE design principles and conduct a series of experiments. We directly compute the average DFR on a range of BIKE block sizes and identify both the waterfall and error floor regions of the DFR curve. We then study the influence on the average DFR of three sets $\mathcal{C}$,...

2022/1016 (PDF) Last updated: 2022-09-25
Public Key Authenticated Encryption with Keyword Search from LWE
Leixiao Cheng, Fei Meng
Public-key cryptography

Public key encryption with keyword search (PEKS) inherently suffers from the inside keyword guessing attack. To resist against this attack, Huang et al. proposed the public key authenticated encryption with keyword search (PAEKS), where the sender not only encrypts a keyword, but also authenticates it. To further resist against quantum attacks, Liu et al. proposed a generic construction of PAEKS and the first quantum-resistant PAEKS instantiation based on lattices. Later, Emura pointed...

2022/843 Last updated: 2022-08-09
Predicting BKZ Z-Shapes on q-ary Lattices
Martin R. Albrecht, Jianwei Li
Public-key cryptography

Primal attacks against the Learning With Errors (LWE) problem rely on reducing \(q\)-ary lattices. These reduced bases have been observed to exhibit a so-called ``Z-shape'' on their Gram--Schmidt vectors. We propose an efficient simulator to accurately predict this Z-shape behaviour, which we back up with extensive simulations and experiments. We also formalise (under standard heuristics) the intuition that the presence of a Z-shape makes enumeration-based primal lattice attacks faster....

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.