Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Eduardo Blanco Calvo

    Glutamate is the principal excitatory neurotransmitter in the central nervous system and its actions are related to the behavioral effects of psychostimulant drugs. In the last two decades, basic neuroscience research and preclinical... more
    Glutamate is the principal excitatory neurotransmitter in the central nervous system and its actions are related to the behavioral effects of psychostimulant drugs. In the last two decades, basic neuroscience research and preclinical studies with animal models are suggesting a critical role for glutamate transmission in drug reward, reinforcement, and relapse. Although most of the interest has been centered in post-synaptic glutamate receptors, the presynaptic synthesis of glutamate through brain glutaminases may also contribute to imbalances in glutamate homeostasis, a key feature of the glutamatergic hypothesis of addiction. Glutaminases are the main glutamate-producing enzymes in brain and dysregulation of their function have been associated with neurodegenerative diseases and neurological disorders; however, the possible implication of these enzymes in drug addiction remains largely unknown. This mini-review focuses on brain glutaminase isozymes and their alterations by in vivo ...
    This study has been designed to evaluate and replicate the psychometric properties of the Dimensional Assessment of Personality Psychopathology-Basic Questionnaire (DAPP-BQ) and the DAPP-BQ short form (DAPP-SF) in a large Spanish general... more
    This study has been designed to evaluate and replicate the psychometric properties of the Dimensional Assessment of Personality Psychopathology-Basic Questionnaire (DAPP-BQ) and the DAPP-BQ short form (DAPP-SF) in a large Spanish general population sample. Additionally, we have generated a reduced form called DAPP-90, using a strategy based on a structural equation modeling (SEM) methodology in two independent samples, a calibration and a validation sample. The DAPP-90 scales obtained a more satisfactory fit on SEM adjustment values (average: TLI > .97 and RMSEA < .04) respect to full DAPP-BQ and the 136-item version. According to the factorial congruency coefficients, the DAPP-90 obtains a similar structure to the DAPP-BQ and the DAPP-SF. The DAPP-90 internal consistency is acceptable, with a Cronbach's alpha mean of .75. We did not find any differences in the pattern of relations between the two DAPP-BQ shortened versions and the SCL-90-R factors. The new 90-items versio...
    Impulsive personality phenotype has been extensively related with genetic and hormonal factors. This study has two objectives: a) to analyse the interactions between testosterone levels and CAG repeat length polymorphism as a modulator of... more
    Impulsive personality phenotype has been extensively related with genetic and hormonal factors. This study has two objectives: a) to analyse the interactions between testosterone levels and CAG repeat length polymorphism as a modulator of androgen receptor (AR) sensitivity with regard to impulsiveness traits, and b) to evaluate the contribution of other biological variables as Luteinising Hormone, Follicle Stimulating Hormone, Sex Hormone Binding Globulin (LF, FSH, SHBG) and albumin in the relationship between testosterone levels and AR CAG length polymorphism with impulsiveness. A sample of 105 healthy males (mean age 26.71±9.68 SEM) was analysed resulting in three groups of subjects according to CAG repeat lengths. Impulsiveness was measured through the Barratt's Impulsiveness Personality Scale, including three components: Motor Impulsiveness, Cognitive Impulsiveness and Non-Planning Impulsiveness. A series of ANOVAS and linear regression models predicting impulsiveness scales were conducted. Age, hormones, CAG repeat length and hormone×CAG repeat interactions were included in the regression models as independent variables. Results show that subjects with short or medium CAG repeat length tended to show…
    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with... more
    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled t...
    Thioredoxin (Trx) family proteins are crucial mediators of cell functions via regulation of the thiol redox state of various key proteins and the levels of the intracellular second messenger hydrogen peroxide. Their expression,... more
    Thioredoxin (Trx) family proteins are crucial mediators of cell functions via regulation of the thiol redox state of various key proteins and the levels of the intracellular second messenger hydrogen peroxide. Their expression, localization and functions are altered in various pathologies. Here, we have analyzed the impact of Trx family proteins in neuronal development and recovery, following hypoxia/ischemia and reperfusion. We have analyzed the regulation and potential functions of Trx family proteins during hypoxia/ischemia and reoxygenation of the developing brain in both an animal and a cellular model of perinatal asphyxia. We have analyzed the distribution of 14 Trx family and related proteins in the cerebellum, striatum, and hippocampus, three areas of the rat brain that are especially susceptible to hypoxia. Using SH-SY5Y cells subjected to hypoxia and reoxygenation, we have analyzed the functions of some redoxins suggested by the animal experiment. We have described/discovered a complex, cell-type and tissue-specific expression pattern following the hypoxia/ischemia and reoxygenation. Particularly, Grx2 and Trx1 showed distinct changes during tissue recovery following hypoxia/ischemia and reoxygenation. Silencing of these proteins in SH-SY5Y cells subjected to hypoxia-reoxygenation confirmed that these proteins are required to maintain the normal neuronal phenotype. These findings demonstrate the significance of redox signaling in cellular pathways. Grx2 and Trx1 contribute significantly to neuronal integrity and could be clinically relevant in neuronal damage following perinatal asphyxia and other neuronal disorders.
    ABSTRACT The present study analyses the relationship between Anxiety and Impulsivity personality factors and emotions, by controlling for country and sex effects in a sample of Spanish and Swiss university students. Emotions were assessed... more
    ABSTRACT The present study analyses the relationship between Anxiety and Impulsivity personality factors and emotions, by controlling for country and sex effects in a sample of Spanish and Swiss university students. Emotions were assessed through the International Affective Picture System (IAPS) of pictures (valence/ arousal) using the Self-Assessment Manikin (SAM) procedure. The mixed valence/arousal groups' pictures were formed according to Tok, Koyuncu, Dural and Catikkas procedure (2010). Results showed that females scored significantly higher in Anxiety factor and men in Impulsivity factor in both countries. The effect of sex was highly significant for Anxiety (N 2 : 0.12), but there was no significant effect of the country. Also, females obtained higher scores in the four valence/arousal pictures groups. The sex effect was particularly robust for negative valence–high arousal (N 2 : 0.13). Impulsivity correlated with high rat-ings of positive valence–high arousal while Anxiety correlated with high ratings of negative valence–high arousal and with high ratings of negative valence–low arousal in both sexes, although scores were higher for females. Structural Equation Modelling confirmed these relationships. Nevertheless, Anxiety and Impulsivity explained only a small amount of the accounted variance of the self-reported valence and arousal of the pictures.
    Intraneuronal accumulation of amyloid β (iAβ) has been linked to mild cognitive impairment that may precede Alzheimer's disease (AD) onset. This neuropathological trait was recently mimicked in a novel animal model of AD, the... more
    Intraneuronal accumulation of amyloid β (iAβ) has been linked to mild cognitive impairment that may precede Alzheimer's disease (AD) onset. This neuropathological trait was recently mimicked in a novel animal model of AD, the hemizygous transgenic McGill-R-Thy1-APP (Tg(+/-)) rat. The characterization of the behavioral phenotypes in this animal model could provide a baseline of efficacy for earlier therapeutic interventions. The aim of the present study was to undertake a longitudinal study of Aβ accumulation and a comprehensive behavioral evaluation of this transgenic rat model. We assessed exploratory activity, anxiety-related behaviors, recognition memory, working memory, spatial learning and reference memory at 3, 6, and 12 months of age. In parallel, we measured Aβ by ELISA, Western blots and semiquantitative immunohistochemistry in hippocampal samples. SDS-soluble Aβ peptide accumulated at low levels (~9 pg/mg) without differences among ages. However, Western blots showed S...
    Continuous environmental stimulation induced by exposure to enriched environment (EE) has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is... more
    Continuous environmental stimulation induced by exposure to enriched environment (EE) has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL), by cesarean section (C+), or by C+ following 19 min of asphyxia at birth (PA). At weaning, rats were assigned to standard (SE) or enriched environment (EE) for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM). Results showed that middle-aged asphy...
    The present study was designed to investigate the effect of pharmacological inhibition of endocannabinoid degradation on behavioural actions of the dopamine D2/D3 receptor agonist quinpirole in male C57Bl/6J mice. In addition, we studied... more
    The present study was designed to investigate the effect of pharmacological inhibition of endocannabinoid degradation on behavioural actions of the dopamine D2/D3 receptor agonist quinpirole in male C57Bl/6J mice. In addition, we studied the effects of endocannabinoid degradation inhibition on both cocaine-induced psychomotor activation and behavioural sensitization. We analysed the effects of inhibition of the two main endocannabinoid degradation enzymes: fatty acid amide hydrolase (FAAH), using inhibitor URB597 (1 mg/kg); monoacylglycerol lipase (MAGL), using inhibitor URB602 (10 mg/kg). Administration of quinpirole (1 mg/kg) caused a temporal biphasic response characterized by a first phase of immobility (0–50 min), followed by enhanced locomotion (next 70 min) that was associated with the introduction of stereotyped behaviours (stereotyped jumping and rearing). Pretreatment with both endocannabinoid degradation inhibitors did not affect the hypoactivity actions of quinpirole. Ho...
    The function of sGalphai2 protein in central nervous system is not well understood. Therefore to explore the possible role of this protein in postnatal brain development, we have analyzed the protein expression pattern of brain obtained... more
    The function of sGalphai2 protein in central nervous system is not well understood. Therefore to explore the possible role of this protein in postnatal brain development, we have analyzed the protein expression pattern of brain obtained from rats of postnatal day 0 (P0) to P90 by dot-blots and immunocytochemistry techniques. In dot-blots, both nuclear and membrane fractions showed a gradual decrease from P0 to P60. Highest protein level was observed at the age of P0. There was also a trend of decline in the sGalphai2 protein from P0 to P90 in brain sections stained by immunocytochemistry method. At P0, the protein labeling was highest in cerebral cortex, hippocampus, cerebellum and mitral cell layer. In cerebral cortex, a drop in the immunolabeling of sGalphai2 protein was observed at P3, which was significantly increased at the age of P5. However, in striatum and olfactory tubercle, it was maintained through P0-P10 and P0-P5, respectively. Thalamus was one of the areas where labeling was not as strong as cortex, hippocampus or striatum. In contrary to other areas, immunostaining of sGalphai2 in corpus-callosum and lacunosum-molecular was not seen at P0 and appeared in advanced postnatal ages. A detectable level of sGalphai2 protein was observed at P5 in carpus-callosum and at P20 in lacunosum-molecular. A high level of sGalphai2 protein in the period when cellular layer organization and synaptic innervations, synaptic connections and maturation take place, suggests for a potential role of this protein in the early postnatal brain development.
    Long-term memories seem to require protein synthesis to be established. This process can be related with synaptogenesis resulting in changes in the form or even in the number or proportion of synaptic contacts. Results from behavioral... more
    Long-term memories seem to require protein synthesis to be established. This process can be related with synaptogenesis resulting in changes in the form or even in the number or proportion of synaptic contacts. Results from behavioral studies assessing quantitative changes associated with different learning tasks are controversial. The aim of our work was to assess whether the number of CA1 hippocampal synaptic contacts can be modified after training in different tasks in the Morris water maze (MWM). We found transient changes in the synaptic density of the symmetric synapses associated with place learning. A reduced synaptic density of the symmetric synapses in the stratum radiatum of CA1 was found at 48 h posttraining, returning to control levels 72 h posttraining. The same effect was observed 1 h after training in a nonspatial task. Synaptic changes found in the CA1 shortly after water maze training suggest a possible participation of the hippocampus in the acquisition of nonspatial tasks together with a role in the short-term consolidation of spatial memory. As no changes were found in the total number of synapses counted, it is likely that subtle changes in synaptic efficacy than new synapse generation may be sufficient to support the acquisition and maintenance of new memories.
    This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of... more
    This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research.
    Oleoylethanolamide (OEA) is an acylethanolamide that acts as an agonist of nuclear peroxisome proliferator-activated receptor alpha (PPARα) to exert their biological functions, which include the regulation of appetite and metabolism.... more
    Oleoylethanolamide (OEA) is an acylethanolamide that acts as an agonist of nuclear peroxisome proliferator-activated receptor alpha (PPARα) to exert their biological functions, which include the regulation of appetite and metabolism. Increasing evidence also suggests that OEA may participate in the control of reward-related behaviours. However, direct experimental evidence for the role of the OEA-PPARα receptor interaction in drug-mediated behaviours, such as cocaine-induced behavioural phenotypes, is lacking. The present study explored the role of OEA and its receptor PPARα on the psychomotor and rewarding responsiveness to cocaine using behavioural tests indicative of core components of addiction. We found that acute administration of OEA (1, 5 or 20 mg/kg, i.p.) reduced spontaneous locomotor activity and attenuated psychomotor activation induced by cocaine (20 mg/kg) in C57Bl/6 mice. However, PPARα receptor knockout mice showed normal sensitization, although OEA was capable of reducing behavioural sensitization with fewer efficacies. Furthermore, conditioned place preference and reinstatement to cocaine were intact in these mice. Our results indicate that PPARα receptor does not play a critical, if any, role in mediating short- and long-term psychomotor and rewarding responsiveness to cocaine. However, further research is needed for the identification of the targets of OEA for its inhibitory action on cocaine-mediated responses.