Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mohamed T Ghoneim

Intel Corporation, PhD, Department Member
We s how the effectiveness of wavy channel architecture for thin film transistor application for increased output current. This specific architecture allows increased width of the device by adopting a corrugated shape of the substrate... more
We s how the effectiveness of wavy channel architecture for thin film transistor application for increased output current. This specific architecture allows increased width of the device by adopting a corrugated shape of the substrate without any further real estate penalty. The performance improvement is attributed not only to the increased transistor width, but also to enhanced applied electric field in the channel due to the wavy architecture.
We s how the effectiveness of wavy channel architecture for thin film transistor application for increased output current. This specific architecture allows increased width of the device by adopting a corrugated shape of the substrate... more
We s how the effectiveness of wavy channel architecture for thin film transistor application for increased output current. This specific architecture allows increased width of the device by adopting a corrugated shape of the substrate without any further real estate penalty. The performance improvement is attributed not only to the increased transistor width, but also to enhanced applied electric field in the channel due to the wavy architecture.
Solid-state Memory on Flexible Silicon for Future Electronic Applications Mohamed Tarek Ghoneim Advancements in electronics research triggered a vision of a more connected world, touching new unprecedented fields to improve the quality of... more
Solid-state Memory on Flexible Silicon for Future Electronic Applications Mohamed Tarek Ghoneim Advancements in electronics research triggered a vision of a more connected world, touching new unprecedented fields to improve the quality of our lives. This vision has been fueled by electronic giants showcasing flexible displays for the first time in consumer electronics symposiums. Since then, the scientific and research communities partook on exploring possibilities for making flexible electronics. Decades of research have revealed many routes to flexible electronics, lots of opportunities and challenges. In this work, we focus on our contributions towards realizing a complimentary approach to flexible inorganic high performance electronic memories on silicon. This approach provides a straight forward method for capitalizing on the existing well-established semiconductor infrastructure, standard processes and procedures, and collective knowledge. Ultimately, we focus on understanding...
Solid-state Memory on Flexible Silicon for Future Electronic Applications Mohamed Tarek Ghoneim Advancements in electronics research triggered a vision of a more connected world, touching new unprecedented fields to improve the quality of... more
Solid-state Memory on Flexible Silicon for Future Electronic Applications Mohamed Tarek Ghoneim Advancements in electronics research triggered a vision of a more connected world, touching new unprecedented fields to improve the quality of our lives. This vision has been fueled by electronic giants showcasing flexible displays for the first time in consumer electronics symposiums. Since then, the scientific and research communities partook on exploring possibilities for making flexible electronics. Decades of research have revealed many routes to flexible electronics, lots of opportunities and challenges. In this work, we focus on our contributions towards realizing a complimentary approach to flexible inorganic high performance electronic memories on silicon. This approach provides a straight forward method for capitalizing on the existing well-established semiconductor infrastructure, standard processes and procedures, and collective knowledge. Ultimately, we focus on understanding...
A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible,... more
A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems.
ABSTRACT Neuromorphic computer will need folded architectural form factor to match brain cortex's folded pattern for ultra-compact design. In this work, we show a state-of-the-art CMOS compatible pragmatic fabrication approach of... more
ABSTRACT Neuromorphic computer will need folded architectural form factor to match brain cortex's folded pattern for ultra-compact design. In this work, we show a state-of-the-art CMOS compatible pragmatic fabrication approach of building structurally foldable and densely integrated neuromorphic devices for non-volatile memory applications. We report the first ever memristive devices with the size of a motor neuron on bulk mono-crystalline silicon (100) and then with trench-protect-release-recycle process transform the silicon wafer with devices into a flexible and semi-transparent silicon fabric while recycling the remaining wafer for further use. This process unconditionally offers the ultra-large-scale-integration opportunity - increasingly critical for ultra-compact memory.
ABSTRACT We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has... more
ABSTRACT We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due to the reduction in off-state leakage and reduced short channel effects on account of the superior electrostatic charge control of multiple gates. At the same time, flexible electronics is an exciting expansion opportunity for next generation electronics. However, a fully integrated low-cost system will need to maintain ultra-large-scale-integration density, high performance and reliability - same as today's traditional electronics. Up until recently, this field has been mainly dominated by very weak performance organic electronics enabled by low temperature processes, conducive to low melting point plastics. Now however, we show the world's highest performing flexible version of 3D FinFET CMOS using a state-of-the-art CMOS compatible fabrication technique for high performance ultra-mobile consumer applications with stylish design.
pH-sensing materials and configurations are rapidly evolving toward exciting new applications, especially those in biomedical applications. In this review, we highlight rapid progress in electrochemical pH sensors over the past decade... more
pH-sensing materials and configurations are rapidly evolving toward exciting new applications, especially those in biomedical applications. In this review, we highlight rapid progress in electrochemical pH sensors over the past decade (2008− 2018) with an emphasis on key considerations, such as materials selection, system configurations, and testing protocols. In addition to recent progress in optical pH sensors, our main focus in this review is on electromechanical pH sensors due to their significant advances, especially in biomedical applications. We summarize developments of electrochemical pH sensors that by virtue of their optimized material chemistries (from metal oxides to polymers) and geometrical features (from thin films to quantum dots) enable their adoption in biomedical applications. We further present an overview of necessary sensing standards and protocols. Standards ensure the establishment of consistent protocols, facilitating collective understanding of results and building on the current state. Furthermore, they enable objective benchmarking of various pH-sensing reports, materials, and systems, which is critical for the overall progression and development of the field. Additionally, we list critical issues in recent literary reporting and suggest various methods for objective benchmarking. pH regulation in the human body and state-of-the-art pH sensors (from ex vivo to in vivo) are compared for suitability in biomedical applications. We conclude our review by (i) identifying challenges that need to be overcome in electrochemical pH sensing and (ii) providing an outlook on future research along with insights, in which the integration of various pH sensors with advanced electronics can provide a new platform for the development of novel technologies for disease diagnostics and prevention. CONTENTS
Although significant progress is made in identifying pH sensing materials and device configurations, a standard protocol for benchmarking performance of next-generation pH devices is still lacking. In particular, key properties of... more
Although significant progress is made in identifying pH sensing materials
and device configurations, a standard protocol for benchmarking performance
of next-generation pH devices is still lacking. In particular, key properties of
characterization systems, such as inherent component contributions, time
plots for extended-gate field-effect transistor (EGFET) measurements, and the
input resistance (Rin), often go unreported in studies of pH sensing systems.
These properties strongly influence the characterization system and can lead
to mistaken attribution of properties to the device. In this paper, a series
of essential characterization tests and parameters are reported to evaluate
pH systems, such as the zinc oxide EGFET, in a standardized protocol. This
EGFET ZnO sensor has a sensitivity of −58.1 mV pH−1, drift range from 2.5 to
14.2 µA h−1, and response time of 136 s. By using a ZnO sensing electrode,
it is demonstrated that i) intrinsic contributions of reference electrode and
commercial transistor (for EGFET) are not negligible; ii) time plots for EGFET
configuration and defining a critical point at the onset of drift are essential for
accurate sensitivity, response time, and drift reporting; and iii) the results of
the pH sensing system are strongly dependent on the input resistance of the
used characterization instruments.
Research Interests:
In... more
In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry's most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications.
ABSTRACT We report the inherent increase in capacitance per unit planar area of state-of-the art high-κ integrated metal/insulator/metal capacitors (MIMCAPs) fabricated on flexible silicon fabric with release-first process. We... more
ABSTRACT We report the inherent increase in capacitance per unit planar area of state-of-the art high-κ integrated metal/insulator/metal capacitors (MIMCAPs) fabricated on flexible silicon fabric with release-first process. We methodically study and show that our approach to transform bulk silicon (100) into a flexible fabric adds an inherent advantage of enabling higher integration density dynamic random access memory (DRAM) on the same chip area. Our approach is to release an ultra-thin silicon (100) fabric (25 µm thick) from the bulk silicon wafer, then build MIMCAPs using sputtered aluminium electrodes and successive atomic layer depositions (ALD) without break-ing the vacuum of a high-κ aluminium oxide sandwiched between two tantalum nitride layers. This result shows that we can obtain flexible electronics on silicon without sacrificing the high density integration aspects and also utilize the non-planar geometry associated with fabrication process to obtain a higher integration density compared to bulk silicon integration due to an increased normalized capacitance per unit planar area. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
ABSTRACT We demonstrate a new thin film transistor (TFT) architecture that allows expansion of the device width using continuous fin features – termed as wavy channel (WC) architecture. This architecture allows expansion of transistor... more
ABSTRACT We demonstrate a new thin film transistor (TFT) architecture that allows expansion of the device width using continuous fin features – termed as wavy channel (WC) architecture. This architecture allows expansion of transistor width in a direction perpendicular to the substrate, thus not consuming extra chip area, achieving area efficiency. The devices have shown for a 13% increase in the device width resulting in a maximum 2.5× increase in ‘ON’ current value of the WCTFT, when compared to planar devices consuming the same chip area, while using atomic layer deposition based zinc oxide (ZnO) as the channel material. The WCTFT devices also maintain similar ‘OFF’ current value, ∼100 pA, when compared to planar devices, thus not compromising on power consumption for performance which usually happens with larger width devices. This work offers an interesting opportunity to use WCTFTs as backplane circuitry for large-area high-resolution display applications. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
ABSTRACT
The ability to incorporate rigid but high-performance nanoscale nonplanar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in... more
The ability to incorporate rigid but high-performance nanoscale nonplanar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nanoscale, nonplanar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stacks, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length, exhibits an ION value of nearly 70 μA/μm (VDS = 2 V, VGS = 2 V) and a low subthreshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device's performance with insignificant deterioration even at a high bending state.

And 33 more

Advancements in electronics research triggered a vision of a more connected world, touching new unprecedented fields to improve the quality of our lives. This vision has been fueled by electronic giants showcasing flexible displays for... more
Advancements in electronics research triggered a vision of a more connected world, touching new unprecedented fields to improve the quality of our lives. This vision has been fueled by electronic giants showcasing flexible displays for the first time in consumer electronics symposiums. Since then, the scientific and research communities partook on exploring possibilities for making flexible electronics. Decades of research have revealed many routes to flexible electronics, lots of opportunities and challenges. In this work, we focus on our contributions towards realizing a complimentary approach to flexible inorganic high performance electronic memories on silicon. This approach provides a straight forward method for capitalizing on the existing well-established semiconductor infrastructure, standard processes and procedures, and collective knowledge. Ultimately, we focus on understanding the reliability and functionality anomalies in flexible electronics and flexible solid state memory built using the flexible silicon platform. The results of the presented studies show that: (i) flexible devices fabricated using etch-protect-release approach (with trenches included in the active area) exhibit ~19% lower safe operating voltage compared to their bulk counterparts, (ii) they can withstand prolonged bending duration (static stress) but are prone to failure under dynamic stress as in repeated bending and re-flattening, (iii) flexible 3D FinFETs exhibit ~10% variation in key properties when exposed to out-of-plane bending stress and out-of-plane stress does not resemble the well-studied in-plane stress used in strain engineering, (iv) resistive memories can be achieved on flexible silicon and their basic resistive property is preserved but other memory functionalities (retention, endurance, speed, memory window) requires further investigations, (v) flexible silicon based PZT ferroelectric capacitors exhibit record polarization, capacitance, and endurance (1 billion write-erase cycles) values for flexible FeRAMs, uncompromised retention ability under varying dynamic stress, and a minimum bending radius of 5 mm, and (vi) the combined effect of 225 °C, 260 MPa tensile stress, 55% humidity under ambient conditions (21% oxygen), led to 48% reduction in switching coercive fields, 45% reduction in remnant polarization, an expected increase of 22% in relative permittivity and normalized capacitance, and reduced memory window (20% difference between switching and non-switching currents at 225 °C).
Research Interests: