Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Carina Oehrn

    In many scientific fields including neuroscience, climatology or physics, complex relationships can be described most parsimoniously by non-linear mechanics. Despite their relevance, many neuroscientists still apply linear estimates in... more
    In many scientific fields including neuroscience, climatology or physics, complex relationships can be described most parsimoniously by non-linear mechanics. Despite their relevance, many neuroscientists still apply linear estimates in order to evaluate complex interactions. This is partially due to the lack of a comprehensive compilation of non-linear methods. Available packages mostly specialize in only one aspect of non-linear time-series analysis and most often require some coding proficiency to use. Here, we introduce NoLiTiA, a free open-source MATLAB toolbox for non-linear time series analysis. In comparison to other currently available non-linear packages, NoLiTiA offers (1) an implementation of a broad range of classic and recently developed methods, (2) an implementation of newly proposed spatially and time-resolved recurrence amplitude analysis and (3) an intuitive environment accessible even to users with little coding experience due to a graphical user interface and bat...
    The vagus nerve constitutes a key link between the autonomic and the central nervous system. Previous studies provide evidence for the impact of vagal activity on distinct cognitive processes including functions related to social... more
    The vagus nerve constitutes a key link between the autonomic and the central nervous system. Previous studies provide evidence for the impact of vagal activity on distinct cognitive processes including functions related to social cognition. Recent studies in animals and humans show that vagus nerve stimulation is associated with enhanced reward-seeking and dopamine-release in the brain. Social interaction recruits similar brain circuits to reward processing. We hypothesize that vagus nerve stimulation (VNS) boosts rewarding aspects of social behavior and compare the impact of transcutaneous VNS (tVNS) and sham stimulation on social interaction in 19 epilepsy patients in a double-blind pseudo-randomized study with cross-over design. Using a well-established paradigm, i.e., the prisoner’s dilemma, we investigate effects of stimulation on cooperative behavior, as well as interactions of stimulation effects with patient characteristics. A repeated-measures ANOVA and a linear mixed-effec...
    Bimanual coordination is impaired in Parkinson’s disease affecting patients’ ability to perform activities of daily living and to maintain independence. Conveyance of information between cortical and subcortical areas is essential for... more
    Bimanual coordination is impaired in Parkinson’s disease affecting patients’ ability to perform activities of daily living and to maintain independence. Conveyance of information between cortical and subcortical areas is essential for bimanual coordination and relies on the integrity of cerebral microstructure. As pathological deposition of alpha-synuclein compromises microstructure in Parkinson’s disease, we investigated the relationship between microstructural integrity and bimanual coordination using diffusion-weighted MRI in 23 patients with Parkinson’s disease (mean age ± standard deviation: 56.0 ± 6.45 years; 8 female) and 26 older adults (mean age ± standard deviation: 58.5 ± 5.52 years). Whole-brain analysis revealed specific microstructural alterations between patients and healthy controls matched for age, sex, handedness, and cognitive status congruent with the literature and known Parkinson’s disease pathology. A general linear model revealed distinct microstructural alte...
    The vagus nerve constitutes a key link between the vegetative and the central nervous system. However, the impact of vagal activity on cognitive processes is largely unknown. Recent studies in animals and humans show that vagus nerve... more
    The vagus nerve constitutes a key link between the vegetative and the central nervous system. However, the impact of vagal activity on cognitive processes is largely unknown. Recent studies in animals and humans show that vagus nerve stimulation is associated with enhanced reward-seeking and dopamine-release in the brain. Social interaction recruits similar brain circuits to reward processing. We hypothesize that vagus nerve stimulation (VNS) boosts rewarding aspects of social behavior and compare the impact of transcutaneous VNS (tVNS) and sham stimulation on social interaction in 19 epilepsy patients in a double-blind pseudo-randomized study. Using a well-established paradigm, i.e., the prisoner’s dilemma, we investigate effects of stimulation on cooperative behavior, as well as interactions of stimulation effects with patient characteristics. A repeated-measures ANOVA and a linear mixed-effects model provide converging evidence that tVNS boosts cooperation. Partial correlations r...
    Objective. To provide a design analysis and guidance framework for the implementation of concurrent stimulation and sensing during adaptive deep brain stimulation (aDBS) with particular emphasis on artifact mitigations. Approach. We... more
    Objective. To provide a design analysis and guidance framework for the implementation of concurrent stimulation and sensing during adaptive deep brain stimulation (aDBS) with particular emphasis on artifact mitigations. Approach. We defined a general architecture of feedback-enabled devices, identified key components in the signal chain which might result in unwanted artifacts and proposed methods that might ultimately enable improved aDBS therapies. We gathered data from research subjects chronically-implanted with an investigational aDBS system, Summit RC + S, to characterize and explore artifact mitigations arising from concurrent stimulation and sensing. We then used a prototype investigational implantable device, DyNeuMo, and a bench-setup that accounts for tissue–electrode properties, to confirm our observations and verify mitigations. The strategies to reduce transient stimulation artifacts and improve performance during aDBS were confirmed in a chronic implant using updated ...
    Psychosis is the most common neuropsychiatric side-effect of dopaminergic therapy in Parkinson’s disease (PD). It is still unknown which factors determine individual proneness to psychotic symptoms. Schizotypy is a multifaceted... more
    Psychosis is the most common neuropsychiatric side-effect of dopaminergic therapy in Parkinson’s disease (PD). It is still unknown which factors determine individual proneness to psychotic symptoms. Schizotypy is a multifaceted personality trait related to psychosis-proneness and dopaminergic neurotransmission in healthy subjects. We investigated whether (1) PD patients exhibit lower schizotypy than controls and (2) dopamine-related neuropsychiatric side-effects can be predicted by higher schizotypy. In this cross-sectional study, we used the Oxford-Liverpool Inventory of Feelings and Experiences in 56 PD patients (12 women, mean ± sd age: 61 ± 11 years) receiving their usual dopaminergic medication and 32 age-matched healthy controls (n = 32; 18 women, mean ± sd age: 57 ± 6 years). We further compared schizotypy scores of patients with (n = 18, 32.1%) and without previously experienced psychosis. We found that patients exhibited lower schizotypy than controls. Further, patients wit...
    Successful forgetting of unwanted memories is crucial for goal-directed behavior and mental wellbeing. While memory retention strengthens memory traces, it is unclear what happens to memory traces of events that are actively forgotten.... more
    Successful forgetting of unwanted memories is crucial for goal-directed behavior and mental wellbeing. While memory retention strengthens memory traces, it is unclear what happens to memory traces of events that are actively forgotten. Using intracranial EEG recordings from lateral temporal cortex, we find that memory traces for actively forgotten information are partially preserved and exhibit unique neural signatures. Memory traces of successfully remembered items show stronger encoding-retrieval similarity in gamma frequency patterns. By contrast, encoding-retrieval similarity of item-specific memory traces of actively forgotten items depend on activity at alpha/beta frequencies commonly associated with functional inhibition. Additional analyses revealed selective modification of item-specific patterns of connectivity and top-down information flow from dorsolateral prefrontal cortex to lateral temporal cortex in memory traces of intentionally forgotten items. These results sugges...
    Whereas the effect of vagal nerve stimulation on emotional states is well established, its effect on cognitive functions is still unclear. Recent rodent studies show that vagal activation enhances reinforcement learning and neuronal... more
    Whereas the effect of vagal nerve stimulation on emotional states is well established, its effect on cognitive functions is still unclear. Recent rodent studies show that vagal activation enhances reinforcement learning and neuronal dopamine release. The influence of vagal nerve stimulation on reinforcement learning in humans is still unknown. Here, we studied the effect of transcutaneous vagal nerve stimulation on reinforcement learning in eight long-standing seizure-free epilepsy patients, using a well-established forced-choice reward-based paradigm in a cross-sectional, within-subject study design. We investigated vagal nerve stimulation effects on overall accuracy using non-parametric cluster-based permutation tests. Furthermore, we modelled sub-components of the decision process using drift-diffusion modelling. We found higher accuracies in the vagal nerve stimulation condition compared to sham stimulation. Modelling suggests a stimulation-dependent increase in reward sensitivi...
    Rhythmic neural activity, so called oscillations, play a key role for neural information transmission, processing and storage. Neural oscillations in distinct frequency bands are central to physiological brain function and alterations... more
    Rhythmic neural activity, so called oscillations, play a key role for neural information transmission, processing and storage. Neural oscillations in distinct frequency bands are central to physiological brain function and alterations thereof have been associated with several neurological and psychiatric disorders. The most common methods to analyse neural oscillations, e.g. short-term Fourier transform or wavelet analysis, assume that measured neural activity is composed of a series of symmetric prototypical waveforms, e.g. sinusoids. However, usually the models generating the signal, including waveform shapes of experimentally measured neural activity are unknown. Decomposing asymmetric waveforms of nonlinear origin using these classic methods may result in spurious harmonics visible in the estimated frequency spectra. Here, we introduce a new method for capturing rhythmic brain activity based on recurrences of similar states in phase-space. This method allows for a time-resolved ...
    Memory for aversive events is central to survival, but can also become maladaptive in psychiatric disorders. Emotional memory relies on the amygdala and hippocampus, but the neural dynamics of their communication during emotional memory... more
    Memory for aversive events is central to survival, but can also become maladaptive in psychiatric disorders. Emotional memory relies on the amygdala and hippocampus, but the neural dynamics of their communication during emotional memory encoding remain unknown. Using simultaneous intracranial recordings from both structures in human patients, we show that in response to emotionally aversive, but not neutral, visual stimuli, the amygdala transmits unidirectional influence on the hippocampus through theta oscillations. Critically, successful emotional memory encoding depends on the precise amygdala theta phase to which hippocampal gamma activity and neuronal firing couple. The phase difference between subsequently remembered vs. not-remembered emotional stimuli translates to ∼25-45 milliseconds, a time period that enables lagged coherence between amygdala and downstream hippocampal gamma activity. These results reveal a mechanism whereby amygdala theta phase coordinates transient cohe...
    Bimanual motor control declines during ageing, affecting the ability of older adults to maintain independence. An important underlying factor is cortical atrophy, particularly affecting frontal and parietal areas in older adults. As these... more
    Bimanual motor control declines during ageing, affecting the ability of older adults to maintain independence. An important underlying factor is cortical atrophy, particularly affecting frontal and parietal areas in older adults. As these regions and their interplay are highly involved in bimanual motor preparation, we investigated age-related connectivity changes between prefrontal and premotor areas of young and older adults during the preparatory phase of complex bimanual movements using high-density electroencephalography. Generative modelling showed that excitatory interhemispheric prefrontal to premotor coupling in older adults predicted age-group affiliation and was associated with poor motor-performance. In contrast, excitatory intrahemispheric prefrontal to premotor coupling enabled older adults to maintain motor-performance at the cost of lower movement speed. Our results disentangle the complex interplay in the prefrontal-premotor network during movement preparation underlying reduced bimanual control and the well-known speed-accuracy trade-off seen in older adults.
    Timed picture naming is a common psycholinguistic paradigm. In this task, participants are asked to label visually depicted objects or actions. Naming performance can be influenced by several picture and verb characteristics which demands... more
    Timed picture naming is a common psycholinguistic paradigm. In this task, participants are asked to label visually depicted objects or actions. Naming performance can be influenced by several picture and verb characteristics which demands fully characterized normative data. In this study, we provide a first German normative data set of picture and verb characteristics associated with a compilation of 283 freely available action pictures and 600 action verbs including naming latencies from 55 participants. We report standard measures for pictures and verbs such as name agreement indices, visual complexity, word frequency, word length, imageability and age of acquisition. In addition, we include less common parameters, such as orthographic Levenshtein distance, transitivity, reflexivity, morphological complexity, and motor content of the pictures and their associated verbs. We use repeated measures correlations in order to investigate associations between picture and word characterist...
    Natural stimuli consist of multiple properties. However, not all of these properties are equally relevant in a given situation. In this study, we applied multivariate classification algorithms to intracranial electroencephalography data... more
    Natural stimuli consist of multiple properties. However, not all of these properties are equally relevant in a given situation. In this study, we applied multivariate classification algorithms to intracranial electroencephalography data of human epilepsy patients performing an auditory Stroop task. This allowed us to identify neuronal representations of task-relevant and irrelevant pitch and semantic information of spoken words in a subset of patients. When properties were relevant, representations could be detected after about 350ms after stimulus onset. When irrelevant, the association with gamma power differed for these properties. Patients with more reliable representations of irrelevant pitch showed increased gamma band activity (35-64Hz), suggesting that attentional resources allow an increase in gamma power in some but not all patients. This effect was not observed for irrelevant semantics, possibly because the more automatic processing of this property allowed for less variation in free resources. Processing of different properties of the same stimulus seems therefore to be dependent on the characteristics of the property.
    Besides its relevance for declarative memory functions [1-5], hippocampal activation has been observed during disambiguation of uncertainty and conflict [6, 7]. Uncertainty and conflict may arise on various levels. On the perceptual... more
    Besides its relevance for declarative memory functions [1-5], hippocampal activation has been observed during disambiguation of uncertainty and conflict [6, 7]. Uncertainty and conflict may arise on various levels. On the perceptual level, the hippocampus has been associated with signaling of contextual deviance [8-10] and disambiguation of similar items (i.e., pattern separation) [11-13]. Furthermore, conflicts can occur on the response level. Animal experiments showed a role of the hippocampus for inhibition of prevailing response tendencies and suppression of automatic stimulus-response mappings [14-17], potentially related to increased theta oscillations (3-8 Hz) [18]. In humans, a recent fMRI study demonstrated hippocampal involvement in approach-avoidance conflicts [19]. However, the more general significance of hippocampal activity for dealing with response conflicts also on a cognitive level is still unknown. Here, we investigated the role of the hippocampus for response conflict in the Stroop task by combining intracranial electroencephalography (iEEG) recordings from the hippocampus of epilepsy patients with region of interest-based fMRI in healthy participants. Both methods revealed converging evidence that the hippocampus is recruited in a regionally specific manner during response conflict. Moreover, our iEEG data show that this activation depends on theta oscillations and is relevant for successful response conflict resolution.
    Recent findings suggest that repetition effects interact with episodic memory processes that are putatively supported by the hippocampus. Thus, the formation or refinement of episodic memories may be related to a modulating signal from... more
    Recent findings suggest that repetition effects interact with episodic memory processes that are putatively supported by the hippocampus. Thus, the formation or refinement of episodic memories may be related to a modulating signal from the hippocampus to the neocortex which leads to sparser or more extended stimulus representations (repetition suppression or enhancement), depending on the type of stimulus and the brain site. This framework suggests that hippocampal activity during the initial presentation of a stimulus correlates with the magnitude of repetition effects. Here, we tested this hypothesis in an fMRI study in which associations between faces and buildings were presented twice. BOLD responses showed repetition suppression in fusiform face area (FFA) and parahippocampal place area (PPA), most likely due to a refinement of existing category representations. Hippocampal activity during the first presentations was correlated with the amount of repetition suppression, in particular in the FFA. Repetition enhancement effects were observed on BOLD responses in posterior parietal cortex, possibly related to the formation of new representations of associative stimuli. The magnitude of parietal BOLD repetition effects depended on successful memory formation. These findings suggest that both repetition enhancement and repetition suppression effects are influenced by a modulating signal from the hippocampus.
    Flavour perception derives from an interplay of the senses that conveys information about the odour, taste, texture, or spiciness of ingested foods. Although interactions between smell and taste have been investigated extensively, we do... more
    Flavour perception derives from an interplay of the senses that conveys information about the odour, taste, texture, or spiciness of ingested foods. Although interactions between smell and taste have been investigated extensively, we do not know a lot about the effect of oral chemical irritation on odour perception. Therefore, the impact of capsaicin and of carbonated water on four olfactory
    Whilst dysfunction of basal ganglia-thalamic circuitry is implicated in the genesis of parkinsonian symptomatology, few studies have examined the effects of lesioning the motor thalamus in the context of parkinsonism. Forty rats were... more
    Whilst dysfunction of basal ganglia-thalamic circuitry is implicated in the genesis of parkinsonian symptomatology, few studies have examined the effects of lesioning the motor thalamus in the context of parkinsonism. Forty rats were therefore subdivided into four lesion groups each of 10 rats with lesions or sham surgery targeting (1) the medial forebrain bundle and/or (2) motor thalamus, resulting in: Sham/Sham, 6-OHDA/Sham, Sham/NMDA and 6-OHDA/NMDA groups. Behavioural testing was performed prior to any surgery and after each surgery including analysis of posture, drug-induced rotation, sensorimotor and autonomic deficits. As expected 6-OHDA lesions induced abnormalities in posture, locomotion, sensorimotor and pilomotor function, ipsilateral and contralateral rotational asymmetries after amphetamine and apomorphine, respectively. These behavioural changes reflect parkinsonism in this model. Additional thalamic lesions virtually abolished apomorphine-induced rotational asymmetry and improved sensorimotor response latency to tactile stimulation on the contralateral side. These data support the contribution of dysfunctional motor thalamic circuitry in rotational asymmetry and abnormal sensorimotor function in parkinsonian rats.
    In an ever-changing environment, selecting appropriate responses in conflicting situations is essential for biological survival and social success and requires cognitive control, which is mediated by dorsomedial prefrontal cortex (DMPFC)... more
    In an ever-changing environment, selecting appropriate responses in conflicting situations is essential for biological survival and social success and requires cognitive control, which is mediated by dorsomedial prefrontal cortex (DMPFC) and dorsolateral prefrontal cortex (DLPFC). How these brain regions communicate during conflict processing (detection, resolution, and adaptation), however, is still unknown. The Stroop task provides a well-established paradigm to investigate the cognitive mechanisms mediating such response conflict. Here, we explore the oscillatory patterns within and between the DMPFC and DLPFC in human epilepsy patients with intracranial EEG electrodes during an auditory Stroop experiment. Data from the DLPFC were obtained from 12 patients. Thereof four patients had additional DMPFC electrodes available for interaction analyses. Our results show that an early θ (4-8 Hz) modulated enhancement of DLPFC γ-band (30-100 Hz) activity constituted a prerequisite for later successful conflict processing. Subsequent conflict detection was reflected in a DMPFC θ power increase that causally entrained DLPFC θ activity (DMPFC to DLPFC). Conflict resolution was thereafter completed by coupling of DLPFC γ power to DMPFC θ oscillations. Finally, conflict adaptation was related to increased postresponse DLPFC γ-band activity and to θ coupling in the reverse direction (DLPFC to DMPFC). These results draw a detailed picture on how two regions in the prefrontal cortex communicate to resolve cognitive conflicts. In conclusion, our data show that conflict detection, control, and adaptation are supported by a sequence of processes that use the interplay of θ and γ oscillations within and between DMPFC and DLPFC.