Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Daniel Casasanto

Daniel Casasanto

When people see a snake, they are likely to activate both affective information (e.g., dangerous) and non-affective information about its ontological category (e.g., animal). According to the Affective Primacy Hypothesis, the affective... more
When people see a snake, they are likely to activate both affective information (e.g., dangerous) and non-affective information about its ontological category (e.g., animal). According to the Affective Primacy Hypothesis, the affective information has priority, and its activation can precede identification of the ontological category of a stimulus. Alternatively, according to the Cognitive Primacy Hypothesis, perceivers must know what they are looking at before they can make an affective judgment about it. We propose that neither hypothesis holds at all times. Here we show that the relative speed with which affective and non-affective information gets activated by pictures and words depends upon the contexts in which stimuli are processed. Results illustrate that the question of whether affective information has processing priority over ontological information (or vice versa) is ill-posed. Rather than seeking to resolve the debate over Cognitive vs. Affective Primacy in favor of one...
1Max Planck Institute for Psycholinguistics, Neurobiology of Language Group, Nijmegen, NL 2University of California at Berkeley, Department of Psychology, Berkeley CA, USA 3Donders Center for Brain, Cognition, and Behavior, Nijmegen, NL... more
1Max Planck Institute for Psycholinguistics, Neurobiology of Language Group, Nijmegen, NL 2University of California at Berkeley, Department of Psychology, Berkeley CA, USA 3Donders Center for Brain, Cognition, and Behavior, Nijmegen, NL ... We investigated the extent to ...
Research Interests:
Research Interests:
Research Interests:
Research Interests:
In Arabic, as in many languages, the future is “ahead” and the past is “behind.” Yet in the research reported here, we showed that Arabic speakers tend to conceptualize the future as behind and the past as ahead of them, despite using... more
In Arabic, as in many languages, the future is “ahead” and the past is “behind.” Yet in the research reported here, we showed that Arabic speakers tend to conceptualize the future as behind and the past as ahead of them, despite using spoken metaphors that suggest the opposite. We propose a new account of how space-time mappings become activated in individuals’ minds and entrenched in their cultures, the temporal-focus hypothesis: People should conceptualize either the future or the past as in front of them to the extent that their culture (or subculture) is future oriented or past oriented. Results support the temporal-focus hypothesis, demonstrating that the space-time mappings in people’s minds are conditioned by their cultural attitudes toward time, that they depend on attentional focus, and that they can vary independently of the space-time mappings enshrined in language.
Research Interests:
Research Interests:
Research Interests:
Research Interests:
Research Interests:
Research Interests:
The QWERTY keyboard mediates communication for millions of language users. Here, we investigated whether differences in the way words are typed correspond to differences in their meanings. Some words are spelled with more letters on the... more
The QWERTY keyboard mediates communication for millions of language users. Here, we investigated whether differences in the way words are typed correspond to differences in their meanings. Some words are spelled with more letters on the right side of the keyboard and others with more letters on the left. In three experiments, we tested whether asymmetries in the way people interact with keys on the right and left of the keyboard influence their evaluations of the emotional valence of the words. We found the predicted relationship between emotional valence and QWERTY key position across three languages (English, Spanish, and Dutch). Words with more right-side letters were rated as more positive in valence, on average, than words with more left-side letters: the QWERTY effect. This effect was strongest in new words coined after QWERTY was invented and was also found in pseudowords. Although these data are correlational, the discovery of a similar pattern across languages, which was strongest in neologisms, suggests that the QWERTY keyboard is shaping the meanings of words as people filter language through their fingers. Widespread typing introduces a new mechanism by which semantic changes in language can arise.Electronic supplementary materialThe online version of this article (doi:10.3758/s13423-012-0229-7) contains supplementary material, which is available to authorized users.
Research Interests:
Research Interests:
Research Interests:
Do people use sensori-motor cortices to understand language? Here we review neurocognitive studies of language comprehension in healthy adults and evaluate their possible contributions to theories of language in the brain. We start by... more
Do people use sensori-motor cortices to understand language? Here we review neurocognitive studies of language comprehension in healthy adults and evaluate their possible contributions to theories of language in the brain. We start by sketching the minimal predictions that an embodied theory of language understanding makes for empirical research, and then survey studies that have been offered as evidence for embodied semantic representations. We explore four debated issues: first, does activation of sensori-motor cortices during action language understanding imply that action semantics relies on mirror neurons? Second, what is the evidence that activity in sensori-motor cortices plays a functional role in understanding language? Third, to what extent do responses in perceptual and motor areas depend on the linguistic and extra-linguistic context? And finally, can embodied theories accommodate language about abstract concepts? Based on the available evidence, we conclude that sensori-motor cortices are activated during a variety of language comprehension tasks, for both concrete and abstract language. Yet, this activity depends on the context in which perception and action words are encountered. Although modality-specific cortical activity is not a sine qua non of language processing even for language about perception and action, sensori-motor regions of the brain appear to make functional contributions to the construction of meaning, and should therefore be incorporated into models of the neurocognitive architecture of language.

And 14 more