- ベストアンサー
2階微分方程式が解けません
[y''+y'/x-y/x^2=0 を解け] という問題を見かけたのですが,どのように解けばいいのかわかりません. (1)2階微分方程式にyが含まれないときはy'=pとおき,y''=dp/dxとして解く. (2)d^2y/dx^2=ky(k:定数)のときは公式がある. (3)y''+ay'+by=R(x)(a,b:定数,R(x):xのみの関数)のときは補助方程式の一般解と特殊解を求めて解く というのは教科書に書いてあったのですが,今回の問題はこの中のどの方法を使えば解けるのでしょか? 解答にはy=Ax+B/x(A,B:任意定数)とあります.
- みんなの回答 (3)
- 専門家の回答
お礼
ありがとうございます. 順を追ってみると分かりました. 最後にまたe^u=xと戻すところがコツなのですね. これからもよろしくお願いします.