「CW」を含む日記 RSS

はてなキーワード: CWとは

2025-02-19

anond:20250217005352

日本でも60歳以下なら働く意思の有無が保護要件でしょ

ちなみにCWによるとスキマバイト就労意欲ありとは認めないとのこと

なんだそれ

2025-02-18

anond:20250218185240

水晶発振子について質問です

ChatGPTさんは「3.579MHzの水晶を使うと3.579MHzのCWが出る」と回答してくれましたが、周波数水晶発振子によって固定されるということですか?

そうだとしたらとても不便に思えました

水晶発振子の周波数は固定されるのか?

結論から言うと、水晶発振子は基本的に「決まった周波数しか振動しない」 ため、1つの水晶周波数自由に変更することはできません。

しかし、これには「確かに不便だが、その分メリットがある」という理由があります

また、実際の電子回路では、複数方法周波数を変更することが可能 です!

1. なぜ水晶発振子の周波数は固定されるのか?

水晶発振子(Quartz Crystal)は、「水晶特定周波数機械的振動する性質」を利用した部品 です。

水晶は 「特定周波数しか共振しない」 ため、基本的にはその周波数しか動作しません。

📌 水晶振動の仕組み

水晶電圧を加えると「決まった周波数」で振動する 物質ピエゾ効果)。

3.579MHzの水晶なら、必ず3.579MHzで振動する。

10MHzの水晶なら、10MHzでしか振動しない。

2. なんでそんな不便なものを使うの?

かに、「1つの水晶でいろんな周波数を作れない」のは不便ですが、その代わりに 水晶発振子には非常に大きなメリット があります

水晶発振子のメリット

めちゃくちゃ正確! 周波数のズレ(誤差)がほとんどない。(温度変化などで若干ズレるが、通常±0.001%以下)電子時計通信機器で、正確な時間周波数を作るために必須

安定してる! 一度発振すれば、周波数がブレたり、勝手に変わったりしない。無線通信ラジオ放送では、周波数がズレると通信不能になるため、安定性が重要

ノイズに強い! 発振がクリーンで、余計な雑音(ノイズ)が少ない ので、無線通信に適している。

📌 もし水晶発振子がなかったら…

発振回路が周波数を正しく維持できず、無線通信不安定になる。

時計パソコンの内部クロックがズレて、時間が狂う。

→ だから、「周波数固定」というデメリットよりも、正確で安定した発振ができるメリットの方が大きい!

3. それでも周波数を変えたい!どうする?

「1つの水晶周波数を変えられない」のは不便ですが、電子回路では いろんな方法周波数を変更することが可能 です!

方法①:水晶を切り替える

「使う水晶物理的に切り替える」 方法

例えば、無線機では「3.579MHzの水晶」「10MHzの水晶」などを複数搭載し、切り替えることで周波数を変更できる。

例:水晶切り替え回路

(スイッチ)
[ 3.579MHz ] ←─→ [ 10.000MHz ]

無線機トランシーバーの「周波数チャンネル切り替え」に使われる方法

方法②:可変コンデンサを使う

水晶発振子に「可変コンデンサ」を並列に入れると、発振周波数を少しだけ調整できる!

ただし、大きく変えることはできず、せいぜい±100Hz~1000Hzくらい。

📌 可変コンデンサを使った微調整

[水晶発振子] ──── [可変コンデンサ] → 周波数微妙に変わる

ラジオ周波数微調整や、精密な測定機器に使われる。

方法③:PLL(フェーズロックループ)を使う

PLL(Phase-Locked Loop)という回路を使えば、水晶周波数自由に変更できる!

基準となる水晶発振子」+「周波数を変えられる発振器」 を組み合わせることで、さまざまな周波数を作り出せる。

📌 PLLの動作イメージ

[ 10MHzの水晶発振子 ] → [ PLL回路 ] → [ 9MHz / 10MHz / 11MHz などを出力 ]

スマホWi-FiFMラジオなどの通信機器は、ほぼ100% PLLを使っている!

PLLを使えば、「1つの水晶」で好きな周波数を作れる!

方法④:DDSダイレクトデジタルシンセサイザ)を使う

DDS(Direct Digital Synthesizer)という技術を使うと、もっと自由周波数を変えられる!

デジタル信号処理を利用して、好きな周波数信号を作り出せる。

📌 DDS動作イメージ

[ 10MHzの水晶発振子 ] → [ DDS ] → [ 1Hz~10MHzのCW自由に生成! ]

ラジオ無線機レーダー、計測機器などに使われる!

最新の無線機は、PLL + DDSを組み合わせて周波数自由に変えている!

4. まとめ

水晶発振子は「決まった周波数しか発振しない」ため、1つの水晶自由周波数を変えることはできない。

しかし、その代わりに「超正確」「超安定」「ノイズが少ない」という大きなメリットがある。

周波数を変更する方法はいくつかあり、PLLやDDSを使うと自由周波数を作れる。

現代通信機器スマホWi-Fiラジオなど)は、PLLやDDSを組み合わせて周波数自由に変更している!

anond:20250218184824

Q1(NPNトランジスタ, 増幅素子)の役割ちょっとからないです、もっと高卒おじさんにも分かるように解説してください

Q1(NPNトランジスタ)の役割をわかりやす解説

Q1(NPNトランジスタ)は、CW発信器の「心臓部分」 です。

ここでは、トランジスタが具体的に何をしているのか?なぜ必要なのか? を、

水道蛇口の例え を使って、なるべくわかりやす説明します!

1. トランジスタ基本的な働き

トランジスタ(Q1)は、「スイッチ」や「増幅器」として働く電子部品 です。

CW発信回路では、「発振を助ける」 という重要役割を持っています

📌 トランジスタの基本動作

(1) 小さな電流を流す → 大きな電流を流せるようになる(電流を増幅)

(2) ONにすると電気流れる → OFFにすると止まる(スイッチ

トランジスタは 「蛇口のコック」 のように、流れる電流コントロールしています

さな電流ベース電流)があると、大きな電流コレクタ電流)を流せるようになります

2. CW発信回路におけるQ1の役割

CW発信器では、Q1(トランジスタ)は「発振回路の増幅」と「発振の継続」 を担っています

📌 CW発信器の電流の流れ

(1) 水晶発振子が振動して小さな電流を発生

(2) Q1(トランジスタ)がそれを増幅

(3) 増幅された電流が再び水晶発振子に戻る(発振が継続する)

3. 例え話で理解する!

トランジスタを 「水道蛇口」 に例えると、CW発信回路の動作が分かりやすくなります

(1) トランジスタなし(増幅しない場合

🚰 水道蛇口トランジスタ)がないと…

蛇口なし → 水がチョロチョロしか出ない(信号が弱すぎて使えない)

水晶発振子の振動は、とても小さな電流しか作れない。

そのままだと、CWとして使うには弱すぎる。

(2) トランジスタあり(増幅する場合

🚰 トランジスタ蛇口役割をする

蛇口を少し開く(ベース電流) → 水が勢いよく流れるコレクタ電流

トランジスタがあることで、水晶発振子の弱い振動(小電流)を増幅できる。

これにより、CWとして安定した信号が得られる。

📌 CW発信器での働き

(1) 水晶発振子が少し振動する(小さい電流

(2) Q1(トランジスタ)がその振動を増幅(電流を強くする)

(3) 増幅された信号が発振回路を維持し、CWを安定化

まりトランジスタがないと、CWが小さすぎて送信できない! ということです。


4. トランジスタQ1の具体的な動作

CW発信器では、Q1の役割は次の2つに分かれます

(1) 発振回路の「発振を助ける」

水晶発振子が少し振動すると、Q1がそれを増幅し、回路全体で振動が続くようにする。

📌 発振の仕組み

水晶発振子(小さい振動) → Q1が増幅 → 水晶発振子に戻る → 繰り返し

こうして、CW信号が安定して発生し続ける!



(2) 出力信号を強くする(増幅)

発振したCW信号は、そのままだと小さすぎるため、Q1で増幅する。

これにより、後段の増幅回路やアンテナへ送る準備が整う。

📌 信号増幅の流れ

水晶発振子の微弱信号 → Q1で増幅 → 安定したCW信号

5. まとめ

✅ Q1(トランジスタ)は、CW発信回路の「蛇口」のような役割をする!

水晶発振子の弱い振動を、トランジスタが増幅して安定したCW信号を作る。

トランジスタがないと、CW信号が弱すぎて使えない!

✅ Q1は「発振の継続」と「出力信号の増幅」を担当する。

anond:20250218182419

連続波の具体的な回路図を教えてください

連続波(CW)発信器の具体的な回路図解説

CW(Continuous Wave, 連続波)は、無線通信モールス符号送信などで使われる基本的な波形です。

ここでは、CWを発生させるための基本的回路図と、その仕組みについて詳しく解説します。

📌 CW発信器の基本回路図

CWを生成するためには、安定した周波数正弦波を発生させる発振回路 が必要です。

一般的に、水晶発振子(Quartz Crystal)を用いた回路が使われます

          +Vcc  (電源, 例: +5V, +12V)
           │
           R1抵抗, ベース電流制限)
           │
           ├──────┬───────────
           │       │
           │       C1コンデンサ, 交流成分を安定化)
           │       │
          Q1(NPNトランジスタ, 増幅素子)
           │       │
           │       C2  (コンデンサ, 発振を安定化)
           │       │
          水晶発振子(Quartz Crystal, 周波数決定素子)
           │
          GNDグラウンド, 電流基準点)

📌 各部品の説明

(1) +Vcc(電源)

回路に電力を供給する端子 で、+5V や +12V などの直流電源 を使用します。

CW発信回路が動作するためには、トランジスタ電流を流す必要があります

「Vcc」は「Voltage at Collector(コレクタ電圧)」の略 で、特にトランジスタ回路で使われます

📌 +Vcc の例

+Vcc = 5V  → マイコン回路(Arduino, ESP32 など)
+Vcc = 12V → 無線送信機やラジオ回路


(2) R1ベース抵抗, 電流制限

トランジスタベース電流制限する抵抗 です。

トランジスタ(Q1)が動作するためには、ベース(B)に適切な電流必要ですが、そのまま流すと過剰な電流が流れてしまい、故障の原因になります

そのため、R1を挿入し、適切な電流(通常 1kΩ ~ 10kΩ の範囲)を供給します。

R1 がない → トランジスタ電流が流れすぎる → 過熱故障リスク
R1 がある → 適切な電流制御 → 安定した動作


(3) Q1(NPNトランジスタ, 増幅素子)

トランジスタは、小さな信号を増幅する素子 であり、CW発信回路の中心的な役割を担います

水晶発振子の共振を利用して、安定した高周波CWを生成する ために使われます

発振回路としては、コルピッツ発振回路やハートレー発振回路 などの方式が使われます

📌 Q1の働き

入力:微弱な振動
↓
Q1(トランジスタ)で増幅
↓
出力:安定したCW連続波)


(4) 水晶発振子(Quartz Crystal)

CW周波数を決定する最も重要部品 です。

水晶物理的な振動を利用して、非常に正確な周波数電波を作り出します。

例えば、3.579MHzの水晶を使うと3.579MHzのCWが出る ようになります

📌 水晶発振子の働き

水晶発振子 = 周波数を決定する「音叉」のようなもの一定周波数振動し、安定したCWを生成

(5) C1, C2(コンデンサ, 発振安定化)

発振回路の動作を安定化させる役割 を持ちます

C1, C2 は、交流成分の平滑化やフィードバックを補助するために使われる。

📌 C1, C2の働き

C1高周波信号を安定させる

C2:発振周波数を微調整

適切な容量のC1, C2を選ぶことで、発振が安定する。

(6) GNDグラウンド, 電流基準点)

電流基準点(0V)であり、回路の動作には必須 です。

すべての電子部品は「+Vcc」からGND」に向かって電流流れるので、GNDがないと回路が動作しない。

📌 GNDがないとどうなる?

+Vcc → R1 → Q1(トランジスタ) → ??? (電流が流れない!)

GNDがないと、電流の流れが閉じないため、回路は動作しない。


📌 CW発信器の応用

このCW発信器は、以下のような用途に応用できます

(1) CWモールス送信

CW信号を生成し、モールス符号キー(電鍵)を使ってON/OFFすることで、CW電信モールス通信)が可能になる。

📌 モールス通信の仕組み

CW発振器 → 増幅 → 電鍵(ON/OFF) → アンテナ

電鍵を押すと CWON、離すとOFF になる。

これを短点(・)や長点(-)として送信

(2) CWを使ったラジオ放送(AM変調

CW信号を作り、それを振幅変調AM)することで音声送信可能

AMラジオ放送の基本は、CW + 変調回路(AM回路)。

📌 回路の仕組み

CW発振器 → 変調回路(AM変調) → 増幅 → アンテナ

📌 まとめ

CW連続波)を作るには「水晶発振器」を使うのが一般的

トランジスタ回路(Q1)でCWを増幅し、安定した信号を作る。

R1抵抗)でベース電流制限し、トランジスタ動作を安定させる。

C1, C2(コンデンサ)は発振を安定させる役割を持つ。

GNDグラウンド)がなければ回路は動作しない。

CWモールス電信AM変調などの通信技術に応用される。

送信機に使う場合は、増幅してアンテナから無線送信する。

anond:20250218180904

CWパルス波の数学的な違いをなるべく簡易に高卒おじさんに理解できるように説明してください

数学的な話というと難しくなりがちですが、「波」 をイメージすれば意外とシンプルです。

ここでは、できるだけ 図や身近な例を使って CW連続波)とパルス波の違いをわかりやす説明します!

1. CW連続波)とは?

CW(Continuous Wave, 連続波) は、「一定リズムでずっと続く波」 です。

この波の形は「正弦波(サイン波)」と呼ばれます

📌 CWの波のイメージ

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

この波は、「音」や「無線通信」のように、なめらかに情報を伝えるのに向いている 波です。

数学的には、CWはこんな数式で表されます

f(t)=Asin(2πft+θ)

意味は後で解説しますが、今は「きれいな波」と思ってOK!)


2. パルス波とは?

パルス波(Pulse Wave) は、「ある瞬間だけ発生する波」 です。

例えば、電気スイッチON/OFFするような信号 です。

📌 パルス波のイメージ

---     ---     ---     ---

パルス波は、「短い信号を一瞬だけ送る」ので、レーダーデジタル通信に向いている 波です。

数学的には、パルス波はこんな数式で表されます

f(t)={ 
  A, 0, 0≤t≤Ton
  0, Ton<t≤T周期

(これも「ONの時だけ1、それ以外は0」と思えばOK!)

3. CWパルス波の数学的な違いを簡単に!

(1) CWは「なめらかな波」、パルス波は「カクカクした波」

CW連続波) は、なめらかな波で、音楽ラジオのように変化がゆっくり

パルス波 は、ON/OFFのスイッチのように「ある瞬間だけ発生する」波。

📌 図で見るとこう!

CW(なめらかな波):    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
パルス波(ON/OFF):    ---     ---     ---     ---
||>
CWは「スムーズに続く波」、パルス波は「点々と現れる波」という感じですね!



(2) CWは「1つの周波数」だけ、パルス波は「たくさんの周波数を含む」
数学的に、CWは 「1つの周波数だけ」 を持っています。
例えば AMラジオの「1000kHz(キロヘルツ)」 なら、1000kHzのCWを送っています。
一方で、パルス波は「一瞬の信号」なので、いろんな周波数が混ざりますパルス波は、周波数バラエティ豊富(広帯域)になる という特徴があります。
📌 周波数の違い(イメージ>||
CW:  (1つの周波数だけ)
|         |         |         |         |
100Hz    200Hz    300Hz    400Hz    500Hz

パルス波:  (いろんな周波数が混ざる)
| | | | | | | | | | | | | | | | | | | | | |
100Hz  120Hz  140Hz ... 1000Hz(広がってしまう!)

まり

CWは、受信機が「特定周波数だけを受信」しやすい(混信しにくい)

パルス波は、広い範囲信号が広がるので、他の通信干渉やす

(3) CWは「音声のように滑らかに伝えられる」、パルス波は「短いデジタル信号を送るのに便利」

CWは、音声や音楽のように波が連続しているので、アナログデータ(音声など)を伝えやすい。

パルス波は、ON/OFFをはっきりさせられるので、モールス符号デジタル通信に向いている。

📌 用途の違い

波の種類 使われる場面

CW連続波) ラジオテレビ音声通話電話)、FM放送

パルスモールス電信レーダーデジタル通信Wi-Fi, Bluetooth

パルス波の数式を説明してもらっていいですか

パルス波の数式は少しややこしく見えますが、「ONときは1、OFFのときは0」というシンプルルールで表せます

できるだけ 視覚的・直感的 に説明するので、一緒に理解していきましょう!💡

1. パルス波の数式

パルス波は、以下のような「スイッチON/OFFを時間で表した数式」で表せます

f(t)={ 
  A, 0, 0≤t≤Ton
  0, Ton<t≤T周期

この数式の意味を、わかりやすく分解して説明します!

3. パルス波の数式を分解して理解する

(1) A(振幅)とは?

A は、パルスの高さ(振幅) を表します。

例えば、電圧なら「5V」や「12V」などの値になります

📌 振幅Aの例

A = 5V の場合(5Vの高さのパルス波)
---     ---     ---     ---  (5V)
         (0V)     (0V)     (0V)


(2) TonON時間)とは?

パルス波が 「ON(高い状態)」の時間 を表します。

📌 ON時間の例

ON時間が長い(T_ON = 3ms)
------   ------   ------   ------
   (OFF)     (OFF)     (OFF)


(3) T周期(1つのパルスの周期)とは?

1つのパルスが繰り返すまでの時間 です。

ON(T_ON)とOFF(T_OFF)を合わせた時間が周期(T周期)になる。

📌 周期の例

周期T = 5ms の場合
---     ---     ---     ---  (ON)
         (OFF)     (OFF)     (OFF)

この間隔(5ms)が1つのパルス周期T周期になる。

(4) デューティ比(ONとOFFの割合

パルス波では、ONとOFFのバランス重要

ON時間が周期全体の何%か」 を デューティ比(Duty Cycle) と呼ぶ。

📌 デューティ比の計算

D = TON / T周期 × 100

📌 例

ON50%(D = 50%

---     ---     ---     ---   (ON)
     ---     ---     ---     --- (OFF)

ONが25%(D = 25%)

--      --      --      --   (ON)
      ------   ------   ------  (OFF)


4. パルス波をもっと深掘り(フーリエ級数

実は、パルス波は数学的には 「たくさんのCW連続波)が合成されたもの」 になっています

これは 「フーリエ級数」 という考え方で説明できます

📌 パルス波は、たくさんの正弦波(CW)が混ざったもの

パルス波 = CW(基本周波数) + CW(高調波1) + CW(高調波2) + ...

このため、パルス波は「いろんな周波数を含む広帯域の信号」になるんですね!

(もしフーリエ変換についてもっと知りたいなら、別途説明できます!)

5. まとめ

パルス波は、ON/OFFを繰り返す信号で、数式で「ONときはA、OFFのときは0」と表せる。

パルス波の周期(T周期)やON時間(T_ON)を使って、デューティ比(ON割合)を計算できる。

パルス波は、実はたくさんのCW正弦波)が合成されたものとして説明できる(フーリエ級数)。

✅ この性質のため、パルス波は広い周波数帯域を使うので、無線通信では用途によって注意が必要

anond:20250218175051

連続波(Continuous Wave, CW)とは何かを教えてもらえます


連続波(Continuous Wave, CW)とは何か?

連続波(Continuous Wave, CW)とは、一定周波数と振幅を持つ連続的な電磁波正弦波)のことを指します。

CWは、無線通信レーダー科学実験などで広く使われる基礎的な波形です。

無線通信歴史において、CW火花送信機の「パルス波」に代わる技術として登場し、音声通信AMFM)やデジタル無線通信の基礎となった 重要概念です。

1. CW連続波)の特徴

(1) 連続的な電波正弦波)

CWは、以下のように時間的に途切れず、一定周波数を持つ波です。

📌 CWの波形(連続した正弦波)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

CW一定周波数で変化し続ける波であり、火花送信機のように短いパルスにならない。

周波数一定なので、より正確な通信可能になる。

(2) 火花送信機との違い

CWが登場する以前、無線通信は「火花送信機」を使っていた。

📌 火花送信機(Spark Gap Transmitter)の波形

---   ---   ---   (パルス波)

瞬間的な高電圧パルスを発生させるため、波形が不安定で、周波数制御が難しかった。

パルスしか作れないため、音声のようなアナログ波形を送ることが不可能だった。

📌 CW連続波)との違い

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

連続的な波形なので、音声変調AMFM)が可能になった。

周波数が正確に制御できるため、受信機がより効率よく信号を検出できる。


2. CW通信技術

CWが導入されると、無線通信品質が大幅に向上しました。

(1) CWによるモールス電信

CWは、最初モールス符号CW電信)の送信に使われました。

送信機をONCW送信)すると「長音(トーン)」が発生する。

送信機をOFF(CWを停止)すると無音になる。

これを使って、「短点(・)」と「長点(-)」を表現する。

📌 CW電信の例

送信:  CW ON  -  CW OFF - CW ON  -  CW OFF -  (短点)
送信:  CW ON  ----  CW OFF  (長点)

CWON/OFFするだけで、モールス符号が送れる。

火花送信機と違い、電波が正確に送信できるため、遠距離通信可能になった。

(2) CWを使った音声通信AMの基礎)

CWを使うことで、音声(アナログ信号)を送信できるようになった。

CWの振幅(強さ)を変化させることで、音声を無線で送る方式が生まれた(AM変調)。

📌 CWによるAM変調

CW:  ~~~~~~~~~~~~~~~~
音声: ---  ---  ---
AM波: ~~~--~~--~~--~~~

振幅を音声に応じて変化させると、音声信号無線で送ることができる。

これがラジオ放送AM放送)の基礎になった。

(3) CWを使った周波数変調FM

CWを使えば、周波数を変化させて情報を送ることもできる(FM変調)。

これは、現代FMラジオ無線通信技術の基礎になっている。

📌 CWによるFM変調

基本CW:  ~~~~~~~~~~~~~~~~
音声: ---  ---  ---
FM波: ~~ ~~~ ~~ ~~~~~ ~~~

CW周波数を音声に応じて変化させると、よりノイズに強い通信ができる。

FMラジオ携帯電話の音声通信VoLTE)などに応用されている。

3. CWの発展と現代への影響

CWは、無線通信の基礎を築き、その後の技術革新に大きな影響を与えました。

(1) CWAMFMデジタル通信

時代 通信方式 説明

19世紀 火花送信機 短いパルスのみ送信可能モールス符号

1900年代初頭 CW連続波) 安定した信号送信できるようになる

1906年 AM変調 CWの振幅を変えて音声を送信

1930年代 FM変調 CW周波数を変えて音声を送信

1960年代デジタル変調ASK, FSK, PSK) CWデジタル信号に変換して通信

(2) CW現代での利用

現在でもCW連続波)は、以下のような用途で使われています

アマチュア無線CWモード) → モールス符号を使った通信

レーダーCWレーダー) → 速度測定(ドップラー効果を利用)

光通信レーザーCW) → 連続光波を使った通信光ファイバー

パルス波よりも連続波の方が無線通信には適しているということですか?


1. 連続波(CW)が無線通信に適している理由

(1) 周波数の安定性が高い

CWは、一定周波数振動し続ける正弦であるため、周波数を正確に制御できる。

これにより、受信機が特定周波数信号効率的に受信できる。

📌 CW連続波)の安定した波形

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  (一定周波数)

特定周波数チューニングして受信できるため、混信が少なく、長距離通信に向いている。

(2) 変調による情報伝達が可能

CWは、そのままでは単なるキャリア波(搬送波)に過ぎないが、振幅・周波数位相を変えることで情報を載せることができる。

📌 CW変調方式

AM振幅変調) → CWの強さ(振幅)を変化させて音声を送る。

FM周波数変調) → CW周波数を変化させて音声を送る。

デジタル変調ASK, FSK, PSK) → CWデジタル信号に変換してデータを送る。

📌 CWを使った音声通信AM例)

~ ~ ~ ~ ~ ~  (小さい音)
~~ ~~ ~~ ~~  (大きい音)

音声をそのまま変調できるため、ラジオ放送電話通信に適している。

(3) 受信機が簡単で、信号復元やす

CW特定周波数電磁波を送り続けるため、受信機が「どの周波数を受信すべきか」を正確に特定できる。

受信機は、特定周波数フィルターを合わせるだけで、ノイズを除去して正しい信号を受け取ることができる。

📌 CWを使った信号処理

送信:~ ~ ~ ~ ~ ~ ~ ~
受信:~~~  (ノイズを除去し、信号復元)

パルス波では、瞬間的な信号なので、受信時にノイズの影響を受けやすい。

(4) 長距離通信に向いている

CWは、狭い帯域(ナローバンド)で効率的に伝送できるため、長距離通信に適している。

例えば、アマチュア無線モールス符号通信CWモード)は、数千km以上の距離を低出力で通信できる。

📌 CWによるモールス通信

送信:  - . -. - (TEST)
受信:  - . -. -  (遠距離でも受信可能)

火花送信機のようなパルス波では、周波数帯域が広がりすぎてエネルギー拡散し、長距離伝送が難しくなる。

2. それでもパルス波が使われる場面

(1) レーダー

レーダーは、短いパルス波を発射し、反射波を受信することで距離や速度を測定する。

CWレーダー連続レーダー)もあるが、距離測定にはパルスレーダーが有利。

📌 パルスレーダーの仕組み

送信:  --- (短いパルス) → 物体に反射 → 受信(時間から距離計算

パルス波は「いつ送信たか」が明確なため、正確な距離測定が可能

2) デジタル通信パルス符号変調

パルス波は、デジタル通信の基礎となる「1」と「0」を表現するのに適している。

例えば、光ファイバー通信では、光パルスON/OFFでデータを伝送する。

📌 光通信パルス波)

光:  ---   ---   ---  (1)
無光:      ---         (0)

パルス波は、明確なON/OFF信号を作れるため、高速なデジタル通信に向いている。

3) 超広帯域通信UWB

UWB(Ultra-Wideband)通信では、非常に短いパルス波を使い、広い周波数帯域でデータを伝送する。

これにより、高精度の測距(GPS代替)や、低消費電力の通信可能になる。

📌 UWBパルス通信

送信:  --- --- --- --- (広帯域のパルス信号)

距離・高精度の測距に使われる(例: スマートフォンUWBチップ)。

3. まとめ

✅ 音声やデータ通信には「連続波(CW)」の方が適している。

CWは安定した周波数を持ち、変調による情報伝達(AMFMデジタル変調)が可能

CWは受信機が信号復元やすく、長距離通信にも向いている。

しかし、パルス波はレーダーデジタル通信UWBなど特定用途で有利な場合がある。

通信目的に応じて、「連続波(CW)」と「パルス波」のどちらを使うかが決まる。

anond:20250218173725

初期の時点では音声(アナログデータ)ではなくモールス符号デジタルデータ)だけしか無線で扱うことができなかったのですね

原因は電話線のリピーター(中継器)が直面したように「波形を維持しながら増幅」と「ノイズが増幅されるため影響が大きい」の2点でしょうか?


なぜマルコーニの無線通信は音声(アナログ)ではなくモールス符号デジタルしか扱えなかったのか?

おっしゃる通り、初期の無線通信では音声ではなく、モールス符号デジタルデータ)のみが扱われました。

主な原因として、以下の 2つの技術的な制約 がありました。

「波形を維持しながら増幅する技術線形増幅器)」がなかった

ノイズが増幅されるため影響が大きい」という問題があった

しかし、これらの理由を掘り下げると、より根本的な問題関係しています

ここでは、技術的な視点から「なぜ無線通信では最初モールス符号デジタル)が使われたのか?」を詳しく解説します。

1. 無線通信最初に音声が使えなかった理由

(1) 送信方式問題:初期の無線は「連続波」ではなく「火花放電波」だった

マルコーニが最初に開発した無線通信は、「火花送信機(Spark Gap Transmitter)」 を使用

火花送信機は、電極間に火花飛ばして高電圧パルスを作り、それを無線波として送信する。

しかし、この方式では 「連続的な波」を作ることができず、瞬間的な電磁波パルスしか発生しない。

これは「パルス波」のようなものなので、音声のような滑らかな波(アナログデータ)を扱うのが不可能 だった。

モールス符号ON/OFF)のようなデジタルデータしか送れなかった。

(2) 受信方式問題:音声を正確に復元できる受信機がなかった

初期の無線受信機は 「コヒーラ(Coherer)」という装置 を使っていた。

コヒーラは、電波が届くと金属粉がくっついて回路を閉じるシンプルな仕組み。

この方式では「電波が来たかどうか」しか判定できず、音声のような連続信号復元できなかった。

しかし、音声のような細かい波形を復元する能力がない ため、音声通信には使えなかった。

(3) 増幅技術の未発達:波形を維持しながら増幅できなかった

無線通信で音声を送るには、信号の波形をそのまま維持しながら増幅する技術線形増幅器)が必要

しかし、当時は真空管がまだ発明されておらず、音声を維持しながら増幅する技術がなかった。

📌 リレー式(電信)の増幅と違い、アナログ波形の増幅は難しい

モールス符号ON/OFF信号なので、単純なスイッチングで再送可能

音声信号 → 波形の細かい変化を正確に増幅しないと、正しく復元できない

19世紀の増幅技術では、モールス符号のような単純なON/OFF信号の増幅は可能だったが、アナログ信号の増幅は不可能だった。

(4) ノイズの影響が大きかった

音声通信では、ノイズが増幅されると意味が伝わらなくなる。

しかし、モールス符号なら、たとえノイズが混ざっても「短点・長点」さえ判別できれば復元できる。

📌 モールス符号ノイズに強い

ノイズが入っても「どの記号か」がわかるので解読できる。

しかし、音声通信では、ノイズが混ざると「元の音が何だったのか」がわからなくなる。

2. どうやって無線で音声通信可能になったのか?

(1) 連続波(Continuous Wave, CW)の発明

火花送信機ではなく、アーク送信機や高周波発振器を使い、連続した電波正弦波)を発生させる技術が開発された。

これにより、音声のような滑らかな波形を送信できるようになった。

(2) 真空管発明1906年

1906年リー・ド・フォレストLee De Forest)が三極真空管(Audion Tube)を発明

真空管を使うと、音声の波形を維持しながら増幅できるようになった。

📌 真空管による増幅の実現

入力: ~~~ (小さい音声信号)

増幅: ~~~~~~~~ (大きな音声信号)

これにより、無線で音声を正確に送受信できるようになった。

(3) AM振幅変調)の発明

1906年レジナルド・フェッセンデン(Reginald Fessenden)が、世界初の音声無線通信AM通信)に成功

音声信号を「振幅(強さ)」で変調AM変調)する技術が開発され、ラジオ放送の基礎となった。

📌 AM変調の仕組み

搬送波: ~~~~~~~~~~~~

音声信号: --- --- ---

変調波: ~~~--~~--~~--~~~

受信側は、この振幅変化を音声に復元できる。


3. まとめ

✅ 初期の無線通信では、モールス符号デジタルデータ)のみが使われた。

✅ その理由は、「火花送信機」では連続波を作れず、パルス状の信号しか送れなかったため。

✅ また、初期の受信機(コヒーラ)では「信号があるかどうか」しか判別できず、音声を復元できなかった。

さらに、波形を維持しながら増幅する技術が未発達で、音声を正しく伝えられなかった。

1906年真空管発明AM変調技術確立により、無線で音声通信可能になった。

2025-02-11

とある地方都市病院経営者です

私は内科医で、現在地都市にて父から譲り受けた病院経営している。

病院と言っても医師は私1人。

入院患者はほぼ全て寝たきりの生活保護受給者である

市内には土木会社経営する有料老人ホーム無料低額宿泊施設が多数あり、土木会社会社寮、無料低額宿泊施設老人ホーム生活保護受給者病気により生ける屍となるとうちに捨てられる仕組みだ。

私の病院で最も活躍しているのは役所CWや先述の土木会社とやり取りするSW、次いで役所から医療費を毟り取るための書類作成する事務員である

看護師の大半は人材派遣バイトで事足り、私の仕事生活保護による医療扶助を求めるための意見書や死亡診断書作成である

私に医師としての矜持はなく、生きがいはクラシックカーの手入れ、女性と浮き名を流すこと。

この商売美容外科よりもボロい。

なんて言ったって取りっぱぐれがなく、リスクがない。

金の出所行政

患者には悲しんだり騒いだりする遺族はいない。

2024-11-10

anond:20241109235646

ブコメトラバ料理しない男性の話で持ち切りだけど、

どちらかというとCW増田になぜ料理しない負け組底辺女性が視界に入らないのか?のほうが問題だと思う

自分の知り合いにもたくさんいる)

俺はガンダムなのかもしれない

先日街コンに参加してきた。

少し話をした女性の方は美人で若くてハキハキしてて、如何にもCWって感じだった。

彼女曰く、「チー牛は見分けがつかない」とのこと。

もちろん直接的にこういった言い方をした訳ではないけど、まとめると同様のことを主張していたわけだ。

話すことがなくなりお互いに沈黙してしまうと、俺はガンダム話題を口にした。

反応はいひとつで、彼女ガンダム系の作品をまったく観たことがないらしく、そもそもロボットアニメに興味がないらしい。

ガンダムって、みんな同じでしょ?なんて言う始末だ。

まり俺はガンダムなのかもしれない

anond:20241108210619

都内だと生活保護で借りられる部屋いえば一口ih、3点ユニットバス相場が決まっていて、川越所沢など郊外でもそういうところはある。

エステートとか東京ミライエステートが売ってるアパートで、生活保護家賃で、一口ihの3点ユニットバスとかあったなあ…

23区だと1日2250円調理禁止のドヤに住むしかないこともある。

この手の物件自炊は無理やで。

やれると言うなら、お手本を示してな。

もちろん、住宅扶助範囲を超えてもいいなら、ちゃん料理のできる3点ユニットバスじゃない物件も紹介できるが、そういう物件出したら、sv側が落とすやろ。

生活指導もするなら、まずはケース対象者がどういう家に住んでるか考えてくれ。

間取り図ぐらいはcw仕事の時に見とるやろ?

anond:20241108210619

底辺男性弱者男性自炊できると思ってるとか知能が底辺すぎんか?

こんなのがCWやってるから本当に助けが必要な奴に支援が行き渡らずに不正受給がはびこってるんだろうな

死ねジャップ

2024-11-08

底辺負け組弱者男性自炊をせずに外食特にチェーン店)を好むのは何でなの?

CWをやってるのですが、

底辺負け組の男ほど自炊をせずに外食特に安価チェーン店)を好んでいることに気づいた


家にガスやキッチンがあるのに、料理ラーメンスープを温めるくらいしかせずに

スーパー弁当を買って来たり、チェーン店安価外食牛丼ラーメンイタリアンなど)を食べに行くことが多い


なんていうか丁寧な生き方を嫌うみたいな感じだわ

自炊すれば美味しいものや様々なもの安価に食べられるのに馬鹿なのかなあって思う

女性負け組底辺自炊するのになあ

2024-08-25

anond:20240822182613

ワイは1000円中古スマホと0円povoで増田してるやで。

CWに怒られたことないやで

2024-07-17

嘲笑われる氷河期世代

独身氷河期世代精神病持ち・会社を追い出された。毎日ずっと、ジ○ツする事しかから離れない。自分幸せになることなんて無理なんだともうこの年齢から挽回なんて不可能なんだと理解している。追い打ちをかけて、先日、2年ほど片思いであった女性交際OKしてもらえたのも束の間、たった1日後には、考え直したが、やっぱり止めたいと拒絶された。誰の言葉も信用出来ない。精神病双極性障害2型とADHDのおかげで仕事を続けられなくなった。生活保護ケースワーカー相談にいくと、20代の若い男性CWに鼻で嘲笑われ馬鹿にされた。○○してやろうかって本気で思った。犯罪でもして刑務所に入るほうがマシかもしれない。散々人に騙されてきた。利用されてきた。みんなで俺を微笑ってる。連中になにかをしてからジ○ツするべきかと思うことがある。やり残したのはそれだけか。氷河期世代は遺棄された世代だという。もう行き場も何も無い。

2024-04-11

anond:20240410073838

CWとして努力勉強もっとして、

そんなクズらのやる気を起こさせてみなよ。

それができなきゃ、お前もそんなクズらと中身は一緒だよ。

2024-03-09

anond:20240309202431

精神障害のある受給者に対して就労可能かどうかを判断するのは主治医就労可否の意見書を送付する)。

主治医就労可能である判断すれば、統合失調症だろうがなんだろうが就労指導が行われる。

主治医がこの患者は働けないと意見を書いているのに「怠けて働かないのだ」とCW判断してるのであれば、それはあくまでもCW主観に過ぎない。

anond:20240309090256

このまえ福祉課の窓口行ったら、奥のデスクCWの人たちがケースの話をデカい声でしててさ。

A「いきなり大阪に行って働きますって言い出して」

B「そのまま二度と帰ってこなければいいのにね〜」

うん、言いたくなる気持ちはよーく分かるけど、とりあえず声がデカい。窓口まで聞こえてる。

そういう愚痴吐きは就業時間中じゃなく、居酒屋かなんかでやってくれ。

あとX(Twitter)でもプロフに「毒吐きアカウント」と書いてケースの悪口を書いてるCWさんもたくさんいるけど、身バレしたらせっかく安定志向で就いた公務員人生が終わるぞ。いいんか?

2024-01-18

anond:20240118131407

プロフ欄に求職中と書いているので、おそらく就労指導を受けていると思われ。

この人が具体的にCW福祉事務所とどういうやり取りをしているのか分からないが、note記事を読む限り生活保護法の補足性の原理意図的無視しているのは明白なので、通報等をされれば生活保護支給を止められてもおかしくはない。

anond:20240118130224

この人のnote更新が8ヶ月前で止まってるね。

2023年5月コロナが5類に移行してからCWによる家庭訪問就労指導が再開したので生活保護を打ち切られたのではないかと思う。

生活保護受給者は最低でも年に1回、収入・無収入申告書を提出する必要がある。

収入場合理由を書かなければいけない。そこに「働きたくないから」と書いたら当然のように就労指導対象となる。例外はない。

初めのうちは指導だけで済む。その指導に従わなければ段階的に生活保護打ち切りへと移行する。

ログイン ユーザー登録
ようこそ ゲスト さん