はてなキーワード: CWとは
ChatGPTさんは「3.579MHzの水晶を使うと3.579MHzのCWが出る」と回答してくれましたが、周波数は水晶発振子によって固定されるということですか?
そうだとしたらとても不便に思えました
結論から言うと、水晶発振子は基本的に「決まった周波数でしか振動しない」 ため、1つの水晶で周波数を自由に変更することはできません。
しかし、これには「確かに不便だが、その分メリットがある」という理由があります。
また、実際の電子回路では、複数の方法で周波数を変更することが可能 です!
水晶発振子(Quartz Crystal)は、「水晶が特定の周波数で機械的に振動する性質」を利用した部品 です。
水晶は 「特定の周波数でしか共振しない」 ため、基本的にはその周波数でしか動作しません。
水晶は 電圧を加えると「決まった周波数」で振動する 物質(ピエゾ効果)。
3.579MHzの水晶なら、必ず3.579MHzで振動する。
2. なんでそんな不便なものを使うの?
確かに、「1つの水晶でいろんな周波数を作れない」のは不便ですが、その代わりに 水晶発振子には非常に大きなメリット があります。
めちゃくちゃ正確! 周波数のズレ(誤差)がほとんどない。(温度変化などで若干ズレるが、通常±0.001%以下)電子時計や通信機器で、正確な時間・周波数を作るために必須!
安定してる! 一度発振すれば、周波数がブレたり、勝手に変わったりしない。無線通信やラジオ放送では、周波数がズレると通信不能になるため、安定性が重要。
ノイズに強い! 発振がクリーンで、余計な雑音(ノイズ)が少ない ので、無線通信に適している。
📌 もし水晶発振子がなかったら…
発振回路が周波数を正しく維持できず、無線通信が不安定になる。
→ だから、「周波数固定」というデメリットよりも、正確で安定した発振ができるメリットの方が大きい!
3. それでも周波数を変えたい!どうする?
「1つの水晶で周波数を変えられない」のは不便ですが、電子回路では いろんな方法で周波数を変更することが可能 です!
例えば、無線機では「3.579MHzの水晶」「10MHzの水晶」などを複数搭載し、切り替えることで周波数を変更できる。
例:水晶切り替え回路
(スイッチ) [ 3.579MHz ] ←─→ [ 10.000MHz ]
無線機やトランシーバーの「周波数チャンネル切り替え」に使われる方法。
水晶発振子に「可変コンデンサ」を並列に入れると、発振周波数を少しだけ調整できる!
ただし、大きく変えることはできず、せいぜい±100Hz~1000Hzくらい。
📌 可変コンデンサを使った微調整
[水晶発振子] ──── [可変コンデンサ] → 周波数が微妙に変わる
PLL(Phase-Locked Loop)という回路を使えば、水晶の周波数を自由に変更できる!
「基準となる水晶発振子」+「周波数を変えられる発振器」 を組み合わせることで、さまざまな周波数を作り出せる。
[ 10MHzの水晶発振子 ] → [ PLL回路 ] → [ 9MHz / 10MHz / 11MHz などを出力 ]
スマホやWi-Fi、FMラジオなどの通信機器は、ほぼ100% PLLを使っている!
✅ 方法④:DDS(ダイレクト・デジタル・シンセサイザ)を使う
DDS(Direct Digital Synthesizer)という技術を使うと、もっと自由に周波数を変えられる!
デジタル信号処理を利用して、好きな周波数の信号を作り出せる。
[ 10MHzの水晶発振子 ] → [ DDS ] → [ 1Hz~10MHzのCWを自由に生成! ]
最新の無線機は、PLL + DDSを組み合わせて周波数を自由に変えている!
4. まとめ
✅ 水晶発振子は「決まった周波数でしか発振しない」ため、1つの水晶で自由に周波数を変えることはできない。
✅ しかし、その代わりに「超正確」「超安定」「ノイズが少ない」という大きなメリットがある。
Q1(NPNトランジスタ, 増幅素子)の役割がちょっとわからないです、もっと高卒おじさんにも分かるように解説してください
Q1(NPNトランジスタ)は、CW発信器の「心臓部分」 です。
ここでは、トランジスタが具体的に何をしているのか?なぜ必要なのか? を、
水道の蛇口の例え を使って、なるべくわかりやすく説明します!
トランジスタ(Q1)は、「スイッチ」や「増幅器」として働く電子部品 です。
CW発信回路では、「発振を助ける」 という重要な役割を持っています。
(1) 小さな電流を流す → 大きな電流を流せるようになる(電流を増幅)
(2) ONにすると電気が流れる → OFFにすると止まる(スイッチ)
トランジスタは 「蛇口のコック」 のように、流れる電流をコントロールしています。
小さな電流(ベース電流)があると、大きな電流(コレクタ電流)を流せるようになります。
CW発信器では、Q1(トランジスタ)は「発振回路の増幅」と「発振の継続」 を担っています。
(2) Q1(トランジスタ)がそれを増幅
(3) 増幅された電流が再び水晶発振子に戻る(発振が継続する)
3. 例え話で理解する!
トランジスタを 「水道の蛇口」 に例えると、CW発信回路の動作が分かりやすくなります。
蛇口なし → 水がチョロチョロしか出ない(信号が弱すぎて使えない)
そのままだと、CWとして使うには弱すぎる。
蛇口を少し開く(ベース電流) → 水が勢いよく流れる(コレクタ電流)
トランジスタがあることで、水晶発振子の弱い振動(小電流)を増幅できる。
📌 CW発信器での働き
(2) Q1(トランジスタ)がその振動を増幅(電流を強くする)
つまり、トランジスタがないと、CWが小さすぎて送信できない! ということです。
(1) 発振回路の「発振を助ける」
水晶発振子が少し振動すると、Q1がそれを増幅し、回路全体で振動が続くようにする。
📌 発振の仕組み
水晶発振子(小さい振動) → Q1が増幅 → 水晶発振子に戻る → 繰り返し
(2) 出力信号を強くする(増幅)
発振したCW信号は、そのままだと小さすぎるため、Q1で増幅する。
これにより、後段の増幅回路やアンテナへ送る準備が整う。
📌 信号増幅の流れ
5. まとめ
✅ Q1(トランジスタ)は、CW発信回路の「蛇口」のような役割をする!
CW(Continuous Wave, 連続波)は、無線通信やモールス符号送信などで使われる基本的な波形です。
ここでは、CWを発生させるための基本的な回路図と、その仕組みについて詳しく解説します。
CWを生成するためには、安定した周波数の正弦波を発生させる発振回路 が必要です。
一般的に、水晶発振子(Quartz Crystal)を用いた回路が使われます。
+Vcc (電源, 例: +5V, +12V) │ R1 (抵抗, ベース電流制限) │ ├──────┬─────────── │ │ │ C1 (コンデンサ, 交流成分を安定化) │ │ Q1(NPNトランジスタ, 増幅素子) │ │ │ C2 (コンデンサ, 発振を安定化) │ │ 水晶発振子(Quartz Crystal, 周波数決定素子) │ GND (グラウンド, 電流の基準点)
(1) +Vcc(電源)
回路に電力を供給する端子 で、+5V や +12V などの直流電源 を使用します。
CW発信回路が動作するためには、トランジスタに電流を流す必要があります。
「Vcc」は「Voltage at Collector(コレクタの電圧)」の略 で、特にトランジスタ回路で使われます。
📌 +Vcc の例
+Vcc = 5V → マイコン回路(Arduino, ESP32 など) +Vcc = 12V → 無線送信機やラジオ回路
トランジスタ(Q1)が動作するためには、ベース(B)に適切な電流が必要ですが、そのまま流すと過剰な電流が流れてしまい、故障の原因になります。
そのため、R1を挿入し、適切な電流(通常 1kΩ ~ 10kΩ の範囲)を供給します。
R1 がない → トランジスタに電流が流れすぎる → 過熱・故障のリスク R1 がある → 適切な電流制御 → 安定した動作
(3) Q1(NPNトランジスタ, 増幅素子)
トランジスタは、小さな信号を増幅する素子 であり、CW発信回路の中心的な役割を担います。
水晶発振子の共振を利用して、安定した高周波CWを生成する ために使われます。
発振回路としては、コルピッツ発振回路やハートレー発振回路 などの方式が使われます。
📌 Q1の働き
入力:微弱な振動 ↓ Q1(トランジスタ)で増幅 ↓ 出力:安定したCW(連続波)
水晶の物理的な振動を利用して、非常に正確な周波数の電波を作り出します。
例えば、3.579MHzの水晶を使うと3.579MHzのCWが出る ようになります。
📌 水晶発振子の働き
水晶発振子 = 周波数を決定する「音叉」のようなもの→ 一定の周波数で振動し、安定したCWを生成
C1, C2 は、交流成分の平滑化やフィードバックを補助するために使われる。
📌 C1, C2の働き
C2:発振周波数を微調整
適切な容量のC1, C2を選ぶことで、発振が安定する。
すべての電子部品は「+Vcc」から「GND」に向かって電流が流れるので、GNDがないと回路が動作しない。
📌 GNDがないとどうなる?
+Vcc → R1 → Q1(トランジスタ) → ??? (電流が流れない!)
GNDがないと、電流の流れが閉じないため、回路は動作しない。
📌 CW発信器の応用
CW信号を生成し、モールス符号キー(電鍵)を使ってON/OFFすることで、CW電信(モールス通信)が可能になる。
CW発振器 → 増幅 → 電鍵(ON/OFF) → アンテナ
これを短点(・)や長点(-)として送信。
CW信号を作り、それを振幅変調(AM)することで音声送信が可能。
📌 回路の仕組み
CW発振器 → 変調回路(AM変調) → 増幅 → アンテナ
📌 まとめ
✅ CW(連続波)を作るには「水晶発振器」を使うのが一般的。
✅ トランジスタ回路(Q1)でCWを増幅し、安定した信号を作る。
✅ R1(抵抗)でベース電流を制限し、トランジスタの動作を安定させる。
✅ C1, C2(コンデンサ)は発振を安定させる役割を持つ。
数学的な話というと難しくなりがちですが、「波」 をイメージすれば意外とシンプルです。
ここでは、できるだけ 図や身近な例を使って CW(連続波)とパルス波の違いをわかりやすく説明します!
CW(Continuous Wave, 連続波) は、「一定のリズムでずっと続く波」 です。
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
この波は、「音」や「無線通信」のように、なめらかに情報を伝えるのに向いている 波です。
(意味は後で解説しますが、今は「きれいな波」と思ってOK!)
2. パルス波とは?
パルス波(Pulse Wave) は、「ある瞬間だけ発生する波」 です。
--- --- --- ---
パルス波は、「短い信号を一瞬だけ送る」ので、レーダーやデジタル通信に向いている 波です。
f(t)={ A, 0, 0≤t≤Ton 0, Ton<t≤T周期
(1) CWは「なめらかな波」、パルス波は「カクカクした波」
CW(連続波) は、なめらかな波で、音楽やラジオのように変化がゆっくり。
パルス波 は、ON/OFFのスイッチのように「ある瞬間だけ発生する」波。
📌 図で見るとこう!
CW(なめらかな波): ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ パルス波(ON/OFF): --- --- --- --- ||> CWは「スムーズに続く波」、パルス波は「点々と現れる波」という感じですね! (2) CWは「1つの周波数」だけ、パルス波は「たくさんの周波数を含む」 数学的に、CWは 「1つの周波数だけ」 を持っています。 例えば AMラジオの「1000kHz(キロヘルツ)」 なら、1000kHzのCWを送っています。 一方で、パルス波は「一瞬の信号」なので、いろんな周波数が混ざります。 パルス波は、周波数のバラエティが豊富(広帯域)になる という特徴があります。 📌 周波数の違い(イメージ) >|| CW: (1つの周波数だけ) | | | | | 100Hz 200Hz 300Hz 400Hz 500Hz パルス波: (いろんな周波数が混ざる) | | | | | | | | | | | | | | | | | | | | | | 100Hz 120Hz 140Hz ... 1000Hz(広がってしまう!)
つまり:
CWは、受信機が「特定の周波数だけを受信」しやすい(混信しにくい)
パルス波は、広い範囲に信号が広がるので、他の通信と干渉しやすい
(3) CWは「音声のように滑らかに伝えられる」、パルス波は「短いデジタル信号を送るのに便利」
CWは、音声や音楽のように波が連続しているので、アナログデータ(音声など)を伝えやすい。
パルス波は、ON/OFFをはっきりさせられるので、モールス符号やデジタル通信に向いている。
📌 用途の違い
波の種類 使われる場面
パルス波 モールス電信、レーダー、デジタル通信(Wi-Fi, Bluetooth)
パルス波の数式は少しややこしく見えますが、「ONのときは1、OFFのときは0」というシンプルなルールで表せます。
できるだけ 視覚的・直感的 に説明するので、一緒に理解していきましょう!💡
1. パルス波の数式
パルス波は、以下のような「スイッチのON/OFFを時間で表した数式」で表せます。
f(t)={ A, 0, 0≤t≤Ton 0, Ton<t≤T周期
(1) A(振幅)とは?
📌 振幅Aの例
A = 5V の場合(5Vの高さのパルス波) --- --- --- --- (5V) (0V) (0V) (0V)
ONの時間が長い(T_ON = 3ms) ------ ------ ------ ------ (OFF) (OFF) (OFF)
ON(T_ON)とOFF(T_OFF)を合わせた時間が周期(T周期)になる。
📌 周期の例
周期T = 5ms の場合 --- --- --- --- (ON) (OFF) (OFF) (OFF)
「ONの時間が周期全体の何%か」 を デューティ比(Duty Cycle) と呼ぶ。
D = TON / T周期 × 100
📌 例
--- --- --- --- (ON) --- --- --- --- (OFF)
ONが25%(D = 25%)
-- -- -- -- (ON) ------ ------ ------ (OFF)
実は、パルス波は数学的には 「たくさんのCW(連続波)が合成されたもの」 になっています!
パルス波 = CW(基本周波数) + CW(高調波1) + CW(高調波2) + ...
このため、パルス波は「いろんな周波数を含む広帯域の信号」になるんですね!
(もしフーリエ変換についてもっと知りたいなら、別途説明できます!)
5. まとめ
✅ パルス波は、ON/OFFを繰り返す信号で、数式で「ONのときはA、OFFのときは0」と表せる。
✅ パルス波の周期(T周期)やONの時間(T_ON)を使って、デューティ比(ONの割合)を計算できる。
連続波(Continuous Wave, CW)とは、一定の周波数と振幅を持つ連続的な電磁波(正弦波)のことを指します。
CWは、無線通信やレーダー、科学実験などで広く使われる基礎的な波形です。
無線通信の歴史において、CWは火花送信機の「パルス波」に代わる技術として登場し、音声通信(AM、FM)やデジタル無線通信の基礎となった 重要な概念です。
CWは、以下のように時間的に途切れず、一定の周波数を持つ波です。
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
CWは一定の周波数で変化し続ける波であり、火花送信機のように短いパルスにならない。
📌 火花送信機(Spark Gap Transmitter)の波形
--- --- --- (パルス波)
瞬間的な高電圧パルスを発生させるため、波形が不安定で、周波数の制御が難しかった。
パルス波しか作れないため、音声のようなアナログ波形を送ることが不可能だった。
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
周波数が正確に制御できるため、受信機がより効率よく信号を検出できる。
CWは、最初にモールス符号(CW電信)の送信に使われました。
送信機をON(CWを送信)すると「長音(トーン)」が発生する。
これを使って、「短点(・)」と「長点(-)」を表現する。
送信: CW ON - CW OFF - CW ON - CW OFF - (短点) 送信: CW ON ---- CW OFF (長点)
火花送信機と違い、電波が正確に送信できるため、遠距離通信が可能になった。
CWを使うことで、音声(アナログ信号)を送信できるようになった。
CWの振幅(強さ)を変化させることで、音声を無線で送る方式が生まれた(AM変調)。
CW: ~~~~~~~~~~~~~~~~ 音声: --- --- --- AM波: ~~~--~~--~~--~~~
振幅を音声に応じて変化させると、音声信号を無線で送ることができる。
CWを使えば、周波数を変化させて情報を送ることもできる(FM変調)。
基本CW: ~~~~~~~~~~~~~~~~ 音声: --- --- --- FM波: ~~ ~~~ ~~ ~~~~~ ~~~
CWの周波数を音声に応じて変化させると、よりノイズに強い通信ができる。
FMラジオ、携帯電話の音声通信(VoLTE)などに応用されている。
CWは、無線通信の基礎を築き、その後の技術革新に大きな影響を与えました。
19世紀 火花送信機 短いパルスのみ送信可能(モールス符号)
1900年代初頭 CW(連続波) 安定した信号を送信できるようになる
1960年代~ デジタル変調(ASK, FSK, PSK) CWをデジタル信号に変換して通信
現在でもCW(連続波)は、以下のような用途で使われています。
レーダー(CWレーダー) → 速度測定(ドップラー効果を利用)
光通信(レーザーCW) → 連続光波を使った通信(光ファイバー)
(1) 周波数の安定性が高い
CWは、一定の周波数で振動し続ける正弦波 であるため、周波数を正確に制御できる。
これにより、受信機が特定の周波数の信号を効率的に受信できる。
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ (一定の周波数)
特定の周波数にチューニングして受信できるため、混信が少なく、長距離通信に向いている。
CWは、そのままでは単なるキャリア波(搬送波)に過ぎないが、振幅・周波数・位相を変えることで情報を載せることができる。
AM(振幅変調) → CWの強さ(振幅)を変化させて音声を送る。
FM(周波数変調) → CWの周波数を変化させて音声を送る。
デジタル変調(ASK, FSK, PSK) → CWをデジタル信号に変換してデータを送る。
~ ~ ~ ~ ~ ~ (小さい音) ~~ ~~ ~~ ~~ (大きい音)
音声をそのまま変調できるため、ラジオ放送や電話通信に適している。
CWは特定の周波数の電磁波を送り続けるため、受信機が「どの周波数を受信すべきか」を正確に特定できる。
受信機は、特定の周波数にフィルターを合わせるだけで、ノイズを除去して正しい信号を受け取ることができる。
送信:~ ~ ~ ~ ~ ~ ~ ~ 受信:~~~ (ノイズを除去し、信号を復元)
パルス波では、瞬間的な信号なので、受信時にノイズの影響を受けやすい。
CWは、狭い帯域(ナローバンド)で効率的に伝送できるため、長距離通信に適している。
例えば、アマチュア無線のモールス符号通信(CWモード)は、数千km以上の距離を低出力で通信できる。
送信: - . -. - (TEST) 受信: - . -. - (遠距離でも受信可能)
火花送信機のようなパルス波では、周波数帯域が広がりすぎてエネルギーが拡散し、長距離伝送が難しくなる。
2. それでもパルス波が使われる場面
(1) レーダー
レーダーは、短いパルス波を発射し、反射波を受信することで距離や速度を測定する。
CWレーダー(連続波レーダー)もあるが、距離測定にはパルスレーダーが有利。
送信: --- (短いパルス) → 物体に反射 → 受信(時間差から距離を計算)
パルス波は「いつ送信したか」が明確なため、正確な距離測定が可能。
パルス波は、デジタル通信の基礎となる「1」と「0」を表現するのに適している。
例えば、光ファイバー通信では、光パルスのON/OFFでデータを伝送する。
光: --- --- --- (1) 無光: --- (0)
パルス波は、明確なON/OFF信号を作れるため、高速なデジタル通信に向いている。
UWB(Ultra-Wideband)通信では、非常に短いパルス波を使い、広い周波数帯域でデータを伝送する。
これにより、高精度の測距(GPS代替)や、低消費電力の通信が可能になる。
送信: --- --- --- --- (広帯域のパルス信号)
短距離・高精度の測距に使われる(例: スマートフォンのUWBチップ)。
3. まとめ
✅ 音声やデータ通信には「連続波(CW)」の方が適している。
✅ CWは安定した周波数を持ち、変調による情報伝達(AM、FM、デジタル変調)が可能。
✅ CWは受信機が信号を復元しやすく、長距離通信にも向いている。
初期の時点では音声(アナログデータ)ではなくモールス符号(デジタルデータ)だけしか無線で扱うことができなかったのですね
原因は電話線のリピーター(中継器)が直面したように「波形を維持しながら増幅」と「ノイズが増幅されるため影響が大きい」の2点でしょうか?
なぜマルコーニの無線通信は音声(アナログ)ではなくモールス符号(デジタル)しか扱えなかったのか?
おっしゃる通り、初期の無線通信では音声ではなく、モールス符号(デジタルデータ)のみが扱われました。
しかし、これらの理由を掘り下げると、より根本的な問題も関係しています。
ここでは、技術的な視点から「なぜ無線通信では最初にモールス符号(デジタル)が使われたのか?」を詳しく解説します。
(1) 送信方式の問題:初期の無線は「連続波」ではなく「火花放電波」だった
マルコーニが最初に開発した無線通信は、「火花送信機(Spark Gap Transmitter)」 を使用。
火花送信機は、電極間に火花を飛ばして高電圧のパルスを作り、それを無線波として送信する。
しかし、この方式では 「連続的な波」を作ることができず、瞬間的な電磁波のパルスしか発生しない。
これは「パルス波」のようなものなので、音声のような滑らかな波(アナログデータ)を扱うのが不可能 だった。
モールス符号(ON/OFF)のようなデジタルデータしか送れなかった。
(2) 受信方式の問題:音声を正確に復元できる受信機がなかった
初期の無線受信機は 「コヒーラ(Coherer)」という装置 を使っていた。
コヒーラは、電波が届くと金属粉がくっついて回路を閉じるシンプルな仕組み。
この方式では「電波が来たかどうか」しか判定できず、音声のような連続信号を復元できなかった。
しかし、音声のような細かい波形を復元する能力がない ため、音声通信には使えなかった。
(3) 増幅技術の未発達:波形を維持しながら増幅できなかった
無線通信で音声を送るには、信号の波形をそのまま維持しながら増幅する技術(線形増幅器)が必要。
しかし、当時は真空管がまだ発明されておらず、音声を維持しながら増幅する技術がなかった。
📌 リレー式(電信)の増幅と違い、アナログ波形の増幅は難しい
モールス符号 → ON/OFF信号なので、単純なスイッチングで再送可能
音声信号 → 波形の細かい変化を正確に増幅しないと、正しく復元できない
19世紀の増幅技術では、モールス符号のような単純なON/OFF信号の増幅は可能だったが、アナログ信号の増幅は不可能だった。
(4) ノイズの影響が大きかった
しかし、モールス符号なら、たとえノイズが混ざっても「短点・長点」さえ判別できれば復元できる。
しかし、音声通信では、ノイズが混ざると「元の音が何だったのか」がわからなくなる。
(1) 連続波(Continuous Wave, CW)の発明
火花送信機ではなく、アーク送信機や高周波発振器を使い、連続した電波(正弦波)を発生させる技術が開発された。
これにより、音声のような滑らかな波形を送信できるようになった。
1906年にリー・ド・フォレスト(Lee De Forest)が三極真空管(Audion Tube)を発明。
真空管を使うと、音声の波形を維持しながら増幅できるようになった。
📌 真空管による増幅の実現
増幅: ~~~~~~~~ (大きな音声信号)
これにより、無線で音声を正確に送受信できるようになった。
1906年、レジナルド・フェッセンデン(Reginald Fessenden)が、世界初の音声無線通信(AM通信)に成功。
音声信号を「振幅(強さ)」で変調(AM変調)する技術が開発され、ラジオ放送の基礎となった。
搬送波: ~~~~~~~~~~~~
音声信号: --- --- ---
変調波: ~~~--~~--~~--~~~
受信側は、この振幅変化を音声に復元できる。
3. まとめ
✅ 初期の無線通信では、モールス符号(デジタルデータ)のみが使われた。
✅ その理由は、「火花送信機」では連続波を作れず、パルス状の信号しか送れなかったため。
✅ また、初期の受信機(コヒーラ)では「信号があるかどうか」しか判別できず、音声を復元できなかった。
私は内科医で、現在地方都市にて父から譲り受けた病院を経営している。
市内には土木会社が経営する有料老人ホームや無料低額宿泊施設が多数あり、土木会社の会社寮、無料低額宿泊施設、老人ホームの生活保護受給者が病気により生ける屍となるとうちに捨てられる仕組みだ。
私の病院で最も活躍しているのは役所のCWや先述の土木会社とやり取りするSW、次いで役所から医療費を毟り取るための書類を作成する事務員である。
看護師の大半は人材派遣やバイトで事足り、私の仕事は生活保護による医療扶助を求めるための意見書や死亡診断書の作成である。
私に医師としての矜持はなく、生きがいはクラシックカーの手入れ、女性と浮き名を流すこと。
なんて言ったって取りっぱぐれがなく、リスクがない。
先日街コンに参加してきた。
少し話をした女性の方は美人で若くてハキハキしてて、如何にもCWって感じだった。
もちろん直接的にこういった言い方をした訳ではないけど、まとめると同様のことを主張していたわけだ。
話すことがなくなりお互いに沈黙してしまうと、俺はガンダムの話題を口にした。
反応はいまひとつで、彼女はガンダム系の作品をまったく観たことがないらしく、そもそもロボットアニメに興味がないらしい。
ガンダムって、みんな同じでしょ?なんて言う始末だ。
都内だと生活保護で借りられる部屋いえば一口ih、3点ユニットバスと相場が決まっていて、川越や所沢など郊外でもそういうところはある。
心エステートとか東京ミライエステートが売ってるアパートで、生活保護の家賃で、一口ihの3点ユニットバスとかあったなあ…
23区だと1日2250円の調理禁止のドヤに住むしかないこともある。
やれると言うなら、お手本を示してな。
もちろん、住宅扶助の範囲を超えてもいいなら、ちゃんと料理のできる3点ユニットバスじゃない物件も紹介できるが、そういう物件出したら、sv側が落とすやろ。
独身・氷河期世代・精神病持ち・会社を追い出された。毎日ずっと、ジ○ツする事しか頭から離れない。自分が幸せになることなんて無理なんだともうこの年齢から挽回なんて不可能なんだと理解している。追い打ちをかけて、先日、2年ほど片思いであった女性に交際をOKしてもらえたのも束の間、たった1日後には、考え直したが、やっぱり止めたいと拒絶された。誰の言葉も信用出来ない。精神病・双極性障害2型とADHDのおかげで仕事を続けられなくなった。生活保護のケースワーカーに相談にいくと、20代の若い男性CWに鼻で嘲笑われ馬鹿にされた。○○してやろうかって本気で思った。犯罪でもして刑務所に入るほうがマシかもしれない。散々人に騙されてきた。利用されてきた。みんなで俺を微笑ってる。連中になにかをしてからジ○ツするべきかと思うことがある。やり残したのはそれだけか。氷河期世代は遺棄された世代だという。もう行き場も何も無い。