In the last decade, deep learning and word embeddings have made significant impacts on information retrieval (IR) by adding techniques based in neural networks and language models. At the same time, certain search modalities such as neural IR and conversational search have become more popular. This book, written by international academic and industry experts, brings the field up to date with detailed discussions of these new approaches and techniques. The book is organized in three sections: Foundations, Adaptations and Concerns, and Verticals.
Under Foundations, we address topics that form the basic structure of any modern IR system, including recommender systems. These new techniques are developed to augment indexing, retrieval, and ranking. Neural IR, recommender systems, evaluation, query-driven functionality, and knowledge graphs are covered in this section.
IR systems need to adapt to specific user characteristics and preferences, and techniques that were considered too niche a few years ago are now a matter of system design consideration. The Adaptations and Concerns section covers the following topics: conversational search, cross-language retrieval, temporal extraction and retrieval, bias in retrieval systems, and privacy in search.
While web search engines are the most popular information access point, there are cases where specific verticals provide a better experience in terms of content and relevance. The Verticals section describes eCommerce, professional search, personal collections, music retrieval, and biomedicine as examples.
Book Downloads
Preface
Bibliography
- M. Abadi, A. Birrell, M. Burrows, and T. Wobber. 2003. Bankable postage for network services. In V. A. Saraswat (Ed.), Proceedings of the 8th Asian Computing Science Conference, Vol. 2896: Lecture Notes in Computer Science. Springer, Berlin, 72–90. DOI: .Google ScholarCross Ref
- S. AbdelRahman, B. Hassan, and R. Bahgat. October. 2010. A new email retrieval ranking approach. Int. J. Comput. Sci. Inf. Technol. 2, 5, 44–63. DOI: .Google ScholarCross Ref
- H. Abdollahpouri and M. Mansoury. 2020. Multi-sided exposure bias in recommendation. arXiv:2006.15772. DOI: .Google ScholarCross Ref
- H. Abdollahpouri, G. Adomavicius, R. Burke, I. Guy, D. Jannach, T. Kamishima, J. Krasnodebski, and L. Pizzato. 2020a. Multistakeholder recommendation: Survey and research directions. User Model. User-Adapt. Interact. 30, 127–158. DOI: .Google ScholarCross Ref
- H. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher. 2020b. The connection between popularity bias, calibration, and fairness in recommendation. In Proceedings of the 14th ACM Conference on Recommender Systems (RecSys ’20). ACM, New York, NY, 726–731. DOI: .Google ScholarDigital Library
- S. Abdou and J. Savoy. 2005. Report on CLIR task for the NTCIR-5 evaluation campaign. In N. Kando (Ed.), Proceedings of the Fifth NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-Lingual Information Access, NTCIR-5, National Center of Sciences, Tokyo, Japan, December 6–9, 2005, National Institute of Informatics (NII), Tokyo, Japan.Google Scholar
- R. P. Abelson and J. W. Tukey. 1959. Efficient conversion of non-metric information into metric information. In Proceedings of the Social Statistics Section of the American Statistical Association. American Statistical Association, Washington, DC, 226–230.Google Scholar
- D. Aberdeen, O. Pacovsky, and A. Slater. 2010. The learning behind Gmail priority inbox. In LCCC: NIPS 2010 Workshop on Learning on Cores, Clusters and Clouds.Google Scholar
- A. Abolghasemi, S. Verberne, and L. Azzopardi. 2022. Improving BERT-based query-by-document retrieval with multi-task optimization. In European Conference on Information Retrieval, Vol. 13186: Lecture Notes in Computer Science. Springer, Cham, 3–12. DOI: .Google ScholarDigital Library
- I. Abraham, O. Alonso, V. Kandylas, R. Patel, S. Shelford, and A. Slivkins. 2016. How many workers to ask?: Adaptive exploration for collecting high quality labels. In R. Perego, F. Sebastiani, J. Aslam, I. Ruthven, and J. Zobel (Eds.), Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 473–482. DOI: .Google ScholarDigital Library
- M. Abualsaud, C. Lioma, M. Maistro, M. D. Smucker, and G. Zuccon. February. 2020. Overview of the TREC 2019 decision track. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Eighth Text REtrieval Conference (TREC 2019). National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
- S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair. 2007. A comparison of machine learning techniques for phishing detection. In Proceedings of the Anti-Phishing Working Groups 2nd Annual eCrime Researchers Summit (eCrime ’07). ACM, New York, NY, 60–69. DOI: .Google ScholarDigital Library
- H. Abu-Rasheed, C. Weber, J. Zenkert, M. Dornhöfer, and M. Fathi. 2022. Transferrable framework based on knowledge graphs for generating explainable results in domain-specific, intelligent, information retrieval. Informatics 9, 1, 6. DOI: .Google ScholarCross Ref
- ACM Technology Policy Council. October. 2022. Statement on Responsible Algorithmic Systems. https://www.acm.org/binaries/content/assets/public-policy/final-joint-ai-statement-update.pdf.Google Scholar
- P. Adamopoulos and A. Tuzhilin. 2014. On unexpectedness in recommender systems: Or how to expect the unexpected. Special Section on Novelty and Diversity in Recommender Systems, ACM Trans. Intell. Syst. Technol. 5, 4. DOI: .Google ScholarDigital Library
- E. W. Adams, R. F. Fagot, and R. E. Robinson. June. 1965. A theory of appropriate statistics. Psychometrika 30, 99–127. DOI: .Google ScholarCross Ref
- E. Adar. 2007. User 4xxxxx9: Anonymizing query logs. In Proceedings of Query Log Analysis Workshop, International Conference on World Wide Web.Google Scholar
- Adobe Inc. 2020. Taking Image Search to the Next Level: AI-powered Object-specific Search in Adobe Stock. Technical Report. Adobe Tech Blog.Google Scholar
- G. Adomavicius and A. Tuzhilin. 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17, 6, 734–749. DOI: .Google ScholarDigital Library
- G. Adomavicius and J. Zhang. April. 2012. Impact of data characteristics on recommender systems performance. ACM Trans. Manage. Inf. Syst. 3, 1. DOI: .Google ScholarDigital Library
- G. Adomavicius, K. Bauman, A. Tuzhilin, and M. Unger. 2022. Context-aware recommender systems: From foundations to recent developments. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 211–250. DOI: .Google ScholarCross Ref
- D. Afchar and R. Hennequin. 2020. Making neural networks interpretable with attribution: Application to implicit signals prediction. In Proceedings of the 14th ACM Conference on Recommender Systems (RecSys ’20). ACM, New York, NY, 220–229. DOI: .Google ScholarDigital Library
- M. M. Afsar, T. Crump, and B. Far. June. 2022. Reinforcement learning based recommender systems: A survey. ACM Comput. Surv. 55, 7, 1–38. DOI: .Google ScholarDigital Library
- E. Agapie, G. Golovchinsky, and P. Qvarfordt. 2013. Leading people to longer queries. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). ACM, New York, NY, 3019–3022. DOI: .Google ScholarDigital Library
- A. Agarwal, I. Zaitsev, X. Wang, C. Li, M. Najork, and T. Joachims. 2019. Estimating position bias without intrusive interventions. In Proceedings of the 12th ACM International Conference on Web Search and Data Mining (WSDM ’19). ACM, New York, NY, 474–482. DOI: .Google ScholarDigital Library
- D. Agarwal, B.-C. Chen, and P. Elango. 2009. Explore/exploit schemes for web content optimization. In Proceedings of the 2009 9th IEEE International Conference on Data Mining (ICDM ’09), Miami, Florida. IEEE, 1–10. DOI: .Google ScholarDigital Library
- C. C. Aggarwal, X. Kong, Q. Gu, J. Han, and P. S. Yu. 2014. Active learning: A survey. In Data Classification: Algorithms and Applications. CRC Press, 571–605. DOI: .Google ScholarCross Ref
- E. Agirre, G. M. Di Nunzio, N. Ferro, T. Mandl, and C. Peters. 2008. CLEF 2008: Ad hoc track overview. In F. Borri, A. Nardi, C. Peters, and N. Ferro (Eds.), CLEF 2008 Working Notes. CEUR Workshop Proceedings, ISSN 1613-0073. CEUR-WS.org. https://ceur-ws.org/Vol-1174/.Google Scholar
- E. Agirre, G. M. Di Nunzio, N. Ferro, T. Mandl, and C. Peters. 2009. CLEF 2008: Ad hoc track overview. In C. Peters, T. Deselaers, N. Ferro, J. Gonzalo, G. J. F. Jones, M. Kurimo, T. Mandl, and A. Peñas (Eds.), Evaluating Systems for Multilingual and Multimodal Information Access: Ninth Workshop of the Cross-Language Evaluation Forum (CLEF ’08). Revised Selected Papers, Vol. 5706: Lecture Notes in Computer Science. Springer, Heidelberg, 15–37. DOI: .Google ScholarCross Ref
- R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. 2009. Diversifying search results. In Proceedings of the 2nd ACM Conference on Web Search and Data Mining (WSDM ’09). ACM, New York, NY, 5–14. DOI: .Google ScholarDigital Library
- A. Agresti and B. A. Coull. 1998. Approximate is better than “exact” for interval estimation of binomial proportions. Am. Stat. 52, 2, 119–126. DOI: .Google ScholarCross Ref
- N. Aharony. March. 2007. On Ranking Techniques for Desktop Search. Master’s thesis. Technion–Institute of Technology, Haifa, Israel.Google Scholar
- A. Ahmadvand, S. Kallumadi, F. Javed, and E. Agichtein. 2020. JointMap: Joint query intent understanding for modeling intent hierarchies in e-commerce search. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 1509–1512. DOI: .Google ScholarDigital Library
- Q. Ai, S. T. Dumais, N. Craswell, and D. Liebling. 2017. Characterizing email search using large-scale behavioral logs and surveys. In Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 1511–1520. DOI: .Google ScholarDigital Library
- Q. Ai, K. Bi, C. Luo, J. Guo, and W. B. Croft. 2018. Unbiased learning to rank with unbiased propensity estimation. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 385–394. DOI: .Google ScholarDigital Library
- N. Ailon, Z. S. Karnin, E. Liberty, and Y. Maarek. 2013. Threading machine generated email. In Proceedings of the 6th ACM International Conference on Web Search and Data Mining. ACM, New York, NY, 405–414. DOI: .Google ScholarDigital Library
- J. Ajmera, A. Joshi, S. Mukherjea, N. Rajput, S. Sahay, M. Shrivastava, and K. Srivastava. 2011. Two-stream indexing for spoken web search. In Proceedings of the 20th International Conference Companion on World Wide Web (WWW ’11). ACM, New York, NY, 503–512. DOI: .Google ScholarDigital Library
- M. Alfano, A. E. Fard, J. A. Carter, P. Clutton, and C. Klein. 2021. Technologically scaffolded atypical cognition: The case of YouTube’s recommender system. Synthese 199, 835–858. DOI: .Google ScholarCross Ref
- W. Ali, M. Saleem, B. Yao, A. Hogan, and A.-C. N. Ngomo. 2022. A survey of RDF stores & SPARQL engines for querying knowledge graphs. VLDB J. 31, 1–26. DOI: .Google ScholarDigital Library
- M. Aliannejadi and J. R. Trippas. 2022. Conversational information seeking: Theory and evaluation: CHIIR 2022 half day tutorial. In Proceedings of the 2022 Conference on Human Information Interaction and Retrieval (CHIIR ’22). ACM, New York, NY, 365–366. DOI: .Google ScholarDigital Library
- M. Aliannejadi, M. Harvey, L. Costa, M. Pointon, and F. Crestani. 2019a. Understanding mobile search task relevance and user behaviour in context. In Proceedings of the 2019 Conference on Human Information Interaction and Retrieval (CHIIR ’19). ACM, New York, NY, 143–151. DOI: .Google ScholarDigital Library
- M. Aliannejadi, H. Zamani, F. Crestani, and W. B. Croft. 2019b. Asking clarifying questions in open-domain information-seeking conversations. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 475–484. DOI: .Google ScholarDigital Library
- A. Aljanaki. 2016. Emotion in Music: Representation and Computational Modeling. Ph.D. thesis. Universiteit Utrecht, Netherlands.Google Scholar
- A. Aljanaki, Y.-H. Yang, and M. Soleymani. 2017. Developing a benchmark for emotional analysis of music. PLoS One 12, 3, e0173392. DOI: .Google ScholarCross Ref
- J. Allan, J. Aslam, L. Azzopardi, N. Belkin, P. Borlund, P. Bruza, J. Callan, M. Carman, C. Clarke, N. Craswell, W. B. Croft, J. S. Culpepper, F. Diaz, S. Dumais, N. Ferro, S. Geva, J. Gonzalo, D. Hawking, K. Järvelin, G. Jones, R. Jones, J. Kamps, N. Kando, E. Kanoulas, J. Karlgren, D. Kelly, M. Lease, J. Lin, S. Mizzaro, A. Moffat, V. Murdock, D. W. Oard, M. de Rijke, T. Sakai, M. Sanderson, F. Scholer, L. Si, J. Thom, P. Thomas, A. Trotman, A. Turpin, A. P. de Vries, W. Webber, X. Zhang, and Y. Zhang. June. 2012. Frontiers, challenges, and opportunities for information retrieval: Report from SWIRL 2012 the second strategic workshop on information retrieval in Lorne, February 2012. SIGIR Forum 46, 1, 2–32. DOI: .Google ScholarDigital Library
- J. Allan, J. Arguello, L. Azzopardi, P. Bailey, T. Baldwin, K. Balog, H. Bast, N. Belkin, K. Berberich, B. von Billerbeck, J. Callan, R. Capra, M. Carman, B. Carterette, C. L. A. Clarke, K. Collins-Thompson, N. Craswell, W. B. Croft, J. S. Culpepper, J. Dalton, G. Demartini, F. Diaz, L. Dietz, S. Dumais, C. Eickhoff, N. Ferro, N. Fuhr, S. Geva, C. Hauff, D. Hawking, H. Joho, G. J. F. Jones, J. Kamps, N. Kando, D. Kelly, J. Kim, J. Kiseleva, Y. Liu, X. Lu, S. Mizzaro, A. Moffat, J.-Y. Nie, A. Olteanu, I. Ounis, F. Radlinski, M. de Rijke, M. Sanderson, F. Scholer, L. Sitbon, M. D. Smucker, I. Soboroff, D. Spina, T. Suel, J. Thom, P. Thomas, A. Trotman, E. M. Voorhees, A. P. de Vries, E. Yilmaz, and G. Zuccon. June. 2018a. Research frontiers in information retrieval: Report from the third strategic workshop on information retrieval in Lorne (SWIRL 2018). SIGIR Forum 52, 1, 34–90. DOI: .Google ScholarDigital Library
- J. Allan, D. K. Harman, E. Kanoulas, D. Li, C. Van Gysel, and E. M. Voorhees. February. 2018b. TREC 2017 common core track overview. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Sixth Text REtrieval Conference Proceedings (TREC 2017), Special Publication 500-324. National Institute of Standards and Technology, Washington, DC.Google Scholar
- J. Allan, D. K. Harman, E. Kanoulas, and E. M. Voorhees. February. 2019. TREC 2018 common core track overview. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Seventh Text REtrieval Conference Proceedings (TREC 2018). National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
- B. Allen. July. 1989. Recall cues in known-item retrieval. J. Am. Soc. Inf. Sci. 40, 4, 246–252. DOI: .Google ScholarCross Ref
- J. F. Allen. November. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11, 832–843. DOI: .Google ScholarDigital Library
- M. Alonso, B. David, and G. Richard. 2004. Tempo and beat estimation of musical signals. In Proceedings of the 5th International Conference on Music Information Retrieval (ISMIR), Barcelona, Spain.Google Scholar
- O. Alonso. April. 2013. Implementing crowdsourcing-based relevance experimentation: An industrial perspective. Inf. Retr. 16, 2, 101–120. DOI: .Google ScholarDigital Library
- O. Alonso. May. 2019. The Practice of Crowdsourcing. Morgan & Claypool Publishers.Google Scholar
- O. Alonso and S. Mizzaro. November. 2012. Using crowdsourcing for TREC relevance assessment. Inf. Process. Manag. 48, 6, 1053–1066. DOI: .Google ScholarDigital Library
- O. Alonso, S. Tremblay, and F. Diaz. 2017. Automatic generation of event timelines from social data. In Proceedings of the 2017 ACM on Web Science Conference (WebSci ’17), Troy, NY, June 25–28, 2017. ACM, New York, NY, 207–211. DOI: .Google ScholarDigital Library
- O. Alonso, V. Kandylas, and S. Tremblay. 2018. How it happened: Discovering and archiving the evolution of a story using social signals. In Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries (JCDL ’18), Fort Worth, TX, USA, June 03–07, 2018. ACM, New York, NY, 193–202. DOI: .Google ScholarDigital Library
- O. Alonso, V. Kandylas, S. Tremblay, and S. Whiting. 2020. Answering recreational web searches with relevant things to do results. Inf. Process. Manag. 57, 2, 102184. DOI: .Google ScholarDigital Library
- S. Althammer, S. Hofstätter, M. Sertkan, S. Verberne, and A. Hanbury. 2022a. PARM: A paragraph aggregation retrieval model for dense document-to-document retrieval. In M. Hagen, S. Verberne, C. Macdonald, C. Seifert, K. Balog, K. Nørvåg, and V. Setty (Eds.), Advances in Information Retrieval, Vol. 13185: Lecture Notes in Computer Science. Springer, Cham, 19–34. DOI: .Google ScholarDigital Library
- S. Althammer, S. Hofstätter, S. Verberne, and A. Hanbury. 2022b. TripJudge: A relevance judgement test collection for TripClick health retrieval. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (CIKM ’22). ACM, New York, NY, 3801–3805. DOI: .Google ScholarDigital Library
- X. Amatriain and J. Basilico. 2015. Recommender systems in industry: A Netflix case study. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (2nd. ed.). Springer, New York, NY, 385–419. DOI: .Google ScholarCross Ref
- E. Amigó and S. Mizzaro. June. 2020. On the nature of information access evaluation metrics: A unifying framework. Inf. Retr. J. 23, 3, 318–386. DOI: .Google ScholarDigital Library
- E. Amigó, J. Gonzalo, J. Artiles, and M. F. Verdejo. August. 2009. A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf. Retr. 12, 4, 461–486. DOI: .Google ScholarDigital Library
- E. Amigó, J. Gonzalo, and M. F. Verdejo. 2013. A general evaluation measure for document organization tasks. In G. J. F. Jones, P. Sheridan, D. Kelly, M. de Rijke, and T. Sakai (Eds.), Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 643–652. DOI: .Google ScholarDigital Library
- E. Amigó, J. Carrillo de Albornoz, M. Almagro-Cádiz, J. Gonzalo, J. Rodrguez-Vidal, and F. Verdejo. 2017. EvALL: Open access evaluation for information access systems. In N. Kando, T. Sakai, H. Joho, H. Li, A. P. de Vries, and R. W. White (Eds.), Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 1301–1304. DOI: .Google ScholarDigital Library
- E. Amigó, D. Spina, and J. Carrillo-de Albornoz. 2018. An axiomatic analysis of diversity evaluation metrics: Introducing the rank-biased utility metric. In K. Collins-Thompson, Q. Mei, B. Davison, Y. Liu, and E. Yilmaz (Eds.), The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 625–634. DOI: .Google ScholarDigital Library
- E. Amigó, J. Gonzalo, M. F. Verdejo, and D. Spina. December. 2019. A comparison of filtering evaluation metrics based on formal constraints. Inf. Retr. J. 22, 6, 581–619. DOI: .Google ScholarDigital Library
- E. Amigó, J. Gonzalo, S. Mizzaro, and J. Carrillo de Albornoz. 2020. An effectiveness metric for ordinal classification: Formal properties and experimental results. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL ’20). Association for Computational Linguistics, 3938–3949. DOI: .Google ScholarCross Ref
- E. Amigó, Y. Deldjoo, S. Mizzaro, and A. Bellogín. January. 2023a. A unifying and general account of fairness measurement in recommender systems. Inf. Process. Manag. 60, 1, 103115. DOI: .Google ScholarDigital Library
- E. Amigó, J. Gonzalo, and S. Mizzaro. February. 2023b. What is my problem? Identifying formal tasks and metrics in data mining on the basis of measurement theory. IEEE Trans. Knowl. Data Eng. 35, 2, 2147–2157. DOI: .Google ScholarCross Ref
- W. Ammar, G. Mulcaire, Y. Tsvetkov, G. Lample, C. Dyer, and N. A. Smith. 2016. Massively multilingual word embeddings. arXiv:1602.01925. DOI: .Google ScholarCross Ref
- A. Anand, L. Cavedon, H. Joho, M. Sanderson, and B. Stein. 2020. Conversational search (Dagstuhl Seminar 19461). Dagstuhl Rep. 9, 11, 34–83. DOI: .Google ScholarCross Ref
- A. Anand, L. Lyu, M. Idahl, Y. Wang, J. Wallat, and Z. Zhang. 2022. Explainable information retrieval: A survey. arXiv:2211.02405. DOI: .Google ScholarCross Ref
- A. Anand, P. Sen, S. Saha, M. Verma, and M. Mitra. 2023. Explainable information retrieval. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 3448–3451. DOI: .Google ScholarDigital Library
- N. H. Anderson. 1961. Scales and statistics: Parametric and nonparametric. Psychol. Bull. 58, 4, 305–316. DOI: .Google ScholarCross Ref
- I. Androutsopoulos, J. Koutsias, K. V. Cbandrinos, and C. D. Spyropoulos. 2000. An experimental comparison of naive Bayesian and keyword-based anti-spam filtering with personal e-mail messages. In Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’00). ACM, New York, NY, 160–167. DOI: .Google ScholarDigital Library
- V. W. Anelli, A. Bellogín, T. D. Noia, D. Jannach, and C. Pomo. 2022. Top-N recommendation algorithms: A quest for the state-of-the-art. In Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization (UMAP ’22). ACM, New York, NY, 121–131. .Google ScholarDigital Library
- M. Angelini, N. Ferro, B. Larsen, H. Müller, G. Santucci, G. Silvello, and T. Tsikrika. 2014. Measuring and analyzing the scholarly impact of experimental evaluation initiatives. In M. Agosti, T. Catarci, and F. Esposito (Eds.), Proceedings of the 10th Italian Research Conference on Digital Libraries (IRCDL ’14). Procedia Computer Science, 38, 133–137. DOI: .Google ScholarCross Ref
- R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč. September. 2017. Foundations of modern query languages for graph databases. ACM Comput. Surv. 50, 5, 68:1–68:40. DOI: .Google ScholarDigital Library
- Apple Computer. 2013. OS X Mavericks: What’s New from Mountain Lion. Retrieved from https://help.apple.com/osx-mavericks/whats-new-from-mountain-lion.Google Scholar
- N. Arabzadeh and C. L. A. Clarke. 2024. A comparison of methods for evaluating generative IR. arXiv:2404.04044. DOI: .Google ScholarCross Ref
- J. Arguello, L. Cavedon, J. Edlund, M. Hagen, D. Maxwell, M. Potthast, F. Radlinski, M. Sanderson, L. Soulier, B. Stein, J. Teevan, J. Trippas, and H. Zamani. 2020. Defining conversational search. In A. Anand, L. Cavedon, H. Joho, M. Sanderson, and B. Stein (Eds.), Conversational Search (Dagstuhl Seminar 19461). Dagstuhl, 49–55.Google Scholar
- T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel. 2009a. EvaluatIR: An online tool for evaluating and comparing IR systems. In J. Allan, J. Aslam, M. Sanderson, C. X. Zhai, and J. Zobel (Eds.), Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’09). ACM, New York, NY, 833. DOI: .Google ScholarDigital Library
- T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel. 2009b. Improvements that don’t add up: Ad-hoc retrieval results since 1998. In D. W.-L. Cheung, I.-Y. Song, W. W. Chu, X. Hu, and J. J. Lin (Eds.), Proceedings of the 18th Conference on Information and Knowledge Management (CIKM ’09). ACM, New York, NY, 601–610. DOI: .Google ScholarDigital Library
- A. Arnold, G. Dupont, C. Kobus, F. Lancelot, and Y.-H. Liu. 2020. Perceived usefulness of conversational agents predicts search performance in aerospace domain. In Proceedings of the 2nd Conference on Conversational User Interfaces (CUI ’20). ACM, New York, NY, 1–3. DOI: .Google ScholarDigital Library
- B. Arons. 1993. SpeechSkimmer: Interactively skimming recorded speech. In Proceedings of the 6th Annual ACM symposium on User Interface Software and Technology (UIST ’93). ACM, New York, NY, 187–196. DOI: .Google ScholarDigital Library
- M. Artetxe and H. Schwenk. September. 2019. Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond. Trans. Assoc. Comput. Linguist. 7, 597–610. DOI: .Google ScholarCross Ref
- M. Artetxe, G. Labaka, and E. Agirre. 2018. A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, Association for Computational Linguistics, 789–798. DOI: .Google ScholarCross Ref
- M. Artetxe, S. Ruder, and D. Yogatama. July. 2020. On the cross-lingual transferability of monolingual representations. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 4623–4637. DOI: .Google ScholarCross Ref
- K. Aryafar, D. Guillory, and L. Hong. 2017. An ensemble-based approach to click-through rate prediction for promoted listings at Etsy. In Proceedings of the ADKDD ’17 (ADKDD ’17). ACM, New York, NY, 1–6. DOI: .Google ScholarDigital Library
- A. Asai, J. Kasai, J. H. Clark, K. Lee, E. Choi, and H. Hajishirzi. 2021. XOR QA: Cross-lingual open-retrieval question answering. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 547–564. DOI: .Google ScholarCross Ref
- A. Askari and S. Verberne. 2021. Combining lexical and neural retrieval with longformer-based summarization for effective case law retrieval. In Proceedings of the Second International Conference on Design of Experimental Search & Information REtrieval Systems. CEUR, 162–170.Google Scholar
- A. Askari, M. Aliannejadi, A. Abolghasemi, E. Kanoulas, and S. Verberne. 2023a. CLosER: Conversational legal longformer with expertise-aware passage response ranker for long contexts. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (CIKM ’23). ACM, New York, NY, 25–35. DOI: .Google ScholarDigital Library
- A. Askari, S. Verberne, A. Abolghasemi, W. Kraaij, and G. Pasi. 2023b. Retrieval for extremely long queries and documents with RPRS: A highly efficient and effective transformer-based re-ranker. ACM Trans. Inf. Syst. 42, 5, 1–32. DOI: .Google ScholarDigital Library
- J. A. Aslam, E. Yilmaz, and V. Pavlu. 2005. The maximum entropy method for analyzing retrieval measures. In R. Baeza-Yates, N. Ziviani, G. Marchionini, A. Moffat, and J. Tait (Eds.), Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’05). ACM, New York, NY, 27–34. DOI: .Google ScholarDigital Library
- J. A. Aslam, F. Diaz, M. Ekstrand-Abueg, R. McCreadie, V. Pavlu, and T. Sakai. February. 2016. TREC 2015 temporal summarization track overview. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Fourth Text REtrieval Conference (TREC 2015), Special Publication 500-319. National Institute of Standards and Technology.Google Scholar
- G. Aslanyan and U. Porwal. 2019. Position bias estimation for unbiased learning-to-rank in ecommerce search. In N. Brisaboa and S. Puglisi (Eds.), String Processing and Information Retrieval (SPIRE ’19), Vol. 11811: Lecture Notes in Computer Science. Springer, Cham, 47–64. DOI: .Google ScholarDigital Library
- G. Aslanyan, A. Mandal, P. S. Kumar, A. Jaiswal, and M. R. Kannadasan. 2020. Personalized ranking in ecommerce search. In Companion Proceedings of the Web Conference 2020 (WWW ’20). ACM, New York, NY, 96–97. DOI: .Google ScholarDigital Library
- Association for Computing Machinery. August. 2020. Artifact Review and Badging. Retrieved from https://www.acm.org/publications/policies/artifact-review-and-badging-current.Google Scholar
- S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. 2007. DBpedia: A nucleus for a web of open data. In Proceedings of the 6th International Semantic Web Conference, Busan, Korea, Vol. 4825: Lecture Notes in Computer Science. Springer, Berlin, 722–735. DOI: .Google ScholarDigital Library
- A. Ayanso and R. Yoogalingam. 2009. Profiling retail web site functionalities and conversion rates: A cluster analysis. Int. J. Electron. Commer. 14, 1, 79–114. DOI: .Google ScholarDigital Library
- L. Azzopardi and V. Vinay. 2008. Retrievability: An evaluation measure for higher order information access tasks. In Proceedings of the 17th ACM Conference on Information and Knowledge Management (CIKM ’08). ACM, New York, NY, 561–570. DOI: .Google ScholarDigital Library
- L. Azzopardi, K. Järvelin, J. Kamps, and M. D. Smucker. January. 2011. Report on the SIGIR 2010 workshop on the simulation of interaction. ACM SIGIR Forum 44, 2, 35–47. DOI: .Google ScholarDigital Library
- L. Azzopardi, M. Dubiel, M. Halvey, and J. Dalton. 2018. Conceptualizing agent–human interactions during the conversational search process. In SIGIR 2nd International Workshop on Conversational Approaches to Information Retrieval (CAIR ’18).Google Scholar
- O. Babko-Malaya. 2008. Annotation of nuggets and relevance in GALE distillation evaluation. In Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC ’08), Marrakech, Morocco. European Language Resources Association. http://lrec-conf.org/proceedings/lrec2008/pdf/909˙paper.pdf.Google Scholar
- O. Babko-Malaya, D. Hunter, C. Fournelle, and J. White. 2010. Evaluation of document citations in phase 2 GALE distillation. In Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC ’10), Valletta, Malta. European Language Resources Association. http://www.lrec-conf.org/proceedings/lrec2010/pdf/108˙Paper.pdf.Google Scholar
- C. A. Bachrach and T. Charen. September. 1978. Selection of MEDLINE contents, the development of its thesaurus, and the indexing process. Med. Inform. 3, 3, 237–254. DOI: .Google ScholarCross Ref
- Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach, L. Katzir, N. Koenigstein, N. Nice, and U. Paquet. 2014. Speeding up the Xbox recommender system using a Euclidean transformation for inner-product spaces. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14). ACM, New York, NY, 257–264. DOI: .Google ScholarDigital Library
- R. Baeza-Yates. 2015. Incremental sampling of query logs. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 1093–1096. DOI: .Google ScholarDigital Library
- R. Baeza-Yates. 2017. Semantic query understanding. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 1357. DOI: .Google ScholarDigital Library
- R. Baeza-Yates. June. 2018a. Bias on the web. Commun. ACM 61, 6, 54–61. DOI: .Google ScholarDigital Library
- R. Baeza-Yates. 2018b. Big, small or right data: Which is the proper focus. KD Nuggets. https://www.kdnuggets.com/2018/10/big-small-right-data.html.Google Scholar
- R. Baeza-Yates. September. 2020a. Bias in search and recommender systems (keynote). In R. L. T. Santos, L. B. Marinho, E. M. Daly, L. Chen, K. Falk, N. Koenigstein, and E. S. de Moura (Eds.), 14th ACM Conference on Recommender Systems, Virtual Event, Brazil (RecSys ’20). ACM, New York, NY, 2. DOI: .Google ScholarDigital Library
- R. Baeza-Yates. 2020b. Personalization, bias and privacy. In Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization (UMAP ’20) Adjunct. ACM, New York, NY, 311–312. DOI: .Google ScholarDigital Library
- R. Baeza-Yates and C. Castillo. 2006. Relationship between web links and trade. In Proceedings of the 15th International Conference on World Wide Web (WWW ’06 ). ACM, New York, NY, 927–928. DOI: .Google ScholarDigital Library
- R. Baeza-Yates and G. Delnevo. December. 2022. Exploration trade-offs in web recommender systems. In 2022 IEEE International Conference on Big Data (Big Data). Osaka, Japan. IEEE, 1–9. DOI: .Google ScholarCross Ref
- R. Baeza-Yates and Y. Maarek. 2012. Usage data in web search: Benefits and limitations. In A. Ailamaki and S. Bowers (Eds.), Scientific and Statistical Database Management (SSDBM ’12), Vol. 7338: Lecture Notes in Computer Science. Springer, Berlin, 495–506. DOI: .Google ScholarCross Ref
- R. Baeza-Yates and L. Murgai. December. 2023. Bias and the Web. In Introduction to Digital Humanism. Springer, Cham, 435–462. DOI: .Google ScholarCross Ref
- R. Baeza-Yates and B. Ribeiro-Neto. 2011. Modern Information Retrieval: The Concepts and Technologies Behind Search (2nd. ed.). Addison Wesley, Cambridge, UK.Google Scholar
- R. Baeza-Yates and D. Saez-Trumper. 2015. Wisdom of the crowd or wisdom of a few? An analysis of users’ content generation. In Proceedings of the 26th ACM Conference on Hypertext & Social Media (HT ’15). ACM, New York, NY, 69–74. DOI: .Google ScholarDigital Library
- R. Baeza-Yates, C. Castillo, and V. López. 2005. Characteristics of the web of Spain. Cybermetrics 9, 1. https://hdl.handle.net/10261/174404.Google Scholar
- R. Baeza-Yates, A. Gionis, F. P. Junqueira, V. Murdock, V. Plachouras, and F. Silvestri. October. 2008a. Design trade-offs for search engine caching. ACM Trans. Web 2, 4, 1–28. DOI: .Google ScholarDigital Library
- R. Baeza-Yates, A. Pereira, and N. Ziviani. 2008b. Genealogical trees on the Web: A search engine user perspective. In Proceedings of the 17th International Conference on World Wide Web (WWW ’08). New York, NY, 367–376. DOI: .Google ScholarDigital Library
- R. Baeza-Yates, P. Boldi, and F. Chierichetti. 2015. Essential web pages are easy to find. In Proceedings of the 24th International Conference on World Wide Web (WWW ’15). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 97–107. DOI: .Google ScholarDigital Library
- M. Bagdouri, D. W. Oard, and V. Castelli. 2014. CLIR for informal content in Arabic forum posts. In Proceedings of the 23rd ACM International Conference on Information and Knowledge Management (CIKM ’14). ACM, New York, NY, 1811–1814. DOI: .Google ScholarDigital Library
- D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473. DOI: .Google ScholarCross Ref
- Y. Bai, X. Li, G. Wang, C. Zhang, L. Shang, J. Xu, Z. Wang, F. Wang, and Q. Liu. 2020. SparTerm: Learning term-based sparse representation for fast text retrieval. arXiv:2010.00768. DOI: .Google ScholarCross Ref
- M. Baker. May. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454. DOI: .Google ScholarCross Ref
- M. Balabanović and Y. Shoham. March. 1997. Fab: Content-based, collaborative recommendation. Commun. ACM 40, 3, 66–72. DOI: .Google ScholarDigital Library
- T. Baldwin, P. Cook, M. Lui, A. MacKinlay, and L. Wang. 2013. How noisy social media text, how diffrnt social media sources? In Proceedings of the 6th International Joint Conference on Natural Language Processing, Nagoya, Japan. Asian Federation of Natural Language Processing, 356–364.Google Scholar
- L. Ballesteros and M. Sanderson. 2003. Addressing the lack of direct translation resources for cross-language retrieval. In Proceedings of the 12th International Conference on Information and Knowledge Management, New Orleans, Louisiana. ACM, New York, NY, 147–152. DOI: .Google ScholarDigital Library
- K. Balog. 2021. Conversational AI from an information retrieval perspective: Remaining challenges and a case for user simulation. In Proceedings of the 2nd International Conference on Design of Experimental Search & Information REtrieval Systems (DESIRES ’21). CEUR-WS.org, 80–90.Google Scholar
- D. Bamber. 1975. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. J. Math. Psychol. 12, 4, 387–415. DOI: .Google ScholarCross Ref
- R. Bambini, P. Cremonesi, and R. Turrin. 2011. A recommender system for an IPTV service provider: A real large-scale production environment. In Recommender Systems Handbook. Springer, Boston, MA, 299–331. DOI: .Google ScholarCross Ref
- D. Banks, P. Over, and N.-F. Zhang. May. 1999. Blind men and elephants: Six approaches to TREC data. Inf. Retr. 1, 1–2, 7–34. DOI: .Google ScholarDigital Library
- D. Barreau and B. A. Nardi. 1995. Finding and reminding: File organization from the desktop. ACM SIGCHI Bull. 27, 3, 39–43. DOI: .Google ScholarDigital Library
- D. K. Barreau. 1995. Context as a factor in personal information management systems. J. Am. Soc. Inf. Sci. 46, 5, 327–339. DOI: .Google ScholarCross Ref
- C. L. Barry. 1994. User-defined relevance criteria: An exploratory study. J. Am. Soc. Inf. Sci. 45, 3, 149–159. DOI: .Google ScholarCross Ref
- M. Barthet, G. Fazekas, and M. Sandler. 2013. Music emotion recognition: From content- to context-based models. In From Sounds to Music and Emotions, Vol. 7900: Lecture Notes in Computer Science. Springer, Berlin, 228–252. DOI: .Google ScholarCross Ref
- Z. Bar-Yossef and N. Kraus. 2011. Context-sensitive query auto-completion. In Proceedings of the 20th International Conference on World wide web. ACM, New York, NY, 107–116. DOI: .Google ScholarDigital Library
- J. P. Bascur, S. Verberne, N. J. van Eck, and L. Waltman. 2023. Academic information retrieval using citation clusters: In-depth evaluation based on systematic reviews. Scientometrics 128, 5, 2895–2921. DOI: .Google ScholarDigital Library
- M. Bashir, J. Anderton, J. Wu, M. Ekstrand-Abueg, P. B. Golbus, V. Pavlu, and J. A. Aslam. February. 2013. Northeastern University Runs at the TREC12 Crowdsourcing Track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Twenty-First Text REtrieval Conference (TREC 2012). National Institute of Standards and Technology, Gaithersburg, MD. https://trec.nist.gov/pubs/trec21/papers/NEU.crowd.final.pdf.Google Scholar
- H. Bast and B. Buchhold. 2017. QLever: A query engine for efficient SPARQL+text search. In Proceedings of the 2017 ACM Conference on Information and Knowledge Management (CIKM ’17). ACM, New York, NY, 647–656. DOI: .Google ScholarDigital Library
- H. Bast and E. Haussmann. 2013. Open information extraction via contextual sentence decomposition. In Proceedings of the 2013 IEEE Seventh International Conference on Semantic Computing (ICSC ’13). IEEE, 154–159. DOI: .Google ScholarDigital Library
- H. Bast and E. Haussmann. 2015. More accurate question answering on Freebase. In Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM ’15). ACM, New York, NY, 1431–1440. DOI: .Google ScholarDigital Library
- H. Bast and I. Weber. 2006. Type less, find more: Fast autocompletion search with a succinct index. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 364–371. DOI: .Google ScholarDigital Library
- H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann. 2014. Easy access to the freebase dataset. In Proceedings of the 23rd International Conference on World Wide web (Companion Volume) (WWW ’14). ACM, New York, NY, 95–98. DOI: .Google ScholarDigital Library
- H. Bast, M. Hertel, and N. Prange. 2022a. ELEVANT: A fully automatic fine-grained entity linking evaluation and analysis tool. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Association for Computational Linguistics, 72–79. DOI: .Google ScholarCross Ref
- H. Bast, J. Kalmbach, T. Klumpp, F. Kramer, and N. Schnelle. 2022b. Efficient and effective SPARQL autocompletion on very large knowledge graphs. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (CIKM ’22). ACM, New York, NY, 2893–2902. DOI: .Google ScholarDigital Library
- H. Bast, J. Kalmbach, T. Klumpp, and C. Korzen. 2024. KG Chapter Supplemental Material. https://qlever.cs.uni-freiburg.de/ir-book.Google Scholar
- M. T. Bastos, D. Mercea, and A. Charpentier. 2015. Tents, tweets, and events: The interplay between ongoing protests and social media. J. Commun. 65, 2, 320–350. DOI: .Google ScholarCross Ref
- C. Bauer and E. Zangerle. 2019. Leveraging multi-method evaluation for multi-stakeholder settings. arXiv:2001.04348. DOI: .Google ScholarCross Ref
- C. Bauer, B. Carterette, N. Ferro, N. Fuhr, J. Beel, T. Breuer, C. L. A. Clarke, A. Crescenzi, G. Demartini, G. M. Di Nunzio, L. Dietz, G. Faggioli, B. Ferwerda, M. Fröbe, M. Hagen, A. Hanbury, C. Hauff, D. Jannach, N. Kando, E. Kanoulas, B. P. Knijnenburg, U. Kruschwitz, M. Li, M. Maistro, L. Michiels, A. Papenmeier, M. Potthast, P. Rosso, A. Said, P. Schaer, C. Seifert, D. Spina, B. Stein, N. Tintarev, J. Urbano, H. Wachsmuth, M. C. Willemsen, and J. Zobel. June. 2023a. Report on the Dagstuhl seminar on frontiers of information access experimentation for research and education. SIGIR Forum 57, 1, 1–28. DOI: .Google ScholarDigital Library
- C. Bauer, B. A. Carterette, N. Ferro, N. Fuhr, and G. Faggioli (Eds.). 2023b. Frontiers of Information Access Experimentation for Research and Education (Dagstuhl Seminar 23031). Dagstuhl Rep. 13, 1, 68–154. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Germany. DOI: .Google ScholarCross Ref
- S. L. Baxter, L. Lander, B. Clay, J. Bell, K. Hansen, A. Walker, and M. Tai-Seale. January. 2022. Comparing the use of DynaMed and UpToDate by physician trainees in clinical decision-making: A randomized crossover trial. Appl. Clin. Inform. 13, 1, 139–147. DOI: .Google ScholarCross Ref
- J. Beel and S. Langer. 2015. A comparison of offline evaluations, online evaluations, and user studies in the context of research-paper recommender systems. In Research and Advanced Technology for Digital Libraries: Proceedings of the 19th International Conference on Theory and Practice of Digital Libraries (TPDL ’15), Poznañ, Poland, September 14–18, 2015, Vol. 9316: Lecture Notes in Computer Science. Springer, Cham, 153–168. DOI: .Google ScholarCross Ref
- J. Beel, M. Genzmehr, S. Langer, A. Nürnberger, and B. Gipp. 2013a. A comparative analysis of offline and online evaluations and discussion of research paper recommender system evaluation. In Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation. ACM, New York, NY, 7–14. DOI: .Google ScholarDigital Library
- J. Beel, S. Langer, M. Genzmehr, B. Gipp, C. Breitinger, and A. Nürnberger. 2013b. Research paper recommender system evaluation: A quantitative literature survey. In Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation (RepSys ’13). ACM, New York, NY, 15–22. DOI: .Google ScholarDigital Library
- J. Beel, B. Gipp, S. Langer, and C. Breitinger. 2016. Paper recommender systems: A literature survey. Int. J. Digit. Libr. 17, 305–338. DOI: .Google ScholarDigital Library
- R. Bekkerman. 2004. Automatic Categorization of Email into Folders: Benchmark Experiments on Enron and Sri Corpora. Technical Report 218. Computer Science Department Faculty Publication Series, University of Massachusetts Amherst.Google Scholar
- N. J. Belkin and W. B. Croft. 1992. Information filtering and information retrieval: Two sides of the same coin? Commun. ACM 35, 12, 29–38. DOI: .Google ScholarDigital Library
- N. J. Belkin, H. M. Brooks, and P. J. Daniels. 1987. Knowledge elicitation using discourse analysis. Int. J. Man-Mach. Stud. 27, 2, 127–144. DOI: .Google ScholarDigital Library
- N. J. Belkin, C. Cool, A. Stein, and U. Thiel. 1995. Cases, scripts, and information-seeking strategies: On the design of interactive information retrieval systems. Expert Syst. Appl. 9, 3, 379–395. DOI: .Google ScholarCross Ref
- A. Bell, P. S. Kumar, and D. Miranda. 2018. The title says it all: A title term weighting strategy for ecommerce ranking. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, 2233–2241. DOI: .Google ScholarDigital Library
- C. G. Bell. January. 2001. A personal digital store. Commun. ACM 44, 1, 86–91. DOI: .Google ScholarDigital Library
- D. E. Bell. 2005. Looking back at the Bell–La Padula model. In Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC ’05). IEEE, 15–351. DOI: .Google ScholarDigital Library
- D. E. Bell and L. J. LaPadula. 1973. Secure Computer Systems: Mathematical Foundations. Technical Report. MITRE Corporation.Google Scholar
- D. E. Bell and L. J. LaPadula. 1976. Secure Computer Systems: Unified Exposition and Multics Interpretation. Technical Report. MITRE Corporation.Google Scholar
- A. Bellogín and A. Said. 2021. Improving accountability in recommender systems research through reproducibility. User Model. User-Adapt. Interact. 31, 941–977. DOI: .Google ScholarDigital Library
- A. Bellogín, P. Castells, and I. Cantador. 2011. Precision-oriented evaluation of recommender systems: An algorithmic comparison. In Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys ’11). ACM, New York, NY, 333–336. DOI: .Google ScholarDigital Library
- A. Bellogín, P. Castells, and I. Cantador. December. 2017. Statistical biases in information retrieval metrics for recommender systems. Inf. Retr. J. 20, 6, 606–634. DOI: .Google ScholarDigital Library
- I. Beltagy, K. Lo, and A. Cohan. 2019. SciBERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China. Association for Computational Linguistics, 3615–3620. DOI: .Google ScholarCross Ref
- I. Beltagy, M. E. Peters, and A. Cohan. 2020. Longformer: The long-document transformer. arXiv:2004.05150. DOI: .Google ScholarCross Ref
- M. Bendersky, W. B. Croft, and Y. Diao. 2011. Quality-biased ranking of web documents. In Proceedings of the Fourth ACM International Conference on Web Search and Data Min (WSDM ’11). ACM, New York, NY, 95–104. DOI: .Google ScholarDigital Library
- E. Benetos and S. Dixon. 2013. Multiple-instrument polyphonic music transcription using a temporally constrained shift-invariant model. J. Acoust. Soc. Am. 133, 3, 1727–1741. DOI: .Google ScholarCross Ref
- E. Benetos and T. Weyde. 2015. An efficient temporally-constrained probabilistic model for multiple-instrument music transcription. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR). International Society for Music Information, 701–707. DOI: .Google ScholarCross Ref
- E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, and A. P. Klapuri. 2013. Automatic music transcription: Challenges and future directions. J. Intell. Inf. Syst. 41, 3, 407–434. DOI: .Google ScholarDigital Library
- E. Benetos, S. Dixon, and Z. Duan. 2018. Automatic music transcription: An overview. IEEE Signal Process. Mag. 36, 1, 20–30. DOI: .Google ScholarCross Ref
- Y. Benjamini and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 1, 289–300. DOI: .Google ScholarCross Ref
- J. Bennett, C. Elkan, B. Liu, P. Smyth, and D. Tikk. 2007. KDD Cup and workshop 2007. SIGKDD Explor. 9, 2, 51–52. DOI: .Google ScholarDigital Library
- K. Berberich, S. J. Bedathur, O. Alonso, and G. Weikum. 2010. A language modeling approach for temporal information needs. In Advances in Information Retrieval, 32nd European Conference on IR Research, ECIR, Vol. 5993: Lecture Notes in Computer Science. Springer, Berlin, 13–25. DOI: .Google ScholarCross Ref
- E. Berger. 2023. Grounding LLMs.Google Scholar
- T. Berners-Lee, J. Hendler, and O. Lassila. 2001. The semantic web. A new form of web content that is meaningful to computers will unleash a revolution of new possibilities. Sci. Am. 284, 5, 1–5.Google Scholar
- E. V. Bernstam, J. R. Herskovic, Y. Aphinyanaphongs, C. F. Aliferis, M. G. Sriram, and W. R. Hersh. 2006. Using citation data to improve retrieval from MEDLINE. J. Am. Med. Inform. Assoc. 13, 1, 96–105. DOI: .Google ScholarCross Ref
- T. Bertin-Mahieux and D. P. W. Ellis. 2012. Large-scale cover song recognition using the 2D Fourier Transform magnitude. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR ’12). International Society for Music Information Retrieval, 241–246.Google Scholar
- T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and P. Lamere. 2011. The million song dataset. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR ’11). International Society for Music Information Retrieval, 628–634.Google Scholar
- E. Bertino, G. Ghinita, and A. Kamra. 2010. Access control for databases: Concepts and systems. Found. Trends Databases 3, 1, 1–148. DOI: .Google ScholarDigital Library
- S. Beveridge and D. Knox. 2018. Popular music and the role of vocal melody in perceived emotion. Psychol. Music 46, 3, 411–423. DOI: .Google ScholarCross Ref
- S. Bhatia, D. Majumdar, and P. Mitra. 2011. Query suggestions in the absence of query logs. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 795–804. DOI: .Google ScholarDigital Library
- P. Bhattacharya, P. Goyal, and S. Sarkar. 2016a. Query translation for cross-language information retrieval using multilingual word clusters. In Proceedings of the Workshop on South Southeast Asian Natural Language Processing (WSSANLP), Osaka, Japan. The COLING 2016 Organizing Committee, 152–162.Google Scholar
- P. Bhattacharya, P. Goyal, and S. Sarkar. 2016b. Using word embeddings for query translation for Hindi to English cross language information retrieval. Comput. Sist. 20, 3, 435–447. DOI: .Google ScholarCross Ref
- G. Bhutada, March. 2021. Visualizing the Most Used Languages on the Internet. Retrieved from https://www.visualcapitalist.com/the-most-used-languages-on-the-internet/.Google Scholar
- B. Bi, M. Shokouhi, M. Kosinski, and T. Graepel. 2013. Inferring the demographics of search users: Social data meets search queries. In Proceedings of the 22nd International Conference on World Wide Web (WWW ’13). ACM, New York, NY, 131–140. DOI: .Google ScholarDigital Library
- T. Bi, L. Yao, B. Yang, H. Zhang, W. Luo, and B. Chen. 2020. Constraint translation candidates: A bridge between neural query translation and cross-lingual information retrieval. arXiv:2010.13658. DOI: .Google ScholarCross Ref
- F. Bianchi, J. Tagliabue, B. Yu, L. Bigon, and C. Greco. 2020. Fantastic embeddings and how to align them: Zero-shot inference in a multi-shop scenario. DOI: .Google ScholarCross Ref
- F. Bianchi, J. Tagliabue, and B. Yu. 2021. Query2Prod2Vec: Grounded word embeddings for eCommerce. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers. Association for Computational Linguistics, 154–162. DOI: .Google ScholarCross Ref
- A. J. Biega, R. Saha Roy, and G. Weikum. 2017. Privacy through solidarity: A user-utility-preserving framework to counter profiling. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 675–684. DOI: .Google ScholarDigital Library
- A. J. Biega, K. P. Gummadi, and G. Weikum. 2018. Equity of attention: Amortizing individual fairness in rankings. In K. Collins-Thompson, Q. Mei, B. Davison, Y. Liu, and E. Yilmaz (Eds.), The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 405–414. DOI: .Google ScholarDigital Library
- A. J. Biega, F. Diaz, M. D. Ekstrand, and S. Kohlmeier. February. 2020a. Overview of the TREC 2019 fair ranking track. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Eighth Text REtrieval Conference Proceedings (TREC 2019). National Institute of Standards and Technology.Google Scholar
- A. J. Biega, P. Potash, H. Daumé, F. Diaz, and M. Finck. 2020b. Operationalizing the legal principle of data minimization for personalization. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM. New York, NY, 399–408. DOI: .Google ScholarDigital Library
- A. J. Biega, F. Diaz, M. D. Ekstrand, S. Feldman, and S. Kohlmeier. February. 2021. Overview of the TREC 2020 fair ranking track. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Ninth Text REtrieval Conference Proceedings (TREC 2020). National Institute of Standards and Technology.Google Scholar
- J. Biega, I. Mele, and G. Weikum. 2014. Probabilistic prediction of privacy risks in user search histories. In Proceedings of the 1st International Workshop on Privacy and Security of Big Data (PSBD ’14). ACM, New York, NY, 29–36. DOI: .Google ScholarDigital Library
- D. Billsus and M. J. Pazzani. 1998. Learning collaborative information filters. In Proceedings of the 15th International Conference on Machine Learning (ICML ’98). Morgan Kaufmann Publishers Inc, San Francisco, CA, 46–54.Google Scholar
- A. Birrell, S. Perl, M. Schroeder, and T. Wobber. 1997. Pachyderm: A Web-Based Application for Email and News. Retrieved from https://birrell.org/andrew/talks/pachyderm.pdf.Google Scholar
- Y. Bisk, R. Zellers, R. Le Bras, J. Gao, and Y. Choi. 2020. PIQA: Reasoning about physical commonsense in natural language. In P. Stone, F. Rossi, V. Conitzer, and F. Sha (Eds.), Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20), Vol. 34. AAAI Press, Palo Alto, CA, 7432–7439. DOI: .Google ScholarCross Ref
- R. M. Bittner and J. J. Bosch. 2019. Generalized metrics for single-F0 estimation evaluation. In A. Flexer, G. Peeters, J. Urbano and A. Volk (Eds.), Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands. International Society for Music Information Retrieval, 738–745.Google Scholar
- R. M. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Cannam, and J. P. Bello. 2014. MedleyDB: A multitrack dataset for annotation-intensive MIR research. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Taipei, Taiwan, International Society for Music Information Retrieval, 155–160.Google Scholar
- R. M. Bittner, B. McFee, J. Salamon, P. Li, and J. P. Bello. 2017. Deep salience representations for F0 tracking in polyphonic music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Suzhou, China. International Society for Music Information Retrieval, 63–70.Google Scholar
- R. M. Bittner, B. McFee, and J. P. Bello. 2018. Multitask learning for fundamental frequency estimation in music. DOI: .Google ScholarCross Ref
- L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. A. Heroux, L. Kaufman, and A. Lumsdaine. 2002. An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw. 28, 2, 135–151. DOI: .Google ScholarDigital Library
- T. Blake, C. Nosko, and S. Tadelis. 2016. Returns to consumer search: Evidence from eBay. In Proceedings of the 2016 ACM Conference on Economics and Computation (EC ’16). ACM, New York, NY, 531–545. DOI: .Google ScholarDigital Library
- D. M. Blei, A. Y. Ng, and M. I. Jordan. March. 2003. Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022.Google ScholarCross Ref
- S. Bloehdorn, O. Görlitz, S. Schenk, and M. Völkel. 2006. TagFS—Tag semantics for hierarchical file systems. In Proceedings of the 6th International Conference on Knowledge Management.Google Scholar
- R. Boardman and M. A. Sasse. 2004. “Stuff goes into the computer and doesn’t come out”: A cross-tool study of personal information management. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’04). ACM, New York, NY, 583–590. DOI: .Google ScholarDigital Library
- S. Böck and M. Schedl. 2011. Enhanced beat tracking with context-aware neural networks. In 14th International Conference on Digital Audio Effects (DAFx), Paris, France, 135–139.Google Scholar
- S. Böck, F. Krebs, and G. Widmer. 2014. A multi-model approach to beat tracking considering heterogeneous music styles. In 15th International Society for Music Information Retrieval Conference (ISMIR), Taipei, Taiwan. International Society for Music Information Retrieval, 603–608.Google Scholar
- S. Böck, F. Krebs, and G. Widmer. 2015. Accurate tempo estimation based on recurrent neural networks and resonating comb filters. In International Society for Music Information Retrieval Conference (ISMIR). International Society for Music Information Retrieval, 625–631.Google Scholar
- S. Böck, F. Krebs, and G. Widmer. 2016. Joint beat and downbeat tracking with recurrent neural networks. In 17th International Society for Music Information Retrieval Conference, New York, NY. International Society for Music Information Retrieval, 255–261.Google Scholar
- S. Böck, M. E. Davies, and P. Knees. 2019. Multi-task learning of tempo and beat: Learning one to improve the other. In A. Flexer, G. Peeters, J. Urbano, and A. Volk (Eds.), Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR). International Society for Music Information Retrieval, 486–493. DOI: .Google ScholarCross Ref
- D. Bogdanov, M. Haro, F. Fuhrmann, A. Xambó, E. Gómez, and P. Herrera. 2013. Semantic audio content-based music recommendation and visualization based on user preference examples. Inf. Process. Manag. 49, 1, 13–33. DOI: .Google ScholarDigital Library
- D. Bogdanov, M. Won, P. Tovstogan, A. Porter, and X. Serra. 2019. The MTG-Jamendo dataset for automatic music tagging. In Machine Learning for Music Discovery Workshop, International Conference on Machine Learning (ICML ’19), Long Beach, CA. https://hdl.handle.net/10230/42015.Google Scholar
- K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. 2008. Freebase: A collaboratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD ’08). ACM, New York, NY, 1247–1250. DOI: .Google ScholarDigital Library
- P. Bollmann. 1984. Two axioms for evaluation measures in information retrieval. In C. J. van Rijsbergen (Ed.), Proceedings of the Third Joint BCS and ACM Symposium on Research and Development in Information Retrieval. Cambridge University Press, 233–245.Google ScholarDigital Library
- P. Bollmann and V. S. Cherniavsky. 1980. Measurement-theoretical investigation of the MZ-metric. In C. J. van Rijsbergen (Ed.), Proceedings of the 3rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’80). Butterworth & Co., UK, 256–267.Google Scholar
- P. Bollmann and V. S. Cherniavsky. 1981. Restricted evaluation in information retrieval. In C. J. Crouch, W. S. Cooper, and J. Herr (Eds.), Proceedings of the 4th Annual International ACM SIGIR Conference on Information Storage and Retrieval: Theoretical Issues in Information Retrieval (SIGIR ’81). ACM, New York, NY, 15–21. DOI: .Google ScholarDigital Library
- H. Bonab, S. M. Sarwar, and J. Allan. 2020. Training effective neural CLIR by bridging the translation gap. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20), Xi’an, China. ACM, New York, NY, 9–18. DOI: .Google ScholarDigital Library
- A. Bondarenko, M. Fröbe, J. Kiesel, F. Schlatt, V. Barriere, B. Ravenet, L. Hemamou, S. Luck, J. H. Reimer, B. Stein, M. Potthast, and M. Hagen. 2023. Overview of Touché 2023: Argument and causal retrieval. In A. Arampatzis, E. Kanoulas, T. Tsikrika, S. Vrochidis, A. Giachanou, D. Li, A. Aliannejadi, M. Vlachos, G. Faggioli, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the Fourteenth International Conference of the CLEF Association (CLEF ’23), Vol. 14163: Lecture Notes in Computer Science. Springer, Heidelberg, 507–530. DOI: .Google ScholarDigital Library
- C. E. Bonferroni. 1936. Teoria Statistica Delle Classi e Calcolo Delle Probabilità. Number 8 in Pubblicazioni del R. Istituto Superiore di Scienze Economiche e Commerciali di Firenze. Libreria internazionale Seeber, Firenze, Italia.Google Scholar
- L. H. Bonifacio, I. Campiotti, V. Jeronymo, R. Lotufo, and R. Nogueira. 2021. mMARCO: A multilingual version of the MS MARCO passage ranking dataset. arXiv:2108.13897. DOI: .Google ScholarCross Ref
- P. Borlund. August. 2003. The concept of relevance in IR. J. Am. Soc. Inf. Sci. Technol. 54, 10, 913–925. DOI: .Google ScholarDigital Library
- P. Borlund. 2013. Interactive information retrieval: An introduction. J. Inf. Sci. Theory Pract. 1, 3, 12–32. DOI: .Google ScholarCross Ref
- L. Borodistky. 2017. How language shapes the way we think. https://www.youtube.com/watch?v=RKK7wGAYP6k.Google Scholar
- L. Boroditsky and A. Gaby. 2010. Remembrances of times east: Absolute spatial representations of time in an Australian Aboriginal community. Psychol. Sci. 21, 11, 1635–1639. DOI: .Google ScholarCross Ref
- L. Boroditsky, L. A. Schmidt, and W. Phillips. 2003. Sex, syntax, and semantics. In D. Gentner and S. Goldin-Meadow (Eds.), Language in Mind: Advances in the Study of Language and Thought, Vol. 22. MIT Press, 61–79. DOI: .Google ScholarCross Ref
- C. Bösch, P. Hartel, W. Jonker, and A. Peter. 2015. A survey of provably secure searchable encryption. ACM Comput. Surv. 47, 2, 1–51. DOI: .Google ScholarDigital Library
- J. J. Bosch and E. Gómez. January. 2014. Melody extraction in symphonic classical music: A comparative study of mutual agreement between humans and algorithms. In Proceedings of the 9th Conference on Interdisciplinary Musicology—CIM14. (December 4, 2014), Berlin.Google Scholar
- J. J. Bosch, R. Marxer, and E. Gómez. 2016. Evaluation and combination of pitch estimation methods for melody extraction in symphonic classical music. J. New Music Res. 45, 2, 101–117. DOI: .Google ScholarCross Ref
- E. Boschee, J. Barry, J. Billa, M. Freedman, T. Gowda, C. Lignos, C. Palen-Michel, M. Pust, B. K. Khonglah, S. Madikeri, J. May, and S. Miller. July. 2019. SARAL: A low-resource cross-lingual domain-focused information retrieval system for effective rapid document triage. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Florence, Italy. Association for Computational Linguistics, 19–24. DOI: .Google ScholarCross Ref
- A. Boteanu, A. Kiezun, and S. Artzi. 2019. Synonym expansion for large shopping taxonomies. In Automated Knowledge Base Construction. DOI: .Google ScholarCross Ref
- K. K. Bowden, J. Wu, W. Cui, J. Juraska, V. Harrison, B. Schwarzmann, N. Santer, S. Whittaker, and M. Walker. 2019. Entertaining and opinionated but too controlling: A large-scale user study of an open domain Alexa prize system. In Proceedings of the 1st International Conference on Conversational User Interfaces (CUI ’19). ACM, New York, NY, 1–10. DOI: .Google ScholarDigital Library
- M. Bowman, C. Dharap, M. Baruah, B. Camargo, and S. Potti. 1994. A file system for information management. In Proceedings of the ISMM International Conference on Intelligent Information Management Systems. ISMM/Acta Press, 66–71.Google Scholar
- G. Bradley-Ridout, E. Nekolaichuk, T. Jamieson, C. Jones, N. Morson, R. Chuang, and E. Springall. July. 2021. UpToDate versus DynaMed: A cross-sectional study comparing the speed and accuracy of two point-of-care information tools. J. Med. Libr. Assoc. 109, 3, 382–387. DOI: .Google ScholarCross Ref
- A. Brandsen, K. Lambers, S. Verberne, and M. Wansleeben. 2019. User requirement solicitation for an information retrieval system applied to Dutch grey literature in the archaeology domain. J. Comput. Appl. Archaeol. 2, 1, 21–30. DOI: .Google ScholarCross Ref
- A. Brandsen, S. Verberne, K. Lambers, and M. Wansleeben. 2021a. Usability evaluation for online professional search in the Dutch archaeology domain. arXiv:2103.04437. DOI: .Google ScholarCross Ref
- A. Brandsen, S. Verberne, K. Lambers, and M. Wansleeben. November. 2021b. Can BERT dig it? Named entity recognition for information retrieval in the archaeology domain. J. Comput. Cult. Herit. 15, 3, 1–18. DOI: .Google ScholarDigital Library
- M. Braschler. 2001. CLEF 2000—Overview of Results. In C. Peters (Ed.), Cross-Language Information Retrieval and Evaluation (CLEF ’00), Vol. 2069: Lecture Notes in Computer Science. Springer, Berlin, 89–101. DOI: .Google ScholarCross Ref
- M. Braschler. 2002. CLEF 2001—Overview of results. In C. Peters, M. Braschler, J. Gonzalo, and M. Kluck (Eds.), Evaluation of Cross-Language Information Retrieval Systems (CLEF ’01), Vol. 2406: Lecture Notes in Computer Science. Springer, Berlin, 9–26. DOI: .Google ScholarCross Ref
- M. Braschler. 2003. CLEF 2002—Overview of results. In C. Peters, M. Braschler, J. Gonzalo, and M. Kluck (Eds.), Advances in Cross-Language Information Retrieval (CLEF ’02), Vol. 2785: Lecture Notes in Computer Science. Springer, Berlin, 9–27. DOI: .Google ScholarCross Ref
- M. Braschler. 2004a. CLEF 2003—Overview of results. In C. Peters, M. Braschler, J. Gonzalo, and M. Kluck (Eds.), Comparative Evaluation of Multilingual Information Access Systems: Fourth Workshop of the Cross-Language Evaluation Forum (CLEF ’03) Revised Selected Papers, Vol. 3237: Lecture Notes in Computer Science. Springer, Berlin, 44–63. DOI: .Google ScholarCross Ref
- M. Braschler. January. 2004b. Combination approaches for multilingual text retrieval. Inf. Retr. 7, 183–204. DOI: .Google ScholarDigital Library
- M. Braschler, G. M. Di Nunzio, N. Ferro, and C. Peters. 2005. CLEF 2004: Ad hoc track overview and results analysis. In C. Peters, P. Clough, J. Gonzalo, G. J. F. Jones, M. Kluck, and B. Magnini (Eds.), Multilingual Information Access for Text, Speech and Images: Fifth Workshop of the Cross-Language Evaluation Forum (CLEF ’04) Revised Selected Papers, Vol. 3491: Lecture Notes in Computer Science. Springer, Berlin, 10–26. DOI: .Google ScholarCross Ref
- P. Braslavski, D. Savenkov, E. Agichtein, and A. Dubatovka. 2017. What do you mean exactly? Analyzing clarification questions in CQA. In Proceedings of the 2017 Conference on Human Information Interaction and Retrieval (CHIIR ’17). ACM, New York, NY, 345–348. DOI: .Google ScholarDigital Library
- J. S. Breese, D. Heckerman, and C. Kadie. 1998. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI ’98). Morgan Kaufmann Publishers, San Francisco, CA, 43–52.Google Scholar
- T. Breuer, N. Ferro, N. Fuhr, M. Maistro, T. Sakai, P. Schaer, and I. Soboroff. 2020. How to measure the reproducibility of system-oriented IR experiments. In Y. Chang, X. Cheng, J. Huang, Y. Lu, J. Kamps, V. Murdock, J.-R. Wen, A. Diriye, J. Guo, and O. Kurland (Eds.), Proceedings of the 43rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 349–358. DOI: .Google ScholarDigital Library
- T. Breuer, N. Ferro, M. Maistro, and P. Schaer. 2021. repro˙eval: A Python interface to reproducibility measures of system-oriented IR experiments. In D. Hiemstra, M. F. Moens, J. Mothe, R. Perego, M. Potthast, and F. Sebastiani (Eds.), Advances in Information Retrieval (ECIR ’21), Vol. 12657: Lecture Notes in Computer Science. Springer, Cham. 481–486. DOI: .Google ScholarDigital Library
- T. Breuer, J. Keller, and P. Schaer. 2022. ir˙metadata: An extensible metadata schema for IR experiments. In E. Amigó, P. Castells, J. Gonzalo, B. Carterette, J. Shane Culpepper, and G. Kazai (Eds.), Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 3078–3089. DOI: .Google ScholarDigital Library
- S. Brin and L. Page. 1998. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 1–7, 107–117. DOI: .Google ScholarDigital Library
- A. Broder. 2002. A taxonomy of web search. SIGIR Forum 36, 2, 3–10. DOI: .Google ScholarDigital Library
- A. Z. Broder, N. Eiron, M. Fontoura, M. Herscovici, R. Lempel, J. McPherson, R. Qi, and E. Shekita. 2006. Indexing shared content in information retrieval systems. In Proceedings of the 10th International Conference on Extending Database Technology, Vol. 3896: Lecture Notes in Computer Science. Springer, Berlin, 313–330. DOI: .Google ScholarCross Ref
- J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. 1993. Signature verification using a “Siamese” time delay neural network. In J. D. Cowan, G. Tesauro, and J. Alspector (Eds.), Advances in Neural Information Processing Systems 6th NIPS Conference, Denver, CO. Morgan-Kaufmann, San Francisco, CA, 737–744.Google Scholar
- C. Brooke. October. 2012. The Language of Web Content: Creating Global Websites. Retrieved from https://www.business2community.com/online-marketing/the-language-of-web-content-creating-global-websites-0302285.Google Scholar
- L. D. Brown, T. T. Cai, and A. DasGupta. 2001. Interval estimation for a binomial proportion. Statist. Sci. 16, 2, 101–133. DOI: .Google ScholarCross Ref
- T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. July. 2020. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Advances in Neural Information Processing Systems, Vol. 33. Curran Associates, Red Hook, NY, 1877–1901.Google Scholar
- M. Buckland and F. Gey. January. 1994. The relationship between Recall and Precision. J. Am. Soc. Inf. Sci. Technol. 45, 1, 12–19. DOI: .Google ScholarCross Ref
- C. Buckley. 2005. The SMART project at TREC. In E. M. Voorhees and D. K. Harman (Eds.), TREC: Experiment and Evaluation in Information Retrieval. MIT Press, 301–320.Google Scholar
- C. Buckley and E. M. Voorhees. 2000. Evaluating evaluation measure stability. In E. Yannakoudakis, N. J. Belkin, M.-K. Leong, and P. Ingwersen (Eds.), Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’00). ACM, New York, NY, 33–40. DOI: .Google ScholarDigital Library
- C. Buckley and E. M. Voorhees. July. 2004. Retrieval evaluation with incomplete information. In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’04). ACM, New York, NY, 25–32. DOI: .Google ScholarDigital Library
- C. Buckley and E. M. Voorhees. 2005. Retrieval system evaluation. In E. M. Voorhees and D. K. Harman (Eds.), TREC: Experiment and Evaluation in Information Retrieval. MIT Press, 53–78.Google Scholar
- C. Buckley, M. Mitra, J. Walz, and C. Cardie. 2000. Using clustering and SuperConcepts within SMART: TREC 6. Inf. Process. Manag. 36, 1, 109–131. DOI: .Google ScholarDigital Library
- C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. 2005. Learning to rank using gradient descent. In S. Dzeroski, L. De Raedt, and S. Wrobel (Eds.), Proceedings of the 22nd International Conference on Machine Learning (ICML ’05). ACM, New York, NY, 89–96. DOI: .Google ScholarDigital Library
- C. J. C. Burges. 2010. From RankNet to LambdaRank to LambdaMART: An Overview. Microsoft Research Technical Report.Google Scholar
- C. J. C. Burges, K. M. Svore, P. N. Bennett, A. Pastusiak, and Q. Wu. 2010. Learning to rank using an ensemble of lambda-gradient models. In Proceedings of the 2010 International Conference on Yahoo! Learning to Rank Challenge (YLRC ’10), Vol. 14. JMLR.org, 25–35.Google Scholar
- R. Burke. 2002. Hybrid recommender systems: Survey and experiments. User Model. User-Adapt. Interact. 12, 331–370. DOI: .Google ScholarDigital Library
- V. Bush. July. 1945. As we may think. Atlantic Monthly 176, 101–108.Google Scholar
- L. Busin and S. Mizzaro. 2013. Axiometrics: An axiomatic approach to information retrieval effectiveness metrics. In O. Kurland, D. Metzler, C. Lioma, B. Larsen, and P. Ingwersen (Eds.), Proceedings of the 4th International Conference on the Theory of Information Retrieval (ICTIR ’13). ACM, New York, NY, 22–29. DOI: .Google ScholarDigital Library
- S. Büttcher and C. L. A. Clarke. 2005. A security model for full-text file system search in multi-user environments. In Proceedings of the 4th USENIX Conference on File and Storage Technologies (FAST ’05). USENIX Association, San Francisco, CA, 13.Google Scholar
- S. Büttcher, C. Clarke, and G. V. Cormack. 2010. Information Retrieval: Implementing and Evaluating Search Engines. MIT Press.Google ScholarDigital Library
- W. Cai and L. Chen. 2019. Towards a taxonomy of user feedback intents for conversational recommendations. In Proceedings of ACM RecSys 2019 Late-breaking Results co-located with the 13th ACM Conference on Recommender Systems. ACM, New York, NY, 572–573.Google Scholar
- F. Cai and M. de Rijke. 2016a. A Survey of Query Auto Completion in Information Retrieval. Now Publishers, Hanover, MA.Google Scholar
- F. Cai and M. de Rijke. July. 2016b. Learning from homologous queries and semantically related terms for query auto completion. Inf. Process. Manag. 52, 4, 628–643. DOI: .Google ScholarDigital Library
- F. Cai, S. Liang, and M. de Rijke. 2014. Time-sensitive personalized query auto-completion. In Proceedings of the 23rd ACM International Conference on Information and Knowledge Management (CIKM ’14). ACM, New York, NY, 1599–1608. DOI: .Google ScholarDigital Library
- J. Callan and A. Moffat. December. 2012. Panel on use of proprietary data. SIGIR Forum 46, 2, 10–18. DOI: .Google ScholarDigital Library
- J. P. Callan, Z. Lu, and W. B. Croft. 1995. Searching distributed collections with inference networks. In E. A. Fox, P. Ingwersen, and R. Fidel (Eds.), Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’95). ACM, New York, NY, 21–28. DOI: .Google ScholarDigital Library
- A. Camacho and J. G. Harris. 2008. A sawtooth waveform inspired pitch estimator for speech and music. J. Acoust. Soc. Am. 124, 3, 1638–1652. DOI: .Google ScholarCross Ref
- B. B. Cambazoglu and R. A. Baeza-Yates. 2015. Scalability Challenges in Web Search Engines. Morgan & Claypool Publishers.Google Scholar
- N. R. Campbell. 1920. Physics: The Elements. Cambridge University Press, UK.Google Scholar
- N. R. Campbell. 1928. An Account of the Principles of Measurement and Calculation. Longmans, Green, London, UK.Google Scholar
- P. G. Campos, F. Dez, and I. Cantador. 2014a. Time-aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols. User Model. User-Adapt. Interact. 24, 1, 67–119. DOI: .Google ScholarDigital Library
- R. Campos, G. Dias, A. M. Jorge, and A. Jatowt. 2014b. Survey of temporal information retrieval and related applications. ACM Comput. Surv. 47, 2, 15:1–15:41. DOI: .Google ScholarDigital Library
- R. Cañamares and P. Castells. 2017. A probabilistic reformulation of memory-based collaborative filtering: Implications on popularity biases. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 215–224. DOI: .Google ScholarDigital Library
- R. Cañamares and P. Castells. 2018. Should I follow the crowd? A probabilistic analysis of the effectiveness of popularity in recommender systems. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 415–424. DOI: .Google ScholarDigital Library
- R. Cañamares and P. Castells. 2020. On target item sampling in offline recommender system evaluation. In 14th ACM Conference on Recommender Systems (RecSys ’20). ACM, New York, NY, 259–268. DOI: .Google ScholarDigital Library
- R. Cañamares, P. Castells, and A. Moffat. 2020. Offline evaluation options for recommender systems. Inf. Retr. J. 23, 4, 387–411. DOI: .Google ScholarDigital Library
- P. Cano, E. Gómez, F. Gouyon, P. Herrera, M. Koppenberger, B. Ong, X. Serra, S. Streich, and N. Wack. 2006. ISMIR 2004 audio description contest. In ISMIR 2004.Google Scholar
- Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. 2006. Adapting ranking SVM to document retrieval. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’06). ACM, New York, NY, 186–193. DOI: .Google ScholarDigital Library
- L. Cappellato, N. Ferro, L. Goeuriot, and T. Mandl (Eds.). 2017. CLEF 2017 Working Notes. CEUR Workshop Proceedings, ISSN 1613-0073. CEUR-WS.org. https://ceur-ws.org/Vol-1866/.Google Scholar
- L. Cappellato, N. Ferro, J. Nie, and L. Soulier (Eds.). 2018. Working Notes of CLEF 2018—Conference and Labs of the Evaluation Forum, Avignon, France, September 10–14, 2018. Vol. 2125 of CEUR Workshop Proceedings. CEUR-WS.org.Google Scholar
- D. Carmel and E. Yom-Tov. 2010. Estimating the Query Difficulty for Information Retrieval. Morgan & Claypool Publishers.Google Scholar
- D. Carmel, G. Halawi, L. Lewin-Eytan, Y. Maarek, and A. Raviv. 2015. Rank by time or by relevance? Revisiting email search. In Proceedings of the 24th ACM International Conference on Information and Knowledge Management. ACM, New York, NY, 283–292. DOI: .Google ScholarDigital Library
- D. Carmel, E. Haramaty, A. Lazerson, and L. Lewin-Eytan. 2020a. Multi-objective ranking optimization for product search using stochastic label aggregation. In Proceedings of the Web Conference (WWW ’20). ACM, New York, NY, 373–383. DOI: .Google ScholarDigital Library
- D. Carmel, E. Haramaty, A. Lazerson, L. Lewin-Eytan, and Y. Maarek. 2020b. Why do people buy seemingly irrelevant items in voice product search? On the relation between product relevance and customer satisfaction in ecommerce. In Proceedings of the 13th International Conference on Web Search and Data Mining (WSDM ’20). ACM, New York, NY, 79–87. DOI: .Google ScholarDigital Library
- C. Carpineto, S. Osinski, G. Romano, and D. Weiss. 2009. A survey of web clustering engines. ACM Comput. Surv. 41, 3, 1–38. DOI: .Google ScholarDigital Library
- B. A. Carterette. 2011. System effectiveness, user models, and user utility: A conceptual framework for investigation. In W. Y. Ma, J. Y. Nie, R. Baeza-Yates, T.-S. Chua, and W. B. Croft (Eds.), Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 903–912. DOI: .Google ScholarDigital Library
- B. A. Carterette. 2012. Multiple testing in statistical analysis of systems-based information retrieval experiments. ACM Trans. Inf. Syst. 30, 1, 4:1–4:34. DOI: .Google ScholarDigital Library
- Carylsue. 2016. New Guinea natives navigate by valleys and mountains. National Geographic.Google Scholar
- M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney. 2008. Content-based music information retrieval: Current directions and future challenges. Proc. IEEE 96, 4, 668–696. DOI: .Google ScholarCross Ref
- S. Castagnos, A. Brun, and A. Boyer. 2013. When diversity is needed... but not expected! In Proceedings of the 3rd International Conference on Advances in Information Mining and Management (IMMM ’13), Lisbon, Portugal. IARIA Press, 44–50.Google Scholar
- P. Castells and A. Moffat. 2022. Offline recommender system evaluation: Challenges and new directions. AI Mag. 43, 2, 225–238. DOI: .Google ScholarDigital Library
- P. Castells, N. Hurley, and S. Vargas. 2021. Novelty and diversity in recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook. Springer, New York, NY, 603–646. DOI: .Google ScholarCross Ref
- C. Castillo, A. Gionis, R. Lempel, and Y. Maarek. 2010. When no clicks are good news. In SIGIR 2010 Industry Track.Google Scholar
- L. Cavedon, B. Fröhlich, H. Joho, R. Song, J. Teevan, J. Trippas, and E. Yilmaz. 2020. Scenarios that invite conversational search. In A. Anand, L. Cavedon, H. Joho, M. Sanderson, and B. Stein (Eds.), Conversational Search (Dagstuhl Seminar 19461). Dagstuhl, 66–69.Google Scholar
- C. G. Čech and S. L. Condon. 1998. Message size constraints on discourse planning in synchronous computer-mediated communication. Behav. Res. Meth. Instrum. Comput. 30, 2, 255–263. DOI: .Google ScholarCross Ref
- I. Celik, I. Torre, F. Koceva, C. Bauer, E. Zangerle, and B. Knijnenburg. 2018. UMAP 2018 intelligent user-adapted interfaces: Design and multi-modal evaluation (IUadaptMe) workshop chairs’ welcome & organization. In Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization (UMAP ’18). ACM, New York, NY, 137–139. DOI: .Google ScholarDigital Library
- L. E. Celis, D. Straszak, and N. K. Vishnoi. 2018. Ranking with fairness constraints. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), Vol. 107: Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 28:1–28:15. DOI: .Google ScholarCross Ref
- L. E. Celis, A. Mehrotra, and N. K. Vishnoi. 2020. Interventions for ranking in the presence of implicit bias. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* ’20). ACM, New York, NY, 369–380. DOI: .Google ScholarDigital Library
- Ò. Celma and P. Herrera. 2008. A new approach to evaluating novel recommendations. In Proceedings of the 2nd ACM Conference on Recommender Systems (RecSys ’08). ACM, New York, NY, 179–186. DOI: .Google ScholarDigital Library
- Ò. Celma, P. Herrera, and X. Serra. 2005. Bridging the music semantic gap. In Proceedings of the Workshop on Mastering the Gap, From Information Extraction to Semantic Representation, held in conjunction with the European Semantic Web Conference. CEUR-WS.org.Google Scholar
- A. T. Cemgil, B. Kappen, P. Desain, and H. Honing. 2000. On tempo tracking: Tempogram representation and Kalman filtering. J. New Music Res. 29, 4, 259–273. DOI: .Google ScholarCross Ref
- Y. Cen, J. Zhang, X. Zou, C. Zhou, H. Yang, and J. Tang. 2020. Controllable multi-interest framework for recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20). ACM, New York, NY, 2942–2951. DOI: .Google ScholarDigital Library
- I. Chalkidis, M. Fergadiotis, P. Malakasiotis, N. Aletras, and I. Androutsopoulos. 2020. LEGAL-BERT: The Muppets straight out of law school. In Findings of the Association for Computational Linguistics: EMNLP 2020. Association for Computational Linguistics, 2898–2904. DOI: .Google ScholarCross Ref
- S. R. Chamberlin, S. D. Bedrick, A. M. Cohen, Y. Wang, A. Wen, S. Liu, H. Liu, and W. R. Hersh. October. 2020. Evaluation of patient-level retrieval from electronic health record data for a cohort discovery task. JAMIA Open 3, 3, 395–404. DOI: .Google ScholarCross Ref
- T.-S. Chan, T.-C. Yeh, Z.-C. Fan, H.-W. Chen, L. Su, Y.-H. Yang, and R. Jang. 2015. Vocal activity informed singing voice separation with the iKala dataset. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 718–722. DOI: .Google ScholarCross Ref
- A. J. B. Chaney, B. M. Stewart, and B. E. Engelhardt. 2018. How algorithmic confounding in recommendation systems increases homogeneity and decreases utility. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY, 224–232. DOI: .Google ScholarDigital Library
- A. X. Chang and C. D. Manning. 2012. SUTime: A library for recognizing and normalizing time expressions. In N. Calzolari, K. Choukri, T. Declerck, M. U. Dogan, B. Maegaard, J. Mariani, J. Odijk, and S. Piperidis (Eds.), Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC ’12), Istanbul, Turkey, May 23–25, 2012. European Language Resources Association, 3735–3740.Google Scholar
- W.-C. Chang, D. Jiang, H.-F. Yu, C. H. Teo, J. Zhong, K. Zhong, K. Kolluri, Q. Hu, N. Shandilya, V. Ievgrafov, J. Singh, and I. S. Dhillon. 2021. Extreme multi-label learning for semantic matching in product search. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD ’21). ACM, New York, NY, 2643–2651. DOI: .Google ScholarDigital Library
- Y. Chang and H. Deng (Eds.). 2020. Query Understanding for Search Engines. Springer. DOI: .Google ScholarCross Ref
- O. Chapelle and Y. Zhang. 2009. A dynamic Bayesian network click model for web search ranking. In Proceedings of the 18th International Conference on World Wide Web (WWW ’09). ACM, New York, NY, 1–10. DOI: .Google ScholarDigital Library
- O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. 2009. Expected reciprocal rank for graded relevance. In Proceedings of the 18th ACM Conference on Information and Knowledge Management. ACM, New York, NY, 621–630. DOI: .Google ScholarDigital Library
- O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. 2012. Large-scale validation and analysis of interleaved search evaluation. ACM Trans. Inf. Syst. 30, 1, 1–41. DOI: .Google ScholarDigital Library
- A. Chebotko, S. Lu, and F. Fotouhi. 2009. Semantics preserving SPARQL-to-SQL translation. Data Knowl. Eng. 68, 10, 973–1000. DOI: .Google ScholarDigital Library
- A. Chen and D. O. Chen. 2023. Accuracy of chatbots in citing journal articles. JAMA Netw. Open 6, 8, e2327647. DOI: .Google ScholarCross Ref
- J. Chen, H. Guo, W. Wu, and W. Wang. 2009a. iMecho: An associative memory based desktop search system. In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM ’09). ACM, New York, NY, 731–740. DOI: .Google ScholarDigital Library
- J. Chen, H. Guo, W. Wu, and C. Xie. 2009b. Search your memory!—An associative memory based desktop search system. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data (SIGMOD ’09). ACM, New York, NY, 1099–1102. DOI: .Google ScholarDigital Library
- J. Chen, H. Dong, Y. Qiu, X. He, X. Xin, L. Chen, G. Lin, and K. Yang. 2021a. AutoDebias: Learning to debias for recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 21–30. DOI: .Google ScholarDigital Library
- J. Chen, H. Lin, X. Han, and L. Sun. 2024. Benchmarking large language models in Retrieval-Augmented Generation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, 17754–17762. DOI: .Google ScholarDigital Library
- L. Chen, G. Chen, and F. Wang. 2015. Recommender systems based on user reviews: The state of the art. User Model. User-Adapt. Interact. 25, 99–154. DOI: .Google ScholarDigital Library
- L. Chen, Y. Yang, N. Wang, K. Yang, and Q. Yuan. 2019. How serendipity improves user satisfaction with recommendations? A large-scale user evaluation. In Proceedings of the World Wide Web Conference (WWW ’19). ACM, New York, NY, 240–250. DOI: .Google ScholarDigital Library
- M. Chen, J. Tworek, H. Jun, Q. Yuan, H. Pondé de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. Petroski Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. Hebgen Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba. July. 2021b. Evaluating large language models trained on code. arXiv:2107.03374. DOI: .Google ScholarCross Ref
- N. Chen, R. E. Banchs, M. Zhang, X. Duan, and H. Li. July. 2018a. Report of NEWS 2018 named entity transliteration shared task. In Proceedings of the Seventh Named Entities Workshop, Melbourne, Australia. Association for Computational Linguistics, 55–73. DOI: .Google ScholarCross Ref
- N. Chen, W. Li, and H. Xiao. 2018b. Fusing similarity functions for cover song identification. Multimed. Tools Appl. 77, 2, 2629–2652. DOI: .Google ScholarDigital Library
- S. J. Chen, Z. Qin, Z. Wilson, B. Calaci, M. Rose, R. Evans, S. Abraham, D. Metzler, S. Tata, and M. Colagrosso. 2020a. Improving recommendation quality in Google Drive. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20). ACM, New York, NY, 2900–2908. DOI: .Google ScholarDigital Library
- T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. 2020b. A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning. JMLR.org, 1597–1607.Google Scholar
- W. Chen, F. Cai, H. Chen, and M. de Rijke. 2017a. Personalized query suggestion diversification. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 817–820. DOI: .Google ScholarDigital Library
- W. Chen, F. Cai, H. Chen, and M. de Rijke. 2018c. Attention-based hierarchical neural query suggestion. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 1093–1096. DOI: .Google ScholarDigital Library
- X. Chen and C. Cardie. 2018. Unsupervised multilingual word embeddings. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 261–270. DOI: .Google ScholarCross Ref
- Y. Chen and G. J. F. Jones. 2010. Augmenting human memory using personal lifelogs. In Proceedings of the 1st Augmented Human International Conference (AH ’10). ACM, New York, NY, 1–9. DOI: .Google ScholarDigital Library
- Y.-A. Chen, J.-C. Wang, Y.-H. Yang, and H. Chen. 2014. Linear regression-based adaptation of music emotion recognition models for personalization. In Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP). IEEE, 2149–2153. DOI: .Google ScholarCross Ref
- Y.-A. Chen, J.-C. Wang, Y.-H. Yang, and H. H. Chen. 2017b. Component tying for mixture model adaptation in personalization of music emotion recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 25, 7, 1409–1420. DOI: .Google ScholarDigital Library
- S. Chernov, P. Serdyukov, P.-A. Chirita, G. Demartini, and W. Nejdl. 2007. Building a desktop search test-bed. In Proceedings of the 29th European Conference on IR Research, Vol. 4425: Lecture Notes in Computer Science. Springer, Berlin, 686–690. DOI: .Google ScholarCross Ref
- S. Chernov, G. Demartini, E. Herder, M. Kopycki, and W. Nejdl. 2008. Evaluating personal information management using an activity logs enriched desktop dataset. In Personal Information Management Workshop at CHI 2008.Google Scholar
- E. Chew. 2000. Towards a Mathematical Model of Tonality. Ph.D. thesis. Massachusetts Institute of Technology.Google Scholar
- P. J. Chia, G. Attanasio, F. Bianchi, S. Terragni, A. R. Magalhães, D. Goncalves, C. Greco, and J. Tagliabue. 2022. FashionCLIP: Connecting language and images for product representations. https://arxiv.org/abs/2204.03972. DOI: .Google ScholarCross Ref
- W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica, and E. P. Xing. March. 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90% ChatGPT Quality. Retrieved from https://lmsys.org/blog/2023-03-30-vicuna/.Google Scholar
- I. Chios and S. Verberne. 2020. Helping results assessment by adding explainable elements to the deep relevance matching model. In The 3rd International Workshop on ExplainAble Recommendation and Search (EARS ’20). DOI: .Google ScholarCross Ref
- P.-A. Chirita, S. Costache, W. Nejdl, and R. Paiu. 2006. Beagle++: Semantically enhanced searching and ranking on the desktop. In Proceedings of the 3rd European Semantic Web Conference, Vol. 4011: Lecture Notes in Computer Science. Springer, 348–362. DOI: .Google ScholarCross Ref
- E. Choi, H. He, M. Iyyer, M. Yatskar, W.-t. Yih, Y. Choi, P. Liang, and L. Zettlemoyer. 2018. QuAC: Question answering in context. In E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii (Eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP ’18). Association for Computational Linguistics, 2924–2936. DOI: .Google ScholarCross Ref
- A. Chouldechova. 2017. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big Data 5, 2, 153–163. DOI: .Google ScholarCross Ref
- G. G. Chowdhury. 2010. Introduction to Modern Information Retrieval. Facet Publishing.Google ScholarDigital Library
- S. Chowdhury, A. Vall, V. Haunschmid, and G. Widmer. 2019. Towards explainable music emotion recognition: The route via mid-level features. In A. Flexer, G. Peeters, J. Urbano, and A. Volk (Eds.), Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR). International Society for Music Information Retrieval, 237–243.Google Scholar
- P. Christmann, R. Saha Roy, A. Abujabal, J. Singh, and G. Weikum. 2019. Look before you hop: Conversational question answering over knowledge graphs using judicious context expansion. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM) (CIKM ’19). ACM, New York, NY, 729–738. DOI: .Google ScholarDigital Library
- Z. Chu, T. Sakai, Q. Ai, and Y. Liu. 2023. Chuweb21D: A deduped English document collection for web search tasks. In Y. Liu, A. Moffat, Q. Ai, X. Huang, T. Sakai, and J. Zobel (Eds.), Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific (SIGIR-AP ’23). ACM, New York, NY, 63–72. DOI: .Google ScholarDigital Library
- A. Chuklin, P. Serdyukov, and M. de Rijke. 2013. Click model-based information retrieval metrics. In G. J. F. Jones, P. Sheridan, D. Kelly, M. de Rijke, and T. Sakai (Eds.), Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 493–502. DOI: .Google ScholarDigital Library
- A. Chuklin, I. Markov, and M. de Rijke. July. 2015. Click Models for Web Search. Morgan & Claypool Publishers.Google Scholar
- A. Chuklin, A. Severyn, J. Trippas, E. Alfonseca, H. Silen, and D. Spina. 2019. Using audio transformations to improve comprehension in voice question answering. In F. Crestani, M. Braschler, J. Savoy, A. Rauber, H. Müller, D. E. Losada, G. H. Bürki, L. Cappellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF ’19), Vol. 11696: Lecture Notes in Computer Science. Springer, Cham, 164–170. DOI: .Google ScholarDigital Library
- J. S. Chun and R. P. Larrick. 2022. The power of rank information. J. Pers. Soc. Psychol. 122, 6, 983–1003. DOI: .Google ScholarCross Ref
- G. L. Ciampaglia, A. Nematzadeh, F. Menczer, and A. Flammini. 2018. How algorithmic popularity bias hinders or promotes quality. Sci. Rep. 8, 15951. DOI: .Google ScholarCross Ref
- C. Cieri, D. Graff, M. Liberman, N. Martey, and S. Strassel. August. 2000. The TDT-2 text and speech corpus. In Proceedings of DARPA Broadcast News Workshop. Defense Advanced Research Projects Agency, 57–60.Google Scholar
- J. J. Cimino. June. 1996. Linking patient information systems to bibliographic resources. Methods Inf. Med. 35, 2, 122–126. DOI: .Google ScholarCross Ref
- J. J. Cimino. 2006. Use, usability, usefulness, and impact of an infobutton manager. AMIA Annu. Symp. Proc. American Medical Informatics Association, 151–155.Google Scholar
- C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. 2019. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In J. Burstein, C. Doran, and T. Solorio (Eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN. Association for Computational Linguistics, 2924–2936. DOI: .Google ScholarCross Ref
- H. H. Clark and S. E. Brennan. 1991. Grounding in communication. In Perspectives on Socially Shared Cognition. American Psychological Association, 222–233. DOI: .Google ScholarCross Ref
- K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. 2020. ELECTRA: Pre-training text encoders as discriminators rather than generators. arXiv:2003.10555. DOI: .Google ScholarCross Ref
- P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. March. 2018. Think you have solved question answering? Try ARC, the AI2 Reasoning Challenge. arXiv:1803.05457. DOI: .Google ScholarCross Ref
- C. L. A. Clarke, N. Craswell, and I. Soboroff. February. 2005. Overview of the TREC 2004 Terabyte track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Thirteenth Text REtrieval Conference (TREC 2004), Special Publication 500-261. National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
- C. L. A. Clarke, F. Scholer, and I. Soboroff. February. 2006. Overview of the TREC 2005 Terabyte Track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Fourteenth Text REtrieval Conference (TREC 2005), Special Publication 500-266. National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
- C. L. A. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, and I. MacKinnon. 2008. Novelty and diversity in information retrieval evaluation. In T. S. Chua, M. K. Leong, S. H. Myaeng, D. W. Oard, F. Sebastiani (Eds.), Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’08). ACM, New York, NY, 659–666. DOI: .Google ScholarDigital Library
- C. L. A. Clarke, N. Craswell, and I. Soboroff. February. 2010. Overview of the TREC 2009 web track. In E. M. Voorhees and L. P. Buckland (Eds.), The Eighteenth Text REtrieval Conference Proceedings (TREC 2009), Special Publication 500-278. National Institute of Standards and Technology, Washington, DC.Google Scholar
- C. L. A. Clarke, N. Craswell, I. Soboroff, and G. V. Cormack. February. 2011. Overview of the TREC 2010 web track. In E. M. Voorhees and L. P. Buckland (Eds.), The Nineteenth Text REtrieval Conference Proceedings (TREC 2010), Special Publication 500-294. National Institute of Standards and Technology, Washington, DC.Google Scholar
- C. L. A. Clarke, M. D. Smucker, and A. Vtyurina. 2020a. Offline evaluation by maximum similarity to an ideal ranking. In M. d’Aquin, S. Dietze, C. Hauff, E. Curry, and P. Cudré-Mauroux (Eds.), Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20). ACM, New York, NY, 225–234. DOI: .Google ScholarDigital Library
- C. L. A. Clarke, A. Vtyurina, and M. D. Smucker. 2020b. Offline evaluation without gain. In K. Balog, V. Setty, C. Lioma, Y. Liu, M. Zhang, and K. Berberich (Eds.), Proceedings of the 2020 ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR ’20), Virtual Event, Norway, September 14–17, 2020. ACM, New York, NY, 185–192. DOI: .Google ScholarDigital Library
- C. L. A. Clarke, S. Rizvi, M. D. Smucker, M. Maistro, and G. Zuccon. February. 2021. Overview of the TREC 2020 health misinformation track. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC 2020). National Institute of Standards and Technology.Google Scholar
- C. W. Cleverdon. 1962. Report on the Testing and Analysis of an Investigation into the Comparative Efficiency of Indexing Systems. Aslib Cranfield Research Project. College of Aeronautics, Cranfield, UK.Google Scholar
- C. W. Cleverdon. 1967. The Cranfield tests on index language devices. Aslib Proc. 19, 6, 173–194. DOI: .Google ScholarCross Ref
- C. W. Cleverdon. 1972. On the inverse relationship of recall and precision. J. Doc. 28, 3, 195–201. DOI: .Google ScholarCross Ref
- C. W. Cleverdon, J. Mills, and E. M. Keen. 1966. Aslib Cranfield Research Project—Factors Determining the Performance of Indexing Systems, Vol. 1: Design. College of Aeronautics, Cranfield.Google Scholar
- P. Clough and M. Sanderson. March. 2006. User experiments with the Eurovision cross-language image retrieval system. J. Am. Soc. Inf. Sci. Technol. 57, 5, 697–708. DOI: .Google ScholarCross Ref
- Coalition for Health AI. 2023. Blueprint for Trustworthy AI Implementation Guidance and Assurance for Healthcare. Technical Report. The MITRE Corporation.Google Scholar
- K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano, C. Hesse, and J. Schulman. November. 2021. Training verifiers to solve math word problems. arXiv:2110.14168. DOI: .Google ScholarCross Ref
- E. F. Codd. June. 1970. A relational model of data for large shared data banks. Commun. ACM 12, 6, 377–387. DOI: .Google ScholarDigital Library
- A. Cohan, S. Feldman, I. Beltagy, D. Downey, and D. S. Weld. 2020. Specter: Document-level representation learning using citation-informed transformers. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2270–2282. DOI: .Google ScholarCross Ref
- A. M. Cohen, W. R. Hersh, K. Peterson, and P.-Y. Yen. April. 2006. Reducing workload in systematic review preparation using automated citation classification. J. Am. Med. Inform. Assoc. 13, 2, 206–219. DOI: .Google ScholarCross Ref
- A. M. Cohen, N. R. Smalheiser, M. S. McDonagh, C. Yu, C. E. Adams, J. M. Davis, and P. S. Yu. May. 2015. Automated confidence ranked classification of randomized controlled trial articles: An aid to evidence-based medicine. J. Am. Med. Inform. Assoc. 22, 3, 707–717. DOI: .Google ScholarCross Ref
- P. R. Cohen and S. L. Oviatt. 1995. The role of voice input for human–machine communication. Proc. Natl. Acad. Sci. U. S. A. 92, 22, 9921–9927. DOI: .Google ScholarCross Ref
- S. Cohen, C. Domshlak, and N. Zwerdling. March. 2008. On ranking techniques for desktop search. ACM Trans. Inf. Syst. 26, 2, 1–24. DOI: .Google ScholarDigital Library
- W. W. Cohen. 1996. Learning rules that classify e-mail. In M. A. Hearst and H. Hirsh (Eds.), Papers from the AAAI Spring Symposium: Machine Learning in Information Access. AAAI Technical Report SS-96-05. Association for the Advancement of Artificial Intelligence.Google Scholar
- D. Cohn, L. Atlas, R. Ladner, and A. Waibel. 1994. Improving generalization with active learning. Mach. Learn. 15, 2, 201–221. DOI: .Google ScholarDigital Library
- M. H. Coletti and H. L. Bleich. August. 2001. Medical subject headings used to search the biomedical literature. J. Am. Med. Inform. Assoc. 8, 4, 317–323. DOI: .Google ScholarCross Ref
- K. Collins-Thompson, F. Diaz, C. L. A. Clarke, and E. M. Voorhees. February. 2014. TREC 2013 web track overview. In E. M. Voorhees (Ed.), Proceedings of the Twenty-Second Text REtrieval Conference (TREC 2013), Special Publication 500-302. National Institute of Standards and Technology, Washington, DC.Google Scholar
- K. Collins-Thompson, P. Bennett, F. Diaz, and E. M. Voorhees. February. 2015. TREC 2014 web track overview. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Third Text REtrieval Conference (TREC 2014), Special Publication 500-308. National Institute of Standards and Technology, Washington, DC.Google Scholar
- W. S. Cooper. 1971. A definition of relevance for information retrieval. Inf. Storage Retr. 7, 1, 19–37. DOI: .Google ScholarCross Ref
- G. V. Cormack. 2008. Email spam filtering: A systematic review. Found. Trends Inf. Retr. 1, 4, 335–455. DOI: .Google ScholarDigital Library
- G. V. Cormack and M. R. Grossman. 2014. Evaluation of machine-learning protocols for technology-assisted review in electronic discovery. In Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’14). ACM, New York, NY, 153–162. DOI: .Google ScholarDigital Library
- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms. MIT Press, Cambridge, MA.Google Scholar
- R. Corn, Jr. January. 2019. Native American Culture—Language: The Key to Everything. Retrieved from https://www.ted.com/talks/ron˙muqsahkwat˙corn˙jr˙native˙american˙culture˙language˙the˙key˙to˙everything.Google Scholar
- J. Cossu, J. Gonzalo, M. Hajjem, O. Hamon, C. Latiri, and E. SanJuan. 2018. CLEF MC2 2018 lab technical overview of cross language microblog search and argumentative mining. In L. Cappellato, N. Ferro, J. Nie, and L. Soulier (Eds.), Working Notes of CLEF 2018—Conference and Labs of the Evaluation Forum, Avignon, France, September 10–14, 2018. CEUR Workshop Proceedings, Vol. 2125. CEUR-WS.org.Google Scholar
- M. Coury, E. Salesky, and J. Drexler. 2016. Finding Relevant Data in a Sea of Languages. Technical Report. MIT Lincoln Laboratory.Google Scholar
- E. Coutinho. 2008. Computational and Psycho-Physiological Investigations of Musical Emotions. Ph.D. thesis. University of Plymouth, UK.Google Scholar
- E. Coutinho, G. Trigeorgis, S. Zafeiriou, and B. Schuller. January. 2015. Automatically estimating emotion in music with deep long-short term memory recurrent neural networks. In Proceedings of the MediaEval 2015 Multimedia Benchmark Workshop, Wurzen, Germany, September 14–15, 2015. CEUR-WS.org, 1–3.Google Scholar
- P. Covington, J. Adams, and E. Sargin. 2016. Deep neural networks for YouTube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16). ACM, New York, NY, 191–198. DOI: .Google ScholarDigital Library
- B. Cowgill, F. Dell’Acqua, S. Deng, D. Hsu, N. Verma, and A. Chaintreau. 2020. Biased programmers? Or biased data? A field experiment in operationalizing AI ethics. In Proceedings of the 21st ACM Conference on Economics and Computation (EC ’20). ACM, New York, NY, 679–681. DOI: .Google ScholarDigital Library
- P. C. Cozby and S. C. Bates. 2018. Methods in Behavioral Research (13th. ed.). McGraw-Hill Education, New York.Google Scholar
- M. Crane. 2018. Questionable answers in question answering research: Reproducibility and variability of published results. Trans. Assoc. Comput. Linguist. 6, 241–252. DOI: .Google ScholarCross Ref
- L. F. Cranor and B. A. LaMacchia. August. 1998. Spam! Commun. ACM 41, 8, 74–83. DOI: .Google ScholarDigital Library
- N. Craswell and D. Hawking. February. 2003. Overview of the TREC-2002 web track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Eleventh Text REtrieval Conference (TREC 2002), Special Publication 500-251. National Institute of Standards and Technology, Washington, DC.Google Scholar
- N. Craswell, D. Hawking, R. Wilkinson, and M. Wu. February. 2004. Overview of the TREC 2003 web track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Twelfth Text REtrieval Conference (TREC 2003), Special Publication 500-255. National Institute of Standards and Technology, Washington, DC.Google Scholar
- N. Craswell, A. P. de Vried, and I. Soboroff. February. 2006. Overview of the TREC-2005 enterprise track. In Proceedings of the Fourteenth Text REtrieval Conference (TREC 2005), Special Publication 500-266. National Institute of Standards and Technology.Google Scholar
- N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. 2008. An experimental comparison of click position-bias models. In M. Najork, A. Broder, and S. Chakrabarti (Eds.), Proceedings of the 1st ACM International Conference on Web Searching and Data Mining (WSDM ’08). ACM, New York, NY, 87–94. DOI: .Google ScholarDigital Library
- N. Craswell, R. Jones, G. Dupret, and E. Viegas (Eds.). 2009. Proceedings of the Workshop on Web Search Click Data (WSCD ’09). ACM, New York, NY. DOI: .Google ScholarDigital Library
- N. Craswell, B. Mitra, D. Campos, E. Yilmaz, and E. M. Voorhees. February. 2020. Overview of the TREC 2019 deep learning track. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Eight Text REtrieval Conference (TREC 2019), Special Publication 1250. National Institute of Standards and Technology.Google Scholar
- N. Craswell, B. Mitra, E. Yilmaz, and D. Campos. February. 2021. Overview of the TREC 2020 deep learning track. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC 2020), Special Publication 1266. National Institute of Standards and Technology.Google Scholar
- N. Craswell, M. Bhaskar, E. Yilmaz, D. Campos, and J. Lin. February. 2022. Overview of the TREC 2021 deep learning track. In I. Soboroff and A. Ellis (Eds.), Proceedings of the Thirtieth Text REtrieval Conference (TREC 2021), Special Publication 550-335. National Institute of Standards and Technology, Washington, DC.Google Scholar
- N. Craswell, M. Bhaskar, E. Yilmaz, D. Campos, J. Lin, E. M. Voorhees, and I. Soboroff. February. 2023. Overview of the TREC 2022 deep learning track. In I. Soboroff and A. Ellis (Eds.), Proceedings of the Thirty-First Text REtrieval Conference (TREC 2022), Special Publication 550-338. National Institute of Standards and Technology, Washington, DC.Google Scholar
- M. B. Crawford. 2015. The World Beyond Your Head: On Becoming an Individual in an Age of Distraction. Farrar, Straus and Giroux.Google Scholar
- M. Crawford, T. M. Khoshgoftaar, J. D. Prusa, A. N. Richter, and H. Al Najada. 2015. Survey of review spam detection using machine learning techniques. J. Big Data 2, 1, 1–24. DOI: .Google ScholarCross Ref
- P. Cremonesi, R. Turrin, E. Lentini, and M. Matteucci. 2008. An evaluation methodology for collaborative recommender systems. In 2008 International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution (AXMEDIS ’08). IEEE, Washington, DC, 224–231. DOI: .Google ScholarDigital Library
- P. Cremonesi, Y. Koren, and R. Turrin. 2010. Performance of recommender algorithms on top-N recommendation tasks. In Proceedings of the Fourth ACM Conference on Recommender Systems (RecSys ’10 ). ACM, New York, NY, 39–46. DOI: .Google ScholarDigital Library
- K. Crenshaw. 1991. Mapping the margins: Intersectionality, identity politics, and violence against women of color. Stanford L. Rev. 43, 1241–1249. DOI: .Google ScholarCross Ref
- F. Crestani and H. Du. 2006. Written versus spoken queries: A qualitative and quantitative comparative analysis. J. Am. Soc. Inf. Sci. Technol. 57, 7, 881–890. DOI: .Google ScholarCross Ref
- M. Crispin and K. Murchison. June. 2008. Internet Message Access Protocol—Sort and Thread Extensions. Internet Engineering Task Force, Network Working Group, Request for Comment 5256.Google Scholar
- W. B. Croft. 2002. Combining approaches to information retrieval. In W. B. Croft (Ed.), Advances in Information Retrieval: Recent Research from the Center for Intelligent Information Retrieval. Springer, Boston, MA, 1–36. DOI: .Google ScholarCross Ref
- W. B. Croft and R. H. Thompson. 1987. I 3R: A new approach to the design of document retrieval systems. J. Am. Soc. Inf. Sci. 38, 6, 389–404. DOI: .Google ScholarCross Ref
- L. J. Cronbach. September. 1951. Coefficient alpha and the internal structure of tests. Psychometrika 16, 3, 297–334. DOI: .Google ScholarCross Ref
- J. S. Culpepper, F. Diaz, and M. D. Smucker. 2018. Research frontiers in information retrieval: Report from the Third Strategic Workshop on Information Retrieval in Lorne (SWIRL 2018). ACM SIGIR Forum 52, 1, 34–90. DOI: .Google ScholarDigital Library
- E. Cutrell and Z. Guan. 2007. What are you looking for? An eye-tracking study of information usage in web search. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’07). ACM, New York, NY, 407–416. DOI: .Google ScholarDigital Library
- E. Cutrell, D. C. Robbins, S. T. Dumais, and R. Sarin. 2006. Fast, flexible filtering with Phlat—Personal search and organization made easy. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’06). ACM, New York, NY, 261–270. DOI: .Google ScholarDigital Library
- B. d’Alessandro, C. O’Neil, and T. LaGatta. June. 2017. Conscientious classification: A data scientist’s guide to discrimination-aware classification. Big Data 5, 2, 120–134. DOI: .Google ScholarCross Ref
- G. Da San Martino, S. Romeo, A. Barrón-Cedeño, S. Joty, L. Màrquez, A. Moschitti, and P. Nakov. 2017. Cross-language question re-ranking. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 1145–1148. DOI: .Google ScholarDigital Library
- M. F. Dacrema, P. Cremonesi, and D. Jannach. 2019. Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In Proceedings of the 13th ACM Conference on Recommender Systems (RecSys ’19), Copenhagen, Denmark. ACM, New York, NY, 101–109. DOI: .Google ScholarDigital Library
- E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O. Adetunmbi, and O. E. Ajibuwa. June. 2019. Machine learning for email spam filtering: Review, approaches and open research problems. Heliyon 5, 6, e01802. DOI: .Google ScholarCross Ref
- N. Dai, M. Shokouhi, and B. D. Davison. 2011. Learning to rank for freshness and relevance. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 95–104. DOI: .Google ScholarDigital Library
- Z. Dai and J. Callan. 2019a. Deeper text understanding for IR with contextual neural language modeling. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 985–988. DOI: .Google ScholarDigital Library
- Z. Dai and J. Callan. 2019b. Context-aware sentence/passage term importance estimation for first stage retrieval. arXiv:1910.10687. DOI: .Google ScholarCross Ref
- Z. Dai and J. Callan. 2020. Context-aware document term weighting for ad-hoc search. In Proceedings of the Web Conference 2020 (WWW ’20). ACM, New York, NY, 1897–1907. DOI: .Google ScholarDigital Library
- Z. Dai, C. Xiong, J. Callan, and Z. Liu. 2018. Convolutional neural networks for soft-matching n-grams in ad-hoc search. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM ’18). ACM, New York, NY, 126–134. DOI: .Google ScholarDigital Library
- J. Dalton, V. Ajayi, and R. Main. 2018a. Vote Goat: Conversational movie recommendation. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 1285–1288. DOI: .Google ScholarDigital Library
- J. Dalton, C. Xiong, and J. Callan. 2018b. The TREC 2019 Conversational Assistance Track (CAsT). https://treccast.ai/.Google Scholar
- J. Dalton, C. Xiong, and J. Callan. February. 2021. TREC CAsT 2020: The conversational assistance track overview. In Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC 2020), Virtual Event, November 16–20, 2020. National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.Google ScholarCross Ref
- J. Dalton, S. Fischer, P. Owoicho, F. Radlinski, F. Rossetto, J. R. Trippas, and H. Zamani. 2022. Conversational information seeking: Theory and application. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 3455–3458. DOI: .Google ScholarDigital Library
- J. Danyang, H. Chen, and F. Cai. March. 2017. Exploiting query’s temporal patterns for query autocompletion. Math. Probl. Eng. 2017, 1–8. DOI: .Google ScholarCross Ref
- K. Darwish and D. W. Oard. 2003. Probabilistic structured query methods. In C. L. A. Clarke, G. V. Cormack, J. Callan, D. Hawking, and A. F. Smeaton (Eds.), Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’03), Toronto, Canada, July 28–August 1, 2003. ACM, New York, NY, 338–344. DOI: .Google ScholarDigital Library
- S. Das and A. Kramer. 2013. Self-censorship on Facebook. Proc. Int. AAAI Conf. Weblogs Soc. Media 7, 120–127. DOI: .Google ScholarCross Ref
- A. Dash, A. Chakraborty, S. Ghosh, A. Mukherjee, and K. P. Gummadi. 2022. FaiRIR: Mitigating exposure bias from related item recommendations in two-sided platforms. IEEE Trans. Comput. Soc. Syst. 10, 3, 1301–1313. DOI: .Google ScholarCross Ref
- M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. 2004. Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the 20th Annual Symposium on Computational Geometry (SCG ’04). ACM, New York, NY, 253–262. DOI: .Google ScholarDigital Library
- B. A. Davey and H. A. Priestley. 2002. Introduction to Lattices and Order (2nd. ed.). Cambridge University Press, Cambridge, UK.Google Scholar
- M. Davies and S. Böck. 2019. Temporal convolutional networks for musical audio beat tracking. In 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 1–5. DOI: .Google ScholarCross Ref
- M. E. Davies and M. D. Plumbley. 2007. Context-dependent beat tracking of musical audio. IEEE Trans. Audio Speech Lang. Process. 15, 3, 1009–1020. DOI: .Google ScholarDigital Library
- M. E. Davies, N. Degara, and M. D. Plumbley. 2009. Evaluation Methods for Musical Audio Beat Tracking Algorithms. Technical Report C4DM-TR-09-06. Centre for Digital Music, Queen Mary University of London.Google Scholar
- E. Davis. April. 2024. Benchmarks for automated commonsense reasoning: A survey. ACM Comput. Surv. 56, 4, 81:1–81:41. DOI: .Google ScholarDigital Library
- A. de Cheveigné. 2005. Pitch perception models. In C. J. Plack, R. R. Fay, A. J. Oxenham, and A. N. Popper (Eds.), Pitch. Springer, New York, NY, 169–233. DOI: .Google ScholarCross Ref
- A. de Cheveigné and H. Kawahara. 2002. YIN, a fundamental frequency estimator for speech and music. J Acoust. Soc. Am. 111, 4, 1917–1930. DOI: .Google ScholarCross Ref
- M. de Rijke. 23 November. 2018. Retrieval as interaction. Tony Kent Strix Annual Memorial Lecture, London, UK. Video of the lecture available at https://www.youtube.com/watch?v=Zb6YGoiPt8M.Google Scholar
- H. V. de Sompel, M. L. Nelson, R. Sanderson, L. Balakireva, S. Ainsworth, and H. Shankar. 2009. Memento: Time travel for the web. arXiv:0911.1112. DOI: .Google ScholarCross Ref
- C. D. DeAngelis and R. A. Musacchio. January. 2004. Access to JAMA. J Am. Med. Assoc. 291, 3, 370–371. DOI: .Google ScholarCross Ref
- M. E. DeBakey. September. 1991. The National Library of Medicine. Evolution of a premier information center. J. Am. Med. Assoc. 266, 9, 1252–1258. .Google ScholarCross Ref
- J. Degenhardt, S. Kallumadi, M. de Rijke, L. Si, A. Trotman, and Y. Xu (Eds.). 2017. Proceedings of the SIGIR 2017 Workshop on eCommerce (eCOM ’17), Vol. 2311. CEUR-WS.org.Google Scholar
- J. Degenhardt, G. D. Fabbrizio, S. Kallumadi, M. Kumar, A. Trotman, Y.-C. Lin, and H. Zhao (Eds.). 2018. Proceedings of the SIGIR 2018 Workshop On eCommerce, Vol. 2319. CEUR-WS.org.Google Scholar
- J. Degenhardt, S. Kallumadi, U. Porwal, and A. Trotman (Eds.). 2019. Proceedings of the SIGIR 2019 Workshop on eCommerce, Vol. 2410. CEUR-WS.org.Google Scholar
- Z. Dehghani Champiri, A. Asemi, and S. Siti Salwah Binti. 2019. Meta-analysis of evaluation methods and metrics used in context-aware scholarly recommender systems. Knowl. Inf. Syst. 61, 1147–1178. DOI: .Google ScholarDigital Library
- R. Delbouys, R. Hennequin, F. Piccoli, J. Royo-Letelier, and M. Moussallam. 2018. Music mood detection based on audio and lyrics with deep neural net. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 370–375. DOI: .Google ScholarCross Ref
- Y. Deldjoo, J. R. Trippas, and H. Zamani. 2021. Towards multi-modal conversational information seeking. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 1577–1587. DOI: .Google ScholarDigital Library
- Y. Deldjoo, D. Jannach, A. Bellogín, A. Difonzo, and D. Zanzonelli. 2024. Fairness in recommender systems: Research landscape and future directions. User Model. User Adapt. Interact. 34, 59–108. DOI: .Google ScholarDigital Library
- D. Demner-Fushman, S. Antani, M. Simson, and G. R. Thoma. 2012. Design and development of a multimodal biomedical information retrieval system. J. Comput. Sci. Eng. 6, 2, 168–177. DOI: .Google ScholarCross Ref
- D. E. Denning. May. 1976. A lattice model of secure information flow. Commun. ACM 19, 5, 236–243. DOI: .Google ScholarDigital Library
- P. J. Denning. March. 1982. ACM president’s letter: Electronic junk. Commun. ACM 25, 3, 163–165. DOI: .Google ScholarDigital Library
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. 2018. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805. DOI: .Google ScholarCross Ref
- S. Dhelim, N. Aung, M. A. Bouras, H. Ning, and E. Cambria. 2022. A survey on personality-aware recommendation systems. Artif. Intell. Rev. 55, 2409–2454. DOI: .Google ScholarDigital Library
- T. Di Noia, N. Tintarev, P. Fatourou, and M. Schedl. March. 2022. Recommender systems under European AI regulations. Commun. ACM 65, 4, 69–73. DOI: .Google ScholarDigital Library
- G. M. Di Nunzio and N. Ferro. 2005. DIRECT: A system for evaluating information access components of digital libraries. In A. Rauber, S. Christodoulakis, and A. M. Tjoa (Eds.), Proceedings of the 9th European Conference on Research and Advanced Technology for Digital Libraries (ECDL ’05), Vol. 3652: Lecture Notes in Computer Science. Springer, Berlin, 483–484. DOI: .Google ScholarCross Ref
- G. M. Di Nunzio, N. Ferro, G. J. F. Jones, and C. Peters. 2006. CLEF 2005: Ad hoc track overview. In C. Peters, F. C. Gey, J. Gonzalo, G. J. F. Jones, M. Kluck, B. Magnini, H. Müller, and M. de Rijke (Eds.), Accessing Multilingual Information Repositories: 6th Workshop of the Cross-Language Evaluation Forum (CLEF ’05). Revised Selected Papers, Vol. 4022: Lecture Notes in Computer Science. Springer, Berlin, 11–36. DOI: .Google ScholarCross Ref
- G. M. Di Nunzio, N. Ferro, T. Mandl, and C. Peters. 2007. CLEF 2006: Ad hoc track overview. In C. Peters, P. Clough, F. C. Gey, J. Karlgren, B. Magnini, D. W. Oard, M. de Rijke, and M. Stempfhuber (Eds.), Evaluation of Multilingual and Multi-modal Information Retrieval, Vol. 4730: Lecture Notes in Computer Science. Springer, Berlin, 21–34. DOI: .Google ScholarCross Ref
- G. M. Di Nunzio, N. Ferro, T. Mandl, and C. Peters. 2008. CLEF 2007: Ad hoc track overview. In C. Peters, V. Jijkoun, T. Mandl, H. Müller, D. W. Oard, A. Peñas, V. Petras, and D. Santos (Eds.), Advances in Multilingual and Multimodal Information Retrieval, Vol. 5152: Lecture Notes in Computer Science. Springer, Berlin, 13–32. DOI: .Google ScholarCross Ref
- F. Diaz. 2018. Indri. https://github.com/diazf/indri.Google Scholar
- F. Diaz, B. Mitra, M. D. Ekstrand, A. J. Biega, and B. Carterette. 2020. Evaluating stochastic rankings with expected exposure. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management. ACM, New York, NY, 275–284. DOI: .Google ScholarDigital Library
- D. Diefenbach, V. López, K. D. Singh, and P. Maret. 2018. Core techniques of question answering systems over knowledge bases: A survey. Knowl. Inf. Syst. 55, 3, 529–569. DOI: .Google ScholarDigital Library
- H. Ding, S. Zhang, D. Garigliotti, and K. Balog. 2018. Generating high-quality query suggestion candidates for task-based search. In G. Pasi, B. Piwowarski, L. Azzopardi, and A. Hanbury (Eds.), Advances in Information Retrieval, Vol. 10772: Lecture Notes in Computer Science. Springer, Cham, 625–631. DOI: .Google ScholarCross Ref
- G. A. Dingle and N. A. Carter. 2017. Smoke into sound: A pilot randomised controlled trial of a music cravings management program for chronic smokers attempting to quit. Music. Sci. 21, 2, 151–177. DOI: .Google ScholarCross Ref
- G. A. Dingle, J. Hodges, and A. Kunde. 2016. Tuned In emotion regulation program using music listening: Effectiveness for adolescents in educational settings. Front. Psychol. 7, 859. DOI: .Google ScholarCross Ref
- K. Dinnissen and C. Bauer. 2022. Fairness in music recommender systems: A stakeholder-centered mini review. Front. Big Data 5, 913608. DOI: .Google ScholarCross Ref
- S. Dixon. 2001. Automatic extraction of tempo and beat from expressive performances. J. New Music Res. 30, 1, 39–58. DOI: .Google ScholarCross Ref
- N. J. Dobbins, B. Han, W. Zhou, K. F. Lan, H. N. Kim, R. Harrington, O. Uzuner, and M. Yetisgen. 2023. LeafAI: Query generator for clinical cohort discovery rivaling a human programmer. J. Am. Med. Inform. Assoc. 30, 12, 1954–1964. DOI: .Google ScholarCross Ref
- M. Dong, F. Yuan, L. Yao, X. Wang, X. Xu, and L. Zhu. 2022. A survey for trust-aware recommender systems: A deep learning perspective. Knowl. Based Syst. 249, 108954. DOI: .Google ScholarCross Ref
- W. Dong, C. Moses, and K. Li. 2011. Efficient K-nearest neighbor graph construction for generic similarity measures. In Proceedings of the 20th International Conference on World Wide Web (WWW ’11). ACM, New York, NY, 577–586. DOI: .Google ScholarDigital Library
- X. L. Dong and A. Halevy. 2005. A platform for personal information management and integration. In Proceedings of the 2nd Biennial Conference on Innovative Data Systems Research. VLDB Endow. 26–30.Google Scholar
- X. L. Dong, X. He, A. Kan, X. Li, Y. Liang, J. Ma, Y. E. Xu, C. Zhang, T. Zhao, G. B. Saldana, S. Deshpande, A. M. Manduca, J. Ren, S. P. Singh, F. Xiao, H.-S. Chang, G. Karamanolakis, Y. Mao, Y. Wang, C. Faloutsos, A. McCallum, and J. Han. 2020. AutoKnow: Self-driving knowledge collection for products of thousands of types. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20). ACM, New York, NY, 2724–2734. DOI: .Google ScholarDigital Library
- G. Doras and G. Peeters. 2019. Cover detection using dominant melody embeddings. In Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 107–114. DOI: .Google ScholarCross Ref
- H. Drucker, D. Wang, and V. N. Vapnik. September. 1999. Support vector machines for spam categorization. IEEE Trans. Neural Netw. 10, 5, 1048–1054. DOI: .Google ScholarDigital Library
- H. Duan and B.-J. P. Hsu. 2011. Online spelling correction for query completion. In Proceedings of the 20th International Conference on World Wide Web (WWW ’11). ACM, New York, NY, 117–126. DOI: .Google ScholarDigital Library
- Z. Duan, B. Pardo, and C. Zhang. 2010. Multiple fundamental frequency estimation by modeling spectral peaks and non-peak regions. IEEE Trans. Audio Speech Lang. Process. 18, 8, 2121–2133. DOI: .Google ScholarCross Ref
- M. Dubiel, M. Halvey, L. Azzopardi, D. Anderson, and S. Daronnat. 2020. Conversational strategies: Impact on search performance in a goal-oriented task. In The Third International Workshop on Conversational Approaches to Information Retrieval. ACM, New York, NY, 1–7.Google Scholar
- S. Dudy and S. Bedrick. 2020. Are some words worth more than others? In Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems. Association for Computational Linguistics, 131–142. DOI: .Google ScholarCross Ref
- S. Dumais, E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins. 2003. Stuff I’ve seen: A system for personal information retrieval and re-use. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’03). ACM, New York, NY, 72–79. DOI: .Google ScholarDigital Library
- G. Dupret and M. Lalmas. 2013. Absence time and user engagement: Evaluating ranking functions. In S. Leonardi, A. Panconesi, P. Ferragina, and A. Gionis (Eds.), Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM ’13). ACM, New York, NY, 173–182. DOI: .Google ScholarDigital Library
- G. Dupret and C. Liao. 2010. A model to estimate intrinsic document relevance from the clickthrough logs of a web search engine. In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM ’10). ACM, New York, NY, 181–190. DOI: .Google ScholarDigital Library
- G. E. Dupret and B. Piwowarski. 2008. A user browsing model to predict search engine click data from past observations. In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’08). ACM, New York, NY, 331–338. DOI: .Google ScholarDigital Library
- S. Durand, J. P. Bello, B. David, and G. Richard. 2015. Downbeat tracking with multiple features and deep neural networks. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 409–413. DOI: .Google ScholarCross Ref
- A. Duran-Nelson, S. Gladding, J. Beattie, and L. J. Nixon. June. 2013. Should we Google it? Resource use by internal medicine residents for point-of-care clinical decision making. Acad. Med. 88, 6, 788–794. DOI: .Google ScholarCross Ref
- M. Dussin and N. Ferro. 2009. Managing the knowledge creation process of large-scale evaluation campaigns. In M. Agosti, J. Borbinha, S. Kapidakis, C. Papatheodorou, and G. Tsakonas (Eds.), Proceedings of the 13th European Conference on Research and Advanced Technology for Digital Libraries (ECDL ’09), Vol. 5714: Lecture Notes in Computer Science. Springer, Berlin, 63–74. DOI: .Google ScholarCross Ref
- S. Dwivedi and G. Chandra. February. 2016. A survey on cross language information retrieval. Int. J. Cybern. Inform. 5, 127–142. DOI: .Google ScholarCross Ref
- C. Dwork and M. Naor. 1993. Pricing via processing or combatting junk mail. In Proceedings of the 12th Annual International Cryptology Conference (CRYPTO ’92), Vol. 740: Lecture Notes in Computer Science. Springer, Berlin, 139–147. DOI: .Google ScholarCross Ref
- C. Dwork and A. Roth. 2014. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9, 3–4, 211–407. DOI: .Google ScholarDigital Library
- T. Eerola and J. K. Vuoskoski. 2011. A comparison of the discrete and dimensional models of emotion in music. Psychol. Music 39, 1, 18–49. DOI: .Google ScholarCross Ref
- T. Eerola and J. K. Vuoskoski. 2013. A review of music and emotion studies: Approaches, emotion models, and stimuli. Music Percept. 30, 3, 307–340. DOI: .Google ScholarCross Ref
- T. Eerola, O. Lartillot, and P. Toiviainen. January. 2009. Prediction of multidimensional emotional ratings in music from audio using multivariate regression models. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 621–626. DOI: .Google ScholarCross Ref
- B. Efron and R. J. Tibshirani. 1994. An Introduction to the Bootstrap. Chapman and Hall/CRC, Boca Raton, FL.Google Scholar
- D. E. Egan, J. R. Remde, L. M. Gomez, T. K. Landauer, J. Eberhardt, and C. C. Lochbaum. January. 1989. Formative design evaluation of SuperBook. ACM Trans. Inf. Syst. 7, 1, 30–57. DOI: .Google ScholarDigital Library
- L. Egghe. March. 2008. The measures precision, recall, fallout and miss as a function of the number of retrieved documents and their mutual interrelations. Inf. Process. Manag. 44, 2, 856–876. DOI: .Google ScholarDigital Library
- C. G. Eickhoff, C. Harris, A. P. de Vries, and P. Srinivasan. 2012. Quality through flow and immersion: Gamifying crowdsourced relevance assessments. In W. Hersh, J. Callan, Y. Maarek, and M. Sanderson (Eds.), Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’12). ACM, New York, NY, 871–880. DOI: .Google ScholarDigital Library
- P. Ekman. 1992. An argument for basic emotions. Cogn. Emot. 6, 3–4, 169–200. DOI: .Google ScholarCross Ref
- M. D. Ekstrand and D. Kluver. 2021. Exploring author gender in book rating and recommendation. User Model. User Adapt. Interact. 31, 377–420. DOI: .Google ScholarDigital Library
- M. D. Ekstrand, F. M. Harper, M. C. Willemsen, and J. A. Konstan. 2014. User perception of differences in recommender algorithms. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14). ACM, New York, NY, 161–168. DOI: .Google ScholarDigital Library
- M. C. Elish, W. Isaac, and R. S. Zemel (Eds.). 2021. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21). ACM, New York, NY. DOI: .Google ScholarDigital Library
- D. Ellis. 1993. Modeling the information-seeking patterns of academic researchers: A grounded theory approach. Libr. Q. 63, 4, 469–486. DOI: .Google ScholarCross Ref
- D. P. W. Ellis. 2007. The “Covers80” Cover Song Data Set. Retrieved December 12, 2018 from https://labrosa.ee.columbia.edu/projects/coversongs/covers80/.Google Scholar
- D. P. W. Ellis and G. E. Poliner. 2007. Identifying ‘cover songs’ with chroma features and dynamic programming beat tracking. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. IV. IEEE, 1429–1432. DOI: .Google ScholarCross Ref
- A. Elowsson. August. 2016. Beat tracking with a cepstroid invariant neural network. In Proceedings of the 17th International Society for Music Information Retrieval Conference (ISMIR ’16). International Society for Music Information Retrieval, New York, NY, 351–357. DOI: .Google ScholarCross Ref
- A. Elowsson and A. Friberg. 2013. Modelling perception of speed in music audio. In Proceedings of the 10th Sound and Music Computing Conference (SMC ’13), Stockholm, Sweden. Zenodo, 735–741. DOI: .Google ScholarCross Ref
- D. Elsweiler and I. Ruthven. 2007. Towards task-based personal information management evaluations. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’07). ACM, New York, NY, 23–30. DOI: .Google ScholarDigital Library
- D. Elsweiler, I. Ruthven, and C. Jones. May. 2007. Towards memory supporting personal information management tools. J. Am. Soc. Inf. Sci. Technol. 58, 7, 924–946. DOI: .Google ScholarCross Ref
- D. Elsweiler, M. Baillie, and I. Ruthven. 2008. Exploring memory in email refinding. ACM Trans. Inf. Syst. 26, 4, 21:1–21:36. DOI: .Google ScholarDigital Library
- D. Elsweiler, M. Baillie, and I. Ruthven. 2011. What makes re-finding information difficult? A study of email re-finding. In Proceedings of the 33rd European Conference on IR Research, Vol. 6611: Lecture Notes in Computer Science. Springer, Berlin, 568–579. DOI: .Google ScholarCross Ref
- D. C. Engelbart. October. 1962. Augmenting Human Intellect: A Conceptual Framework. Summary Report AFOSR-3223. Stanford Research Institute, Menlo Park, CA.Google Scholar
- S. Englehardt and A. Narayanan. 2016. Online tracking: A 1-million-site measurement and analysis. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS ’16). ACM, New York, NY, 1388–1401. DOI: .Google ScholarDigital Library
- S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer, A. Narayanan, and E. W. Felten. 2015. Cookies that give you away: The surveillance implications of web tracking. In Proceedings of the 24th International Conference on World Wide Web (WWW ’15). International World Wide Web Conferences Steering Committee, Geneva, Switzerland, 289–299. DOI: .Google ScholarDigital Library
- R. Epstein and R. E. Robertson. 2015. The search engine manipulation effect (SEME) and its possible impact on the outcomes of elections. Proc. Natl. Acad. Sci. U. S. A. 112, 33, E4512–E4521. DOI: .Google ScholarCross Ref
- O. Erling and I. Mikhailov. 2009. Virtuoso: RDF support in a native RDBMS. In R. de Virgilio, F. Giunchiglia, and L. Tanca (Eds.), Semantic Web Information Management. Springer, Berlin, 501–519. DOI: .Google ScholarCross Ref
- A. J. Eronen and A. P. Klapuri. 2009. Music tempo estimation with k-NN regression. IEEE Trans. Audio Speech Lang. Process. 18, 1, 50–57. DOI: .Google ScholarCross Ref
- European Commission. July. 2009. Commission Regulation (EC) No 607/2009 of 14 July 2009 laying down certain detailed rules for the implementation of Council Regulation (EC) No 479/2008 as regards protected designations of origin and geographical indications, traditional terms, labelling and presentation of certain wine sector products. Official Journal of the European Union, OJ L 193, 24.7.2009 , 52, 60–139.Google Scholar
- European Commission. January. 2019. Commission Delegated Regulation (EC) No 2019/33 of 17 October 2018 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards applications for protection of designations of origin, geographical indications and traditional terms in the wine sector, the objection procedure, restrictions of use, amendments to product specifications, cancellation of protection, and labelling and presentation. Official Journal of the European Union, OJ L 9, 11.1.2019, 62, 2–45.Google Scholar
- F. Fabbri, Y. Wang, F. Bonchi, C. Castillo, and M. Mathioudakis. April. 2022. Rewiring what-to-watch-next recommendations to reduce radicalization pathways. In Proceedings of the ACM Web Conference 2022 (WWW ’22). ACM, New York, NY, 2719–2728. DOI: .Google ScholarDigital Library
- A. Fabris, A. Esuli, A. Moreo, and F. Sebastiani. April. 2023a. Measuring fairness under unawareness of sensitive attributes: A quantification-based approach. J. Artif. Intell. Res. 76, 1117–1180. DOI: .Google ScholarDigital Library
- A. Fabris, G. Silvello, G. A. Susto, and A. J. Biega. 2023b. Pairwise fairness in ranking as a dissatisfaction measure. In T.-S. Chua, H. Lauw, L. Si, E. Terzi, and P. Tsaparas (Eds.), Proceedings of the 16th ACM International Conference on Web Search and Data Mining (WSDM ’23). ACM, New York, NY, 931–939. DOI: .Google ScholarDigital Library
- G. Faggioli and N. Ferro. 2021. System effect estimation by sharding: A comparison between ANOVA approaches to detect significant differences. In D. Hiemstra, M.-F. Moens, J. Mothe, R. Perego, M. Potthast, and F. Sebastiani (Eds.), Proceedings of the Advances in Information Retrieval: 43rd European Conference on IR Research (ECIR ’21)—Part II, Vol. 12657: Lecture Notes in Computer Science. Springer, Cham, 33–46. .Google ScholarCross Ref
- G. Faggioli, O. Zendel, J. S. Culpepper, N. Ferro, and F. Scholer. 2021. An enhanced evaluation framework for query performance prediction. In D. Hiemstra, M.-F. Moens, J. Mothe, R. Perego, M. Potthast, and F. Sebastiani (Eds.), Proceedings of the Advances in Information Retrieval: 43rd European Conference on IR Research (ECIR ’21)—Part I, Vol. 12656: Lecture Notes in Computer Science. Springer, Berlin, 115–129. DOI: .Google ScholarDigital Library
- G. Faggioli, L. Dietz, C. L. A. Clarke, G. Demartini, M. Hagen, C. Hauff, N. Kando, E. Kanoulas, M. Potthast, B. Stein, and H. Wachsmuth. 2023. Perspectives on large language models for relevance judgment. In M. Yoshioka, J. Kiseleva, and M. Aliannejadi (Eds.), Proceedings of the 9th ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR ’23). ACM, New York, NY, 39–50. DOI: .Google ScholarDigital Library
- G. Faggioli, L. Dietz, C. L. A. Clarke, G. Demartini, M. Hagen, C. Hauff, N. Kando, E. Kanoulas, M. Potthast, B. Stein, and H. Wachsmuth. 2024. Who determines what is relevant? Humans or AI? Why not both!. Commun. ACM 67, 4, 31–34. DOI: .Google ScholarDigital Library
- R. Fagin. 1978. On an authorization mechanism. ACM Trans. Database Syst. 3, 3, 310–319. DOI: .Google ScholarDigital Library
- J. C. Falmagne and L. Narens. June. 1983. Scales and meaningfulness of quantitative laws. Synthese 55, 3, 287–325. DOI: .Google ScholarCross Ref
- A. Fan, M. Lewis, and Y. Dauphin. 2018b. Hierarchical neural story generation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Vol. 1 (Long Papers). Association for Computational Linguistics, 889–898. DOI: .Google ScholarCross Ref
- Y. Fan, J. Guo, Y. Lan, J. Xu, C. Zhai, and X. Cheng. 2018a. Modeling diverse relevance patterns in ad-hoc retrieval. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 375–384. DOI: .Google ScholarDigital Library
- M. Faruqui and C. Dyer. 2014. Improving vector space word representations using multilingual correlation. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 462–471. DOI: .Google ScholarCross Ref
- C. M. Fausey and L. Boroditsky. 2008. English and Spanish speakers remember causal agents differently. In Proceedings of the Annual Meeting of the Cognitive Science Society, Vol. 30. Cognitive Science Society. Retrieved from https://escholarship.org/uc/item/4425600t.Google Scholar
- M. Federico and G. J. F. Jones. 2004. The CLEF 2003 cross-language spoken document retrieval track. In C. Peters, J. Gonzalo, M. Braschler, and M. Kluck (Eds.), Comparative Evaluation of Multilingual Information Access Systems (CLEF ’03), Vol. 3237: Lecture Notes in Computer Science. Springer, Berlin. DOI: .Google ScholarCross Ref
- C. Fellbaum (Ed.). 1998. WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA.Google Scholar
- F. Feng, Y. Yang, D. Cer, N. Arivazhagan, and W. Wang. 2020a. Language-agnostic BERT sentence embedding. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Vol. 1 (Long Papers). Association for Computational Linguistics, 878–891. DOI: .Google ScholarCross Ref
- Y. Feng, B. Hu, F. Lv, Q. Liu, Z. Zhang, and W. Ou. 2020b. ATBRG: Adaptive target-behavior relational graph network for effective recommendation. In J. Huang, Y. Chang, X. Cheng, J. Kamps, V. Murdock, J.-R. Wen, and Y. Liu (Eds.), Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 2231–2240. DOI: .Google ScholarDigital Library
- N. E. Fenton and J. Bieman. 2014. Software Metrics: A Rigorous & Practical Approach (3rd. ed.). Chapman and Hall/CRC, Boca Raton, FL.Google ScholarCross Ref
- A. Ferguson, C. S. Myers, R. J. Bartlett, H. Banister, F. C. Bartlett, W. Brown, N. R. Campbell, K. J. W. Craik, J. Drever, J. Guild, R. A. Houstoun, J. O. Irwin, G. W. C. Kaye, S. J. F. Philpott, L. F. Richardson, J. H. Shaxby, T. Smith, R. H. Thouless, and W. S. Tucker. 1940. Quantitative estimates of sensory events: Final report of the committee appointed to consider and report upon the possibility of quantitative estimates of sensory events. Adv. Sci. 2, 331–349.Google Scholar
- M. Ferrante, N. Ferro, and M. Maistro. 2014. Injecting user models and time into precision via Markov chains. In S. Geva, A. Trotman, P. Bruza, C. L. A. Clarke, and K. Järvelin (Eds.), Proceedings of the 37th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’14). ACM, New York, NY, 597–606. DOI: .Google ScholarDigital Library
- M. Ferrante, N. Ferro, and M. Maistro. 2015. Towards a formal framework for utility-oriented measurements of retrieval effectiveness. In J. Allan, W. B. Croft, A. P. de Vries, C. Zhai, N. Fuhr, and Y. Zhang (Eds.), Proceedings of the 1st ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR ’15). ACM, New York, NY, 21–30. DOI: .Google ScholarDigital Library
- M. Ferrante, N. Ferro, and M. Maistro. September. 2017a. AWARE: Exploiting evaluation measures to combine multiple assessors. ACM Trans. Inf. Syst. 36, 2, 20:1–20:38. DOI: .Google ScholarDigital Library
- M. Ferrante, N. Ferro, and S. Pontarollo. 2017b. Are IR evaluation measures on an interval scale? In J. Kamps, E. Kanoulas, M. de Rijke, H. Fang, and E. Yilmaz (Eds.), Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR ’17). ACM, New York, NY, 67–74. DOI: .Google ScholarDigital Library
- M. Ferrante, N. Ferro, and S. Pontarollo. 2018. Modelling randomness in relevance judgments and evaluation measures. In G. Pasi, B. Piwowarski, L. Azzopardi, and A. Hanbury (Eds.), Proceedings of the Advances in Information Retrieval: 40th European Conference on IR Research (ECIR ’18), Vol. 10772: Lecture Notes in Computer Science. Springer, Berlin, 197–209. DOI: .Google ScholarCross Ref
- M. Ferrante, N. Ferro, and E. Losiouk. 2019a. Stochastic relevance for crowdsourcing. In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra (Eds.), Proceedings of the Advances in Information Retrieval: 41st European Conference on IR Research (ECIR ’19) – Part I, Vol. 11437: Lecture Notes in Computer Science. Springer, Berlin, 755–762. DOI: .Google ScholarDigital Library
- M. Ferrante, N. Ferro, and S. Pontarollo. March. 2019b. A general theory of IR evaluation measures. IEEE Trans. Knowl. Data Eng. 31, 3, 409–422. DOI: .Google ScholarDigital Library
- M. Ferrante, N. Ferro, and E. Losiouk. June. 2020. How do interval scales help us with better understanding IR evaluation measures? Inf. Retr. J. 23, 3, 289–317. DOI: .Google ScholarDigital Library
- M. Ferrante, N. Ferro, and N. Fuhr. 2021. Towards meaningful statements in IR evaluation: Mapping evaluation measures to interval scales. IEEE Access 9, 136182–136216. DOI: .Google ScholarCross Ref
- M. Ferrante, N. Ferro, and N. Fuhr. December. 2022. Response to Moffat’s comment on “Towards meaningful statements in IR evaluation: Mapping evaluation measures to interval scales.” arXiv:2212.11735. DOI: .Google ScholarCross Ref
- M. Ferrari Dacrema, S. Boglio, P. Cremonesi, and D. Jannach. 2021. A troubling analysis of reproducibility and progress in recommender systems research. ACM Trans. Inf. Syst. 39, 2, 1–49. DOI: .Google ScholarDigital Library
- A. Ferraro. 2021. Music Recommender Systems: Taking into Account the Artists’ Perspective. Ph.D. thesis. Universitat Pompeu Fabra, Spain, Barcelona.Google Scholar
- A. Ferraro, X. Serra, and C. Bauer. 2021. Break the loop: Gender imbalance in music recommenders. In Proceedings of the 2021 Conference on Human Information Interaction and Retrieval (CHIIR ’21). ACM, New York, NY, 249–254. DOI: .Google ScholarDigital Library
- N. Ferro. February. 2017. Reproducibility challenges in information retrieval evaluation. ACM J Data Inf. Qual. 8, 2, 8:1–8:4. DOI: .Google ScholarDigital Library
- N. Ferro and D. Kelly. June. 2018. SIGIR initiative to implement ACM artifact review and badging. SIGIR Forum 52, 1, 4–10. DOI: .Google ScholarDigital Library
- N. Ferro and C. Peters. 2010. CLEF 2009 ad hoc track overview: TEL and Persian tasks. In C. Peters, G. M. Di Nunzio, M. Kurimo, T. Mandl, D. Mostefa, A. Peñas, and G. Roda (Eds.), Multilingual Information Access Evaluation Vol. I Text Retrieval Experiments—Tenth Workshop of the Cross-Language Evaluation Forum (CLEF ’09). Revised Selected Papers, Vol. 6241: Lecture Notes in Computer Science. Springer, Berlin, 13–35. DOI: .Google ScholarCross Ref
- N. Ferro and C. Peters (Eds.). 2019. Information Retrieval Evaluation in a Changing World—Lessons Learned from 20 Years of CLEF. Information Retrieval Series, Vol. 41. Springer, Berlin. DOI: .Google ScholarCross Ref
- N. Ferro and M. Sanderson. 2017. Sub-corpora impact on system effectiveness. In N. Kando, T. Sakai, H. Joho, H. Li, A. P. de Vries, and R. W. White (Eds.), Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 901–904. DOI: .Google ScholarDigital Library
- N. Ferro and M. Sanderson. 2019. Improving the accuracy of system performance estimation by using shards. In B. Piwowarski, M. Chevalier, E. Gaussier, Y. Maarek, J.-Y. Nie, and F. Scholer (Eds.), Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 805–814. DOI: .Google ScholarDigital Library
- N. Ferro and M. Sanderson. 2022. How do you test a test? A multifaceted examination of significance tests. In K. S. Candan, H. Liu, L. Akoglu, X. L. Dong, and J. Tang (Eds.), Proceedings of the 15th ACM International Conference on Web Search and Data Mining (WSDM ’22). ACM, New York, NY, 280–288. DOI: .Google ScholarDigital Library
- N. Ferro and G. Silvello. January. 2017. 3.5K runs, 5K topics, 3M assessments and 70M measures: What trends in 10 years of Adhoc-ish CLEF? Inf. Process. Manag. 53, 1, 175–202. DOI: .Google ScholarCross Ref
- N. Ferro, N. Fuhr, and A. Rauber. October. 2018a. Introduction to the special issue on reproducibility in information retrieval: Evaluation campaigns, collections, and analyses. ACM J. Data Inf. Qual. 10, 3, 9:1–9:4. DOI: .Google ScholarDigital Library
- N. Ferro, N. Fuhr, and A. Rauber. November. 2018b. Introduction to the special issue on reproducibility in information retrieval: Tools and infrastructures. ACM J. Data Inf. Qual. 10, 4, 14:1–14:4. DOI: .Google ScholarDigital Library
- N. Ferro, Y. Kim, and M. Sanderson. May. 2019. Using collection shards to study retrieval performance effect sizes. ACM Trans. Inf. Syst. 37, 3, 30:1–30:40. DOI: .Google ScholarDigital Library
- N. Ferro, J. Gonzalo, J. Karlgren, and H. Müller. 2024. The CLEF 2024 monster track: One lab to rule them all. In N. Goharian, N. Tonellotto, Y. He, A. Lipani, G. McDonald, C. Macdonald, and I. Ounis (Eds.), Advances in Information Retrieval (ECIR ’24), Vol. 14613: Lecture Notes in Computer Science. Springer, Cham. DOI: .Google ScholarDigital Library
- I. Fette, N. Sadeh, and A. Tomasic. 2007. Learning to detect phishing emails. In Proceedings of the 16th International Conference on World Wide Web (WWW ’07). ACM, New York, NY, 649–656. DOI: .Google ScholarDigital Library
- A. S. Fiksdal, A. Kumbamu, A. S. Jadhav, C. Cocos, L. A. Nelsen, J. Pathak, and J. B. McCormick. October. 2014. Evaluating the process of online health information searching: A qualitative approach to exploring consumer perspectives. J. Med. Internet Res. 16, 10, e224. https://www.jmir.org/2014/10/e224/.Google ScholarCross Ref
- A. Filipkowski. 2019. Redefining Visual Search in Adobe Stock by Creating Innovative Image Similarity Technology. Technical Report. Adobe Tech Blog.Google Scholar
- J. A. Fine and M. F. Hunt. 2023. Negativity and elite message diffusion on social media. Polit. Behav. 45, 3, 955–973. DOI: .Google ScholarCross Ref
- V. Fionda, O. Hartig, R. Abdolazimi, S. Amer-Yahia, H. Chen, X. Chen, P. Cui, J. Dalton, X. L. Dong, L. Espin-Noboa, W. Fan, M. Fritz, Q. Gan, J. Gao, X. Guo, T. Hahmann, J. Han, S. Han, E. Hruschka, L. Hu, J. Huang, U. Jaimini, O. Jeunen, Y. Jiang, F. Karimi, G. Karypis, K. Kenthapadi, H. Lakkaraju, H. W. Lauw, T. Le, T.-H. Le, D. Lee, G. Lee, L. Levontin, C.-T. Li, H. Li, Y. Li, J. C. Liao, Q. Liu, U. Lokala, B. London, S. Long, H. K. Mcginty, Y. Meng, S. Moon, U. Naseem, P. Natarajan, B. Omidvar-Tehrani, Z. Pan, D. Parekh, J. Pei, T. Peixoto, S. Pemberton, J. Poon, F. Radlinski, F. Rossetto, K. Roy, A. Salah, M. Sameki, A. Sheth, C. Shimizu, K. Shin, D. Song, J. Stoyanovich, D. Tao, J. Trippas, Q. Truong, Y.-C. Tsai, A. Uchendu, B. Van Den Akker, L. Wang, M. Wang, S. Wang, X. Wang, I. Weber, H. Weld, L. Wu, D. Xu, E. Y. Xu, S. Xu, B. Yang, K. Yang, E. Yom-Tov, J. Yoo, Z. Yu, R. Zafarani, H. Zamani, M. Zehlike, Q. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, L. Zhao, X. Zhao, and W. Zhu. 2023. Tutorials at the Web Conference 2023. In Companion Proceedings of the ACM Web Conference 2023 (WWW ’23 Companion). ACM, New York, NY, 648–658. DOI: .Google ScholarDigital Library
- N. Fiorini and Z. Lu, April. 2018. Personalized neural language models for real-world query auto completion. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 3 (Industry Papers). Association for Computational Linguistics, 208–215. DOI: .Google ScholarCross Ref
- N. Fiorini, K. Canese, G. Starchenko, E. Kireev, W. Kim, V. Miller, M. Osipov, M. Kholodov, R. Ismagilov, S. Mohan, J. Ostell, and Z. Lu. August. 2018. Best match: New relevance search for PubMed. PLoS Biol. 16, 8, e2005343. DOI: .Google ScholarCross Ref
- R. A. Fisher. 1925. Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh, UK.Google Scholar
- R. A. Fisher. 1935. The Design of Experiments. Oliver & Boyd, Edinburgh, UK.Google Scholar
- S. Flaxman, S. Goel, and J. M. Rao. 2016. Filter bubbles, echo chambers, and online news consumption. Public Opin. Q. 80, S1, 298–320. DOI: .Google ScholarCross Ref
- D. Fleder and K. Hosanagar. 2009. Blockbuster culture’s next rise or fall: The impact of recommender systems on sales diversity. Manage. Sci. 55, 5, 697–712. DOI: .Google ScholarDigital Library
- A. Flexer and T. Grill. 2016. The problem of limited inter-rater agreement in modelling music similarity. J. New Music Res. 45, 3, 239–251. DOI: .Google ScholarCross Ref
- A. Flexer and T. Lallai. 2019. Can we increase inter- and intra-rater agreement in modeling general music similarity? In Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands. ISMIR, 494–500. DOI: .Google ScholarCross Ref
- A. Flexer, T. Lallai, and K. Rašl. 2021. On evaluation of inter- and intra-rater agreement in music recommendation. Trans. Int. Soc. Music Inf. Retr. 4, 1, 182–194. DOI: .Google ScholarCross Ref
- K. Flynn. 2018. The Big Con: How Tech Companies Made a Killing by Fudging Their Numbers. Retrieved from https://mashable.com/article/silicon-valley-companies-misleading-metrics.Google Scholar
- P. W. Foltz and S. T. Dumais. 1992. Personalized information delivery: An analysis of information filtering methods. Commun. ACM 35, 12, 51–60. DOI: .Google ScholarDigital Library
- T. Formal, B. Piwowarski, and S. Clinchant. 2021. SPLADE: Sparse lexical and expansion model for first stage ranking. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 2288–2292. DOI: .Google ScholarDigital Library
- P. Forner, A. Peñas, E. Agirre, I. Alegria, C. Forascu, N. Moreau, P. Osenova, P. Prokopidis, P. Rocha, B. Sacaleanu, R. Sutcliffe, and E. Sang. January. 2008. Overview of the CLEF 2008 multilingual question answering track. In Proceedings of the 9th Cross-language Evaluation Forum Conference on Evaluating Systems for Multilingual and Multimodal Information Access (CLEF ’08), Vol. 5706: Lecture Notes in Computer Science. Springer-Verlag, Berlin, 262–295. DOI: .Google ScholarCross Ref
- S. Fox. February. 2011. Health Topics. Pew Research Center: Internet, Science & Tech. Retrieved April 25, 2021 from https://www.pewresearch.org/internet/2011/02/01/health-topics-2/.Google Scholar
- S. Fox and M. Duggan. January. 2013. Health Online 2013. Pew Research Center: Internet, Science & Tech. Retrieved September 22, 2020 from https://www.pewresearch.org/internet/2013/01/15/health-online-2013/.Google Scholar
- S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White. 2005. Evaluating implicit measures to improve web search. ACM Trans. Inf. Syst. 23, 2, 147–168. DOI: .Google ScholarDigital Library
- R. Francesco, R. Lior, and S. Bracha. 2022. Recommender systems: Techniques, applications, and challenges. In F. Ricci, L. Rokach, and Shapira, B. (Eds.), Recommender Systems Handbook. Springer, New York, NY, 1–35. DOI: .Google ScholarCross Ref
- E. Freeman and S. Fertig. 1995. Lifestreams: Organizing your electronic life. In R. Burke (Ed.), Papers from the AAAI Fall Symposium on AI Applications in Knowledge Navigation and Retrieval. AAAI Technical Report FS-95-03. Association for the Advancement of Artificial Intelligence, 38–44.Google Scholar
- E. Freeman and D. Gelernter. March. 1996. Lifestreams: A storage model for personal data. ACM SIGMOD Rec. 25, 80–86. DOI: .Google ScholarDigital Library
- J. Freire, N. Fuhr, and A. Rauber. 2016. Report from Dagstuhl Seminar 16041: Reproducibility of data-oriented experiments in e-science. Dagstuhl Reports 6, 1, 108–159. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Germany. DOI: .Google ScholarCross Ref
- Y. Freund, R. Iyer, R. E. Shapire, and Y. Singer. 1998. An efficient boosting algorithm for combining preferences. In Proceedings of the 15th International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco, CA, 170–178.Google Scholar
- M. Fricke. 2009. The knowledge pyramid: A critique of the DIKW hierarchy. J. Inf. Sci. 35, 2, 131–142. DOI: .Google ScholarDigital Library
- S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian. 2021. The (im)possibility of fairness: Different value systems require different mechanisms for fair decision making. Commun. ACM 64, 4, 136–143. DOI: .Google ScholarDigital Library
- B. Friedman and H. Nissenbaum. July. 1996. Bias in computer systems. ACM Trans. Inf. Syst. 14, 3, 330–347. DOI: .Google ScholarDigital Library
- M. Friedman. December. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 200, 675–701. DOI: .Google ScholarCross Ref
- M. Friedman. March. 1939. A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 34, 205, 109. DOI: .Google ScholarCross Ref
- M. Fröbe, J. H. Reimer, S. MacAvaney, N. Deckers, S. Reich, J. Bevendorff, B. Stein, M. Hagen, and M. Potthast. 2023. The information retrieval experiment platform. In H.-H. Chen, W.-J. (Edward) Duh, H.-H. Huang, M. P. Kato, J. Mothe, and B. Poblete (Eds.), Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’23). ACM, New York, NY, 2826–2836. DOI: .Google ScholarDigital Library
- A. Frummet, D. Elsweiler, and B. Ludwig. 2019. Detecting domain-specific information needs in conversational search dialogues. In Proceedings of the 3rd Workshop on Natural Language for Artificial Intelligence, Vol. 2521. CEUR-WS.org.Google Scholar
- G. Fu, C. Batchelor, M. Dumontier, J. Hastings, E. Willighagen, and E. Bolton. 2015. PubChemRDF: Towards the semantic annotation of PubChem compound and substance databases. J. Cheminform. 7, 34. DOI: .Google ScholarCross Ref
- N. Fuhr. December. 2012. Salton award lecture information retrieval as engineering science. SIGIR Forum 46, 2, 19–28. DOI: .Google ScholarDigital Library
- N. Fuhr. December. 2017. Some common mistakes in IR evaluation, and how they can be avoided. SIGIR Forum 51, 3, 32–41. DOI: .Google ScholarDigital Library
- G. W. Furnas, S. C. Deerwester, S. T. Dumais, T. K. Landauer, R. A. Harshman, L. A. Streeter, and K. E. Lochbaum. 1988. Information retrieval using a singular value decomposition model of latent semantic structure. In Y. Chiaramella (Ed.), Proceedings of the 11th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’88). ACM, New York, NY, 465–480. DOI: .Google ScholarDigital Library
- E. Gabber, M. Jakobsson, Y. Matias, and A. Mayer. 1998. Curbing junk e-mail via secure classification. In Proceedings of the 2nd International Conference on Financial Cryptography, Vol. 1465: Lecture Notes in Computer Science. Springer, Berlin, 198–213. DOI: .Google ScholarCross Ref
- A. Gabrielsson. 2001. Emotion perceived and emotion felt: Same or different? Music Sci. 5(1˙suppl), 123–147. DOI: .Google ScholarCross Ref
- J. Gaito. March. 1959. Non-parametric methods in psychological research. Psychol. Rep. 5, 1, 115–125. DOI: .Google ScholarCross Ref
- J. Gaito. 1980. Measurement scales and statistics: Resurgence of an old misconception. Psychol. Bull. 87, 3, 564–567. DOI: .Google ScholarCross Ref
- P. Galuščáková, D. W. Oard, J. Barrow, S. Nair, H.-C. Shing, E. Zotkina, R. Eskander, and R. Zhang. 2020. MATERIALizing cross-language information retrieval: A snapshot. In Proceedings of the Workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS ’20). European Language Resources Association, 14–21.Google Scholar
- C. A. Gao, F. M. Howard, N. S. Markov, E. C. Dyer, S. Ramesh, Y. Luo, and A. T. Pearson. 2023a. Comparing scientific abstracts generated by ChatGPT to real abstracts with detectors and blinded human reviewers. NPJ Digit. Med. 6, 1, 75. DOI: .Google ScholarCross Ref
- J. Gao, C. Xiong, P. Bennet, and N. Craswell. 2022. Neural Approaches to Conversational Information Retrieval. Springer, Cham. DOI: .Google ScholarCross Ref
- L. Gao, Z. Dai, and J. Callan. 2021. COIL: Revisit exact lexical match in information retrieval with contextualized inverted list. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 3030–3042. DOI: .Google ScholarCross Ref
- N. Gao, D. W. Oard, and M. Dredze. 2017. Support for interactive identification of mentioned entities in conversational speech. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 953–956. DOI: .Google ScholarDigital Library
- T. Gao, H. Yen, J. Yu, and D. Chen. May. 2023b. Enabling large language models to generate text with citations. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 6465–6488. DOI: .Google ScholarCross Ref
- Y. Gao, B. Zhu, W. Li, K. Li, Y. Wu, and F. Huang. 2019. Vocal melody extraction via DNN-based pitch estimation and salience-based pitch refinement. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019). IEEE, 1000–1004. DOI: .Google ScholarCross Ref
- F. Garcin, B. Faltings, O. Donatsch, A. Alazzawi, C. Bruttin, and A. Huber. 2014. Offline and online evaluation of news recommender systems at swissinfo.ch. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14). ACM, New York, NY, 169–176. DOI: .Google ScholarDigital Library
- P. L. Gardner. Winter. 1975. Scales and statistics. Rev. Educ. Res. 45, 1, 43–57. DOI: .Google ScholarCross Ref
- D. Gardner-Bonneau and H. E. Blanchard. 2007. Human Factors and Voice Interactive Systems. Springer, New York, NY. DOI: .Google ScholarCross Ref
- D. Garg, P. Gupta, P. Malhotra, L. Vig, and G. Shroff. 2019. Sequence and time aware neighborhood for session-based recommendations: STAN. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, (SIGIR ’19). ACM, New York, NY, 1069–1072. DOI: .Google ScholarDigital Library
- M. Ge, C. Delgado-Battenfeld, and D. Jannach. 2010. Beyond accuracy: Evaluating recommender systems by coverage and serendipity. In Proceedings of the 4th ACM Conference on Recommender Systems (RecSys ’10). ACM, New York, NY, 257–260. DOI: .Google ScholarDigital Library
- M. Ge, D. Jannach, F. Gedikli, and M. Hepp. 2012. Effects of the placement of diverse items in recommendation lists. In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS ’12). SciTePress, 201–208. DOI: .Google ScholarCross Ref
- Z. Ge, W. Zhou, J. Lute, and A. Ilardi. 2021. Relevance constrained re-ranking in sponsored listing recommendations. In Proceedings of ADKDD (ADKDD ’21). ACM, New York, NY. DOI: .Google Scholar
- J. Gemmell, G. Bell, and R. Lueder. January. 2006. MyLifeBits: A personal database for everything. Commun. ACM 49, 1, 88–95. DOI: .Google ScholarDigital Library
- A. Gersho and R. M. Gray. 1992. Vector Quantization and Signal Compression. Kluwer.Google Scholar
- F. Gey, R. Larson, N. Kando, J. Machado, and T. Sakai. July. 2010. NTCIR8-GeoTime overview: Evaluating geographic and temporal search. In Proceedings of NTCIR-8 Workshop. NTCIR, 147–153.Google Scholar
- F. Gey, R. Larson, J. Machado, and M. Yoshio. January. 2011. NTCIR9-GeoTime overview: Evaluating geographic and temporal search: Round 2. In Proceedings of NTCIR-9 Workshop. NTCIR, 9–17.Google Scholar
- F. C. Gey. 1994. Inferring probability of relevance using the method of logistic regression. In Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’94). Springer, London, UK, 222–231. DOI: .Google ScholarCross Ref
- F. C. Gey and A. Chen. February. 2001. TREC-9 cross-language information retrieval (English-Chinese) overview. In E. M. Voorhees and D. K. Harman (Eds.), Proceedings of the Ninth Text REtrieval Conference (TREC-9), Special Publication 500-249. National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
- F. C. Gey and D. W. Oard. February. 2002. The TREC-2001 cross-language information retrieval track: Searching Arabic using English, French or Arabic queries. In E. M. Voorhees and D. K. Harman (Eds.), Proceedings of the Tenth Text REtrieval Conference (TREC 2001), Special Publication 500-250. National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
- B. Gfeller, C. Frank, D. Roblek, M. Sharifi, M. Tagliasacchi, and M. Velimirović. 2020a. Pitch estimation via self-supervision. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3527–3531. DOI: .Google ScholarCross Ref
- B. Gfeller, C. Frank, D. Roblek, M. Sharifi, M. Tagliasacchi, and M. Velimirović. 2020b. SPICE: Self-supervised pitch estimation. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 1118–1128. DOI: .Google ScholarDigital Library
- D. G. Ghalandari and G. Ifrim. 2020. Examining the state-of-the-art in news timeline summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL ’20), July 5–10, 2020. Association for Computational Linguistics, 1322–1334. DOI: .Google ScholarCross Ref
- N. Ghanem, S. Leitner, and D. Jannach. 2022. Balancing consumer and business value of recommender systems: A simulation-based analysis. Electron. Commer. Res. Appl. 55, 101195. DOI: .Google ScholarDigital Library
- S. N. Ghasemtabar, M. Hosseini, I. Fayyaz, S. Arab, H. Naghashian, and Z. Poudineh. 2015. Music therapy: An effective approach in improving social skills of children with autism. Adv. Biomed. Res. 4, 157. DOI: .Google ScholarCross Ref
- D. Giampiccolo, P. Forner, J. Herrera, A. Peñas, C. Ayache, C. Forascu, V. Jijkoun, P. Osenova, P. Rocha, B. Sacaleanu, and R. Sutcliffe. 2008. Overview of the CLEF 2007 multilingual question answering track. In C. Peters, V. Jijkoun, T. Mandl, H. Müller, D. W. Oard, A. Peñas, V. Petras, and D. Santos (Eds.), Advances in Multilingual and Multimodal Information Retrieval, Vol. 5152: Lecture Notes in Computer Science. Springer, Berlin, 200–236. DOI: .Google ScholarCross Ref
- D. Gibbon, R. Moore, and R. Winski. 1997. Handbook of Standards and Resources for Spoken Language Systems. Walter de Gruyter.Google Scholar
- J. D. Gibbons and S. Chakraborti. 2011. Nonparametric Statistical Inference (5th. ed.). Chapman & Hall/CRC, Taylor and Francis Group, Boca Raton, FL.Google Scholar
- E. Gibney. January. 2020. This AI researcher is trying to ward off a reproducibility crisis. Nature 577, 14. DOI: .Google ScholarCross Ref
- L. Gienapp, H. Scells, N. Deckers, J. Bevendorff, S. Wang, J. Kiesel, S. Syed, M. Fröbe, G. Zucoon, B. Stein, M. Hagen, and M. Potthast. November. 2023. Evaluating generative ad hoc information retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24). ACM, New York, NY, 1916–1929. DOI: .Google ScholarDigital Library
- D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole. 1991. Semantic file systems. In Proceedings of the 13th ACM Symposium on Operating Systems Principles (SOSP ’91). ACM, New York, NY, 16–25. DOI: .Google ScholarDigital Library
- R. Gilabert, J. Barón, and À. Llanes. 2009. Manipulating cognitive complexity across task types and its impact on learners’ interaction during oral performance. Int. Rev. Appl. Linguist. Lang. Teach. 47, 3–4, 367–395. DOI: .Google ScholarCross Ref
- D. Gillick, S. Kulkarni, L. Lansing, A. Presta, J. Baldridge, E. Ie, and D. Garcia-Olano. 2019. Learning dense representations for entity retrieval. In Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL ). Association for Computational Linguistics, 528–537. DOI: .Google ScholarCross Ref
- A. Gilotte, C. Calauzènes, T. Nedelec, A. Abraham, and S. Dollé. 2018. Offline A/B testing for recommender systems. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM ’18). ACM, New York, NY, 198–206. DOI: .Google ScholarDigital Library
- A. Ginart, M. Guan, G. Valiant, and J. Y. Zou. 2019. Making AI forget you: Data deletion in machine learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.), Advances in Neural Information Processing Systems, Vol. 32. Curran Associates, Red Hook, NY.Google Scholar
- F. Giner. 2023. Information retrieval evaluation measures defined on some axiomatic models of preferences. ACM Trans. Inf. Syst. 42, 3, 1–35. DOI: .Google ScholarDigital Library
- C. Gini. 1936. On the measure of concentration with special reference to income and statistics. Colorado Coll. Publ. Gen. Ser. 208, 1, 73–79.Google Scholar
- A. Gkiokas and V. Katsouros. 2017. Convolutional neural networks for real-time beat tracking: A dancing robot application. In Proceedings of the 18th ISMIR Conference. ISMIR, 286–293. DOI: .Google ScholarCross Ref
- A. Gkiokas, V. Katsouros, and G. Carayannis. 2012a. Reducing tempo octave errors by periodicity vector coding and SVM learning. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), Porto, Portugal. ISMIR, 301–306. DOI: .Google ScholarCross Ref
- A. Gkiokas, V. Katsouros, G. Carayannis, and T. Stajylakis. 2012b. Music tempo estimation and beat tracking by applying source separation and metrical relations. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 421–424. DOI: .Google ScholarCross Ref
- A. Gkiokas, V. Katsouros, and G. Carayannis. 2016. Towards multi-purpose spectral rhythm features: An application to dance style, meter and tempo estimation. IEEE/ACM Trans. Audio Speech Lang. Process. 24, 11, 1885–1896. DOI: .Google ScholarDigital Library
- S. Goel, A. Broder, E. Gabrilovich, and B. Pang. 2010. Anatomy of the long tail: Ordinary people with extraordinary tastes. In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM ’10). ACM, New York, NY, 201–210. DOI: .Google ScholarDigital Library
- L. Goeuriot, L. Kelly, H. Suominen, L. Hanlen, A. Névéol, C. Grouin, J. Palotti, and G. Zuccon. 2015. Overview of the CLEF eHealth evaluation lab 2015. In J. Mothe, J. Savoy, J. Kamps, K. Pinel-Sauvagnat, G. Jones, E. San Juan, L. Capellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction, Vol. 9283: Lecture Notes in Computer Science. Springer, Cham, 429–443. DOI: .Google ScholarCross Ref
- L. Goeuriot, L. Kelly, H. Suominen, A. Névéol, A. Robert, E. Kanoulas, R. Spijker, J. Palotti, and G. Zuccon. August. 2017. CLEF 2017 eHealth evaluation lab overview. In Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF ’17), Vol. 10456: Lecture Notes in Computer Science. Springer, Cham, 291–303. DOI: .Google ScholarCross Ref
- L. Goeuriot, H. Suominen, L. Kelly, A. Miranda-Escalada, M. Krallinger, Z. Liu, G. Pasi, G. González Sáez, M. Viviani, and C. Xu. 2020. Overview of the CLEF eHealth evaluation lab 2020. In A. Arampatzis, E. Kanoulas, T. Tsikrika, S. Vrochidis, H. Joho, C. Lioma, C. Eickhoff, A. Névéol, L. Cappellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the 11th International Conference of the CLEF Association (CLEF ’20), Vol. 12260: Lecture Notes in Computer Science. Springer, Heidelberg, 255–271. DOI: .Google ScholarDigital Library
- A. Goker and J. Davies. 2009. Information Retrieval: Searching in the 21st Century. John Wiley & Sons.Google ScholarDigital Library
- D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. 1992. Using collaborative filtering to weave an information tapestry. Commun. ACM 35, 12, 61–70. DOI: .Google ScholarDigital Library
- M. Golebiewski and D. Boyd. 2019. Data Voids: Where Missing Data Can Easily Be Exploited. Technical Report. Data & Society Research Institute.Google Scholar
- E. Gómez and P. Herrera. 2006. The song remains the same: Identifying versions of the same piece using tonal descriptors. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 180–185. DOI: .Google ScholarCross Ref
- E. Gómez, B. Ong, and P. Herrera. 2006. Automatic tonal analysis from music summaries for version identification. In Audio Engineering Society (AES) 121st Convention, Paper no. 6902. Audio Engineering Society.Google Scholar
- E. Gómez, M. Blaauw, J. Bonada, P. Chandna, and H. Cuesta. 2018. Deep learning for singing processing: Achievements, challenges and impact on singers and listeners. arXiv:1807.03046. DOI: .Google ScholarCross Ref
- E. Gómez, A. Holzapfel, M. Miron, and B. L. T. Sturm, November. 2019. Fairness, accountability and transparency in music information research (FAT-MIR). In Tutorial at the International Society for Music Information Retrieval Conference. International Society for Music Information Retrieval, 20–21.Google Scholar
- E. Gómez, C. S. Zhang, L. Boratto, M. Salamó, and G. Ramos. 2022. Enabling cross-continent provider fairness in educational recommender systems. Future Gener. Comput. Syst. 127, 435–447. DOI: .Google ScholarDigital Library
- J. S. Gómez-Cañón, E. Cano, P. Herrera, and E. Gómez. 2020. Joyful for you and tender for us: The influence of individual characteristics and language on emotion labeling and classification. In Proceedings of the 21st International Society for Music Information Retrieval Conference, Montréal, Canada. ISMIR, 853–860. DOI: .Google ScholarCross Ref
- J. S. Gómez-Cañón, E. Cano, T. Eerola, P. Herrera, X. Hu, Y.-H. Yang, and E. Gómez. 2021a. Music emotion recognition: Toward new, robust standards in personalized and context-sensitive applications. IEEE Signal Process. Mag. 38, 6, 106–114. DOI: .Google ScholarCross Ref
- J. S. Gómez-Cañón, E. Cano, A. G. Pandrea, P. Herrera, and E. Gómez. 2021b. Language-sensitive music emotion recognition models: Are we really there yet? In Proceedings of the 46th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 576–580. DOI: .Google ScholarCross Ref
- J. S. Gómez-Cañón, E. Cano, Y.-H. Yang, P. Herrera, and E. Gómez. 2021c. Let’s agree to disagree: Consensus entropy active learning for personalized music emotion recognition. In Proceedings of the 22nd International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 237–245. DOI: .Google ScholarCross Ref
- J. S. Gómez-Cañón, N. Gutiérrez-Páez, L. Porcaro, E. Cano, P. Herrera-Boyer, A. Gkiokas, P. Santos, D. Hernández-Leo, C. Karreman, and E. Gómez. 2022. TROMPA-MER: An open dataset for personalized music emotion recognition. J. Intell. Inf. Syst. 60, 2, 549–577. DOI: .Google ScholarDigital Library
- C. A. Gomez-Uribe and N. Hunt. 2015. The Netflix recommender system: Algorithms, business value, and innovation. ACM Trans. Manag. Inf. Syst. 6, 4, 13:1–13:19. DOI: .Google ScholarDigital Library
- W. Gong, E.-P. Lim, and F. Zhu. August. 2021. Characterizing silent users in social media communities. Proc. Int. AAAI Conf. Web Soc. Media 9, 1, 140–149. DOI: .Google ScholarCross Ref
- J. Gonzalo and D. W. Oard. 2004. iCLEF 2004 track overview: Interactive cross-language question answering. In F. Borri, C. Peters, and N. Ferro (Eds.), Working Notes for CLEF 2004 Workshop Co-located with the 8th European Conference on Digital Libraries (ECDL 2004), Bath, UK, September 15–17, 2004. CEUR Workshop Proceedings, Vol. 1170. CEUR-WS.org.Google Scholar
- I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative adversarial networks. Commun. ACM 63, 11, 139–144. DOI: .Google ScholarDigital Library
- R. S. Goodman, J. R. Patrinely, C. A. Stone, E. Zimmerman, R. R. Donald, S. S. Chang, S. T. Berkowitz, A. P. Finn, E. Jahangir, E. A. Scoville, T. S. Reese, D. L. Friedman, J. A. Bastarache, Y. F. van der Heijden, J. J. Wright, F. Ye, N. Carter, M. R. Alexander, J. H. Choe, C. A. Chastain, J. A. Zic, S. N. Horst, I. Turker, R. Agarwal, E. Osmundson, K. Idrees, C. M. Kiernan, C. Padmanabhan, C. E. Bailey, C. E. Schlegel, L. B. Chambless, M. K. Gibson, T. J. Osterman, L. E. Wheless, and D. B. Johnson. 2023. Accuracy and reliability of chatbot responses to physician questions. JAMA Netw. Open 6, 10, e2336483. DOI: .Google ScholarCross Ref
- S. N. Goodman, D. Fanelli, and J. P. Ioannidis. 2016. What does research reproducibility mean? Sci. Transl. Med. 8, 341, 341ps12. DOI: .Google ScholarCross Ref
- C. Gormley and Z. Tong. 2015. Elasticsearch: The Definitive Guide: A Distributed Real-Time Search and Analytics Engine. O’Reilly Media.Google Scholar
- S. Gosper, J. R. Trippas, H. Richards, F. Allison, C. Sear, S. Khorasani, and F. Mattioli. 2021. Understanding the utility of digital flight assistants: A preliminary analysis. In Proceedings of the 3rd Conference on Conversational User Interfaces (CUI ’21). ACM, New York, NY, 32:1–32:5. DOI: .Google ScholarDigital Library
- A. Goswami, N. Chittar, and C. H. Sung. 2011. A study on the impact of product images on user clicks for online shopping. In Proceedings of the 20th International Conference Companion on World Wide Web (WWW ’11). ACM, New York, NY, 45–46. DOI: .Google ScholarDigital Library
- M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka. 2002. RWC music database: Popular, classical and jazz music databases. In Proceedings of the 3rd International Conference on Music Information Retrieval (ISMIR ’02), Vol. 2. ISMIR, 287–288. DOI: .Google ScholarCross Ref
- F. Gouyon and S. Dixon. 2005. A review of automatic rhythm description systems. Comput. Music J. 29, 1, 34–54. DOI: .Google ScholarDigital Library
- F. Gouyon, A. P. Klapuri, S. Dixon, M. Alonso, G. Tzanetakis, C. Uhle, and P. Cano. 2006. An experimental comparison of audio tempo induction algorithms. IEEE Trans. Audio Speech Lang. Process. 14, 5, 1832–1844. DOI: .Google ScholarDigital Library
- Govind and M. Spaniol. 2017. ELEVATE: A framework for entity-level event diffusion prediction into foreign language communities. In Proceedings of the 9th International ACM Web Science Conference (WebSci ’17). ACM, New York, NY, 111–120. DOI: .Google ScholarDigital Library
- C. Grady and M. Lease. 2010. Crowdsourcing document relevance assessment with Mechanical Turk. In C. Callison-Burch and M. Dredze (Eds.), Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk (CSLDAMT ’10). Association for Computational Linguistics, 172–179.Google Scholar
- D. Graff, C. Cieri, S. Strassel, and N. Martey. 1999. The TDT-3 text and speech corpus. In Proceedings of the DARPA Broadcast News Workshop. Morgan Kaufmann, 57–60.Google Scholar
- N. Gramunt, A. Desiré Morera, E. Gómez, P. Herrera, E. Nebot, K. Fauria, D. Piromalli, and J. L. Molinuevo. 2019. Lifesoundtrack: An intergenerational musical experience to promote wellbeing in people with dementia while increasing community awareness. In Proceedings of the 14th International Conference on Alzheimer’s and Parkinson’s Diseases, Lisbon, Portugal.Google Scholar
- G. Grätzer. 2003. General Lattice Theory (2nd. ed.). Birkhäuser, Basel.Google Scholar
- P. P. Griffiths and B. W. Wade. 1976. An authorization mechanism for a relational database system. ACM Trans. Database Syst. 1, 3, 242–255. DOI: .Google ScholarDigital Library
- P. Grosche, M. Müller, and J. Serrà. 2012. Audio content-based music retrieval. In M. Müller, M. Goto, and M. Schedl (Eds.), Multimodal Music Processing, Vol. 3. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 157–174. DOI: .Google ScholarCross Ref
- M. R. Grossman, G. V. Cormack, and A. Roegiest. 2016. TREC 2016 total recall track overview. In Proceedings of the TREC. National Institute of Standards and Technology. https://trec.nist.gov/pubs/trec25/papers/Overview-TR.pdf.Google Scholar
- A. Gruson, P. Chandar, C. Charbuillet, J. McInerney, S. Hansen, D. Tardieu, and B. Carterette. 2019. Offline evaluation to make decisions about playlist recommendation algorithms. In Proceedings of the 12th ACM International Conference on Web Search and Data Mining (WSDM ’19). ACM, New York, NY, 420–428. DOI: .Google ScholarDigital Library
- Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann, J. Gao, and H. Poon. 2021. Domain-specific language model pretraining for biomedical natural language processing. ACM Trans. Comput. Healthc. 3, 1, 1–23. DOI: .Google ScholarDigital Library
- Z. Guan and E. Cutrell. 2007. An eye tracking study of the effect of target rank on web search. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’07). ACM, New York, NY, 417–420. DOI: .Google ScholarDigital Library
- A. Gunawardana and G. Shani. 2015. Evaluating recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (2nd. ed.). Springer, Boston, MA, 265–308. DOI: .Google ScholarCross Ref
- A. Gunawardana, G. Shani, and S. Yogev. 2022. Evaluating recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 547–601. DOI: .Google ScholarCross Ref
- F. Guo, C. Liu, and Y. M. Wang. 2009. Efficient multiple-click models in web search. In R. Baeza-Yates, P. Boldi, B. A. Ribeiro-Neto, and B. B. Cambazoglu (Eds.), Proceedings of the 2nd ACM International Conference on Web Search and Data Mining (WSDM ’09). ACM, New York, NY, 124–131. DOI: .Google ScholarDigital Library
- J. Guo, Y. Fan, Q. Ai, and W. B. Croft. 2016. A deep relevance matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM ’16). ACM, New York, NY, 55–64. DOI: .Google ScholarDigital Library
- J. Guo, Y. Fan, L. Pang, L. Yang, Q. Ai, H. Zamani, C. Wu, W. B. Croft, and X. Cheng. 2020. A deep look into neural ranking models for information retrieval. Inf. Process. Manag. 57, 6, 1–20. DOI: .Google ScholarCross Ref
- D. Gupta, S. Kumari, A. Ekbal, and P. Bhattacharyya. 2018. MMQA: A multi-domain multi-lingual question-answering framework for English and Hindi. In N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, and T. Tokunaga (Eds.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC ’18), Miyazaki, Japan. European Language Resources Association (ELRA).Google Scholar
- M. Gupta and M. Bendersky. 2015. Information retrieval with verbose queries. Found. Trends Inf. Retr. 9, 3–4, 209–354. DOI: .Google ScholarCross Ref
- P. Gupta, R. E. Banchs, and P. Rosso. 2017. Continuous space models for CLIR. Inf. Process. Manag. 53, 2, 359–370. DOI: .Google ScholarDigital Library
- P. Gupta, T. Dreossi, J. Bakus, Y.-H. Lin, and V. Salaka. 2020. Treating cold start in product search by priors. In Companion Proceedings of the Web Conference 2020 (WWW ’20). ACM, New York, NY, 77–78. DOI: .Google ScholarDigital Library
- I. Guy. 2016. Searching by talking: Analysis of voice queries on mobile web search. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 35–44. DOI: .Google ScholarDigital Library
- I. Guy. 2018. The characteristics of voice search: Comparing spoken with typed-in mobile web search queries. ACM Trans. Information Syst. 36, 3, 30:1–30:28. DOI: .Google ScholarDigital Library
- I. Guy. 2022. Social recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 835–870. DOI: .Google ScholarCross Ref
- K. Haan, February. 2023. Top Website Statistics for 2023. Retrieved from https://www.forbes.com/advisor/business/software/website-statistics/.Google Scholar
- S. W. Hainsworth and M. D. Macleod. 2004. Particle filtering applied to musical tempo tracking. EURASIP J. Adv. Signal Process. 2004, 15, 927847. DOI: .Google ScholarDigital Library
- A. Halevy, P. Norvig, and F. Pereira. 2009. The unreasonable effectiveness of data. IEEE Intell. Syst. 24, 8–12. DOI: .Google ScholarDigital Library
- A. Halfaker, O. Keyes, D. Kluver, J. Thebault-Spieker, T. T. Nguyen, K. Shores, A. Uduwage, and M. Warncke-Wang. 2015. User session identification based on strong regularities in inter-activity time. In A. Gangemi, S. Leonardi, A. Panconesi, K. Gummadi, and C. Zhai (Eds.), Proceedings of the 24th International Conference on World Wide Web (WWW ’15). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 410–418. DOI: .Google ScholarDigital Library
- L. Han, E. Maddalena, A. Checco, C. Sarasua, U. Gadiraju, K. Roitero, and G. Demartini. 2020. Crowd worker strategies in relevance judgment tasks. In J. Caverlee, X. Hu, M. Lalmas, and W. Wang (Eds.), Proceedings of the 13th ACM International Conference on Web Search and Data Mining (WSDM ’20). ACM, New York, NY, 241–249. DOI: .Google ScholarDigital Library
- L. Han, K. Roitero, U. Gadiraju, C. Sarasua, A. Checco, E. Maddalena, and G. Demartini. May. 2021. The impact of task abandonment in crowdsourcing. IEEE Trans. Knowl. Data Eng. 33, 5, 2266–2279. DOI: .Google ScholarCross Ref
- D. J. Hand. 1996. Statistics and the theory of measurement. J. R. Stat. Soc. Ser. A Stat. Soc. 159, 3, 445–492. DOI: .Google ScholarCross Ref
- D. K. Harman. February. 1995. Overview of the Third Text REtrieval Conference (TREC-3). In Proceedings of the Third Text REtrieval Conference (TREC-3), Special Publication 500-225. National Institute of Standards and Technology, Washington, DC, 1–19.Google ScholarCross Ref
- D. K. Harman. 2011. Information Retrieval Evaluation. Morgan & Claypool Publishers.Google Scholar
- F. M. Harper and J. A. Konstan. 2015. The MovieLens datasets: History and context. ACM Trans. Interact. Intell. Syst. 5, 4, 19:1–19:19. DOI: .Google ScholarDigital Library
- Z. S. Harris. 1954. Distributional structure. Word 10, 2–3, 146–162. DOI: .Google ScholarCross Ref
- C. Harris and P. Srinivasan. February. 2013. Using hybrid methods for relevance assessment in TREC Crowd’12. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Twenty-First Text REtrieval Conference Proceedings (TREC 2012), Special Publication 500-298. National Institute of Standards and Technology, Washington, DC.Google Scholar
- J. Harrison and V. Beraquet. 2010. Clinical librarians, a new tribe in the UK: Roles and responsibilities. Health Info. Libr. J. 27, 2, 123–132. DOI: .Google ScholarCross Ref
- S. P. Harter. 1992. Psychological relevance and information science. J. Am. Soc. Inf. Sci. 43, 9, 602–615. .Google ScholarCross Ref
- W. M. Hartmann. 1996. Pitch, periodicity, and auditory organization. J. Acoust. Soc. Am. 100, 6, 3491–3502. DOI: .Google ScholarCross Ref
- D. Hawking. February. 2001. Overview of the TREC-9 web track. In E. M. Voorhees and D. K. Harman (Eds.), Proceedings of the Ninth Text REtrieval Conference (TREC-9), Special Publication 500-249. National Institute of Standards and Technology, Washington, DC, 87–103.Google Scholar
- D. Hawking. 2011. Enterprise search. In R. Baeza-Yates and B. Ribeiro-Neto (Eds.), Modern Information Retrieval: The Concepts and Technology Behind Search (2nd. ed.). Addison-Wesley, 645–686.Google Scholar
- D. Hawking and N. Craswell. February. 2002. Overview of the TREC-2001 web track. In E. M. Voorhees and D. K. Harman (Eds.), Proceedings of the Tenth Text REtrieval Conference (TREC 2001), Special Publication 500-250. National Institute of Standards and Technology, Washington, DC, 61–67.Google Scholar
- C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-Z. A. Huang, S. Dieleman, E. Elsen, J. Engel, and D. Eck. 2019. Enabling factorized piano music modeling and generation with the MAESTRO dataset. In International Conference on Learning Representations.Google Scholar
- R. B. Haynes, K. A. McKibbon, C. J. Walker, N. Ryan, D. Fitzgerald, and M. F. Ramsden. January. 1990. Online access to MEDLINE in clinical settings. A study of use and usefulness. Ann. Intern. Med. 112, 1, 78–84. DOI: .Google ScholarCross Ref
- R. B. Haynes, N. Wilczynski, K. A. McKibbon, C. J. Walker, and J. C. Sinclair. December. 1994. Developing optimal search strategies for detecting clinically sound studies in MEDLINE. J. Am. Med. Inform. Assoc. 1, 6, 447–458. DOI: .Google ScholarCross Ref
- J. He and W. W. Chu. 2010. A social network-based recommender system (SNRS). In N. Memon, J. J. Xu, D. L. Hicks, and H. Chen (Eds.), Data Mining for Social Network Data. Springer, Boston, MA, 47–74. DOI: .Google ScholarCross Ref
- J. He, M. Bron, and A. P. de Vries. 2013. Characterizing stages of a multi-session complex search task through direct and indirect query modifications. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 897–900. DOI: .Google ScholarDigital Library
- R. He. 2018. PinSage: A New Graph Convolutional Neural Network for Web-Scale Recommender Systems. Technical Report. Pinterest.Google Scholar
- R. He and J. McAuley. 2016. Fusing similarity models with Markov chains for sparse sequential recommendation. In Proceedings of the 16th IEEE International Conference on Data Mining (ICDM ’16). IEEE, 191–200. DOI: .Google ScholarCross Ref
- X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web (WWW ’17). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 173–182. DOI: .Google ScholarDigital Library
- M. Hearst. 2009. Search User Interfaces. Cambridge University Press.Google Scholar
- M. H. Heine. March. 1973. Distance between sets as an objective measure of retrieval effectiveness. Inf. Storage Retr. 9, 3, 181–198. DOI: .Google ScholarCross Ref
- B. M. Hemminger, D. Lu, K. Vaughan, and S. J. Adams. 2007. Information seeking behavior of academic scientists. J. Am. Soc. Inf. Sci. Technol. 58, 14, 2205–2225. DOI: .Google ScholarCross Ref
- D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. 2021. Measuring massive multitask language understanding. In S. Mohamed, K. Hofmann, A. Oh, N. Murray, and I. Titov (Eds.), Proceedings of the 9th International Conference on Learning Representations (ICLR ’21). OpenReview.net, https://openreview.net/group?id=ICLR.cc/2021/Conference.Google Scholar
- J. Henrich, S. J. Heine, and A. Norenzayan. 2010. The weirdest people in the world? Behav. Brain Sci. 33, 2–3, 61–83. DOI: .Google ScholarCross Ref
- J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. 2004. Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22, 1, 5–53. DOI: .Google ScholarDigital Library
- J. M. Hernández-Lobato, N. Houlsby, and Z. Ghahramani. 2014. Probabilistic matrix factorization with non-random missing data. In Proceedings of the 31st International Conference on Machine Learning (ICML ’14). JMLR.org, Sheffield, UK, 1512–1520.Google Scholar
- P. Herrera. 2018. MIRages: An Account of Music Audio Extractors, Semantic Description and Context-Awareness, in the Three Ages of MIR. Ph.D. thesis. Universitat Pompeu Fabra, Spain.Google Scholar
- W. Hersh. 1994. Relevance and retrieval evaluation: Perspectives from medicine. J. Am. Soc. Inf. Sci. 45, 3, 201–206. DOI: .Google ScholarCross Ref
- W. Hersh. 2024. Search still matters: Information retrieval in the era of generative AI. J. Am. Med. Inform. Assoc. ocae014. DOI: .Google ScholarCross Ref
- W. Hersh and E. Voorhees. February. 2009. TREC genomics special issue overview. Inf. Retr. 12, 1, 1–15. DOI: .Google ScholarDigital Library
- W. Hersh, J. Pentecost, and D. Hickam. 1996. A task-oriented approach to information retrieval evaluation. J. Am. Soc. Inf. Sci. 47, 1, 50–56. .Google ScholarCross Ref
- W. Hersh, A. Turpin, S. Price, D. Kraemer, D. Olson, B. Chan, and L. Sacherek. May. 2001. Challenging conventional assumptions of automated information retrieval with real users: Boolean searching and batch retrieval evaluations. Inf. Process. Manag. 37, 3, 383–402. DOI: .Google ScholarDigital Library
- W. R. Hersh and R. A. Greenes. October. 1990. SAPHIRE—An information retrieval system featuring concept matching, automatic indexing, probabilistic retrieval, and hierarchical relationships. Comput. Biomed. Res. 23, 5, 410–425. DOI: .Google ScholarDigital Library
- W. R. Hersh and D. Hickam. 1995a. Information retrieval in medicine: The SAPHIRE experience. J. Am. Soc. Inf. Sci. 46, 10, 743–747. DOI: .Google ScholarCross Ref
- W. R. Hersh and D. H. Hickam. 1995b. An evaluation of interactive Boolean and natural language searching with an online medical textbook. J. Am. Soc. Inf. Sci. 46, 7, 478–489. DOI: .Google ScholarCross Ref
- W. R. Hersh and D. H. Hickam. October. 1998. How well do physicians use electronic information retrieval systems? A framework for investigation and systematic review. J. Am. Med. Assoc. 280, 15, 1347–1352. DOI: .Google ScholarCross Ref
- W. R. Hersh, M. K. Crabtree, D. H. Hickam, L. Sacherek, C. P. Friedman, P. Tidmarsh, C. Mosbaek, and D. Kraemer. June. 2002. Factors associated with success in searching MEDLINE and applying evidence to answer clinical questions. J. Am. Med. Inform. Assoc. 9, 3, 283–293. DOI: .Google ScholarCross Ref
- K. Hevner. 1936. Experimental studies of the elements of expression in music. Am. J. Psychol. 48, 2, 246–268. DOI: .Google ScholarCross Ref
- T. Hey, S. Tansley, and K. Tolle (Eds.). 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research.Google Scholar
- B. Hidasi and A. Karatzoglou. 2018. Recurrent neural networks with top-k gains for session-based recommendations. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, 843–852. DOI: .Google ScholarDigital Library
- D. Hiemstra, C. Hauff, and L. Azzopardi. 2017. Exploring the query halo effect in site search: Leading people to longer queries. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 981–984. DOI: .Google ScholarDigital Library
- R. Higashinaka, K. Imamura, T. Meguro, C. Miyazaki, N. Kobayashi, H. Sugiyama, T. Hirano, T. Makino, and Y. Matsuo. 2014. Towards an open-domain conversational system fully based on natural language processing. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland. Dublin City University and Association for Computational Linguistics, 928–939.Google Scholar
- D. N. Hill, H. Nassif, Y. Liu, A. Iyer, and S. V. N. Vishwanathan. 2017. An efficient bandit algorithm for realtime multivariate optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’17). ACM, New York, NY, 1813–1821. DOI: .Google ScholarDigital Library
- Y. Hochberg and A. C. Tamhane. 1987. Multiple Comparison Procedures. John Wiley & Sons. DOI: .Google ScholarCross Ref
- J. Hockman, M. E. Davies, and I. Fujinaga. 2012. One in the jungle: Downbeat detection in hardcore, jungle, and drum and bass. In Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR ’12). ISMIR, 169–174. DOI: .Google ScholarCross Ref
- J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo, and G. Weikum. 2011a. Yago2: Exploring and querying world knowledge in time, space, context, and many languages. In Proceedings of the 20th International Conference Companion on World Wide Web (WWW ’11). ACM, New York, NY, 229–232. DOI: .Google ScholarDigital Library
- J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol, S. Thater, and G. Weikum. 2011b. Robust disambiguation of named entities in text. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP ’11). Association for Computational Linguistics, 782–792.Google Scholar
- J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. 2013. YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61. DOI: .Google ScholarDigital Library
- K. Hofmann, S. Whiteson, and M. de Rijke. 2011. Balancing exploration and exploitation in learning to rank online. In P. Clough, C. Foley, C. Gurrin, G. J. F. Jones, W. Kraaij, H. Lee, and V. Mudoch (Eds.), Advances in Information Retrieval (ECIR ’11), Vol. 6611: Lecture Notes in Computer Science. Springer, Berlin, 251–263. DOI: .Google ScholarCross Ref
- K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. 2013. Reusing historical interaction data for faster online learning to rank for IR. In S. Leonardi, A. Panconesi, P. Ferragina, and A. Gionis (Eds.), Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (WSDM ’13). ACM, New York, NY, 183–192. DOI: .Google ScholarDigital Library
- K. Hofmann, B. Mitra, F. Radlinski, and M. Shokouhi. 2014a. An eye-tracking study of user interactions with query auto completion. In Proceedings of the 23rd ACM International Conference on Information and Knowledge Management (CIKM ’14). ACM, New York, NY, 549–558. DOI: .Google ScholarDigital Library
- K. Hofmann, S. Whiteson, A. Schuth, and M. de Rijke. April. 2014b. Learning to rank for information retrieval from user interactions. ACM SIGWEB Newsl. 2014, Spring, 1–7. DOI: .Google ScholarDigital Library
- K. Hofmann, L. Li, and F. Radlinski. June. 2016. Online evaluation for information retrieval. Found Trends Inf. Retr. 10, 1, 1–117. DOI: .Google ScholarDigital Library
- T. Hofmann. 2004. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22, 1, 89–115. DOI: .Google ScholarDigital Library
- A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, J. E. L. Gayo, S. Kirrane, S. Neumaier, A. Polleres, R. Navigli, A.-C. N. Ngomo, S. M. Rashid, A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab, and A. Zimmermann. 2021. Knowledge graphs. ACM Comput. Surv. 54, 4, 1–37. DOI: .Google ScholarDigital Library
- C. Holland. April. 2005. Breakthrough Business Results with MVT: A Fast, Cost-Free, “Secret Weapon” for Boosting Sales, Cutting Expenses, and Improving Any Business Process. John Wiley & Sons, New York, NY.Google Scholar
- C. C. Holt. 2004. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 20, 1, 5–10. DOI: .Google ScholarCross Ref
- A. Holzapfel and Y. Stylianou. 2010. Scale transform in rhythmic similarity of music. IEEE Trans. Audio Speech Lang. Process. 19, 1, 176–185. DOI: .Google ScholarDigital Library
- A. Holzapfel, M. E. Davies, J. R. Zapata, J. L. Oliveira, and F. Gouyon. 2012. Selective sampling for beat tracking evaluation. IEEE Trans. Audio Speech Lang. Process. 20, 9, 2539–2548. DOI: .Google ScholarDigital Library
- A. Holzapfel, B. L. T. Sturm, and M. Coeckelbergh. 2018. Ethical dimensions of music information retrieval technology. Trans. Int. Soc. Music Inf. Retr. 1, 1, 44–55. DOI: .Google ScholarCross Ref
- J. Hong. January. 2012. The state of phishing attacks. Commun. ACM 55, 1, 74–81. DOI: .Google ScholarDigital Library
- L. Hong and M. Lalmas. 2019. Tutorial on. online user engagement: Metrics and optimization. In Companion Proceedings of the 2019 World Wide Web Conference (WWW ’19). ACM, New York, NY, 1303–1305. DOI: .Google ScholarDigital Library
- F. Hopfgartner, A. Hanbury, H. Müller, I. Eggel, K. Balog, T. Brodt, G. V. Cormack, J. Lin, J. Kalpathy-Cramer, N. Kando, M. P. Kato, A. Krithara, T. Gollub, M. Potthast, E. Viegas, and S. Mercer. November. 2018. Evaluation-as-a-service for the computational sciences: Overview and outlook. J. Data Inf. Qual. 10, 4, 1–32. DOI: .Google ScholarDigital Library
- A. M. Hopkins, J. M. Logan, G. Kichenadasse, and M. J. Sorich. 2023. Artificial intelligence chatbots will revolutionize how cancer patients access information: ChatGPT represents a paradigm-shift. JNCI Cancer Spectr. 7, 2, pkad010. DOI: .Google ScholarCross Ref
- Y. Hoshen and L. Wolf. 2018. Non-adversarial unsupervised word translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, 469–478. DOI: .Google ScholarCross Ref
- M. Hosseini, I. J. Cox, N. Milić-Frayling, G. Kazai, and V. Vinay. 2012. On aggregating labels from multiple crowd workers to infer relevance of documents. In R. Baeza-Yates, A. P. De Vries, H. Zaragoza, B. B. Cambazoglu, V. Murdock, R. Lempel, and F. Silvestri (Eds.), Advances in Information Retrieval, Vol. 7224: Lecture Notes in Computer Science. Springer, Berlin, 182–194. DOI: .Google ScholarCross Ref
- B.-J. Hsu and G. Ottaviano. 2013. Space-efficient data structures for top-k completion. In Proceedings of the 22nd International Conference on World Wide Web (WWW ’13). ACM, New York, NY, 583–594. DOI: .Google ScholarDigital Library
- C.-L. Hsu and J.-S. R. Jang. February. 2010. On the improvement of singing voice separation for monaural recordings using the MIR-1K dataset. IEEE Trans. Audio Speech Lang. Process. 18, 2, 310–319. DOI: .Google ScholarCross Ref
- J. C. Hsu. 1996. Multiple Comparisons. Theory and Methods. Chapman and Hall/CRC, New York. DOI: .Google ScholarCross Ref
- B. Hu, Z. Lu, H. Li, and Q. Chen. 2014. Convolutional neural network architectures for matching natural language sentences. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.), Proceedings of the 27th International Conference on Neural Information Processing Systems—Volume 2 (NIPS ’14). MIT Press, Cambridge, MA, 2042–2050.Google Scholar
- J. Hu, S. Ruder, A. Siddhant, G. Neubig, O. Firat, and M. Johnson. 2020a. Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalization. In Proceedings of the 37th International Conference on Machine Learning (ICML ’20). JMLR.org, 4411–4442.Google Scholar
- Q. Hu, H.-F. Yu, V. Narayanan, I. Davchev, R. Bhagat, and I. Dhillon. 2020b. Query transformation for multi-lingual product search. In The 2020 SIGIR Workshop on eCommerce, San Diego. ACM, New York, NY.Google Scholar
- R. Hu and P. Pu. 2011. Enhancing recommendation diversity with organization interfaces. In Proceedings of the 16th International Conference on Intelligent User Interfaces (IUI ’11). ACM, New York, NY, 347–350. DOI: .Google ScholarDigital Library
- S. Hu, C. Xiao, and Y. Ishikawa. January. 2018a. An efficient algorithm for location-aware query autocompletion. IEICE Trans. Inf. Syst. E101.D, 1, 181–192. DOI: .Google ScholarCross Ref
- X. Hu. 2010. Improving Music Mood Classification Using Lyrics, Audio and Social Tags. Ph.D. thesis. University of Illinois, Urbana, Illinois.Google Scholar
- X. Hu and Y.-H. Yang. 2017. Cross-dataset and cross-cultural music mood prediction: A case on Western and Chinese Pop Songs. IEEE Trans. Affect. Comput. 8, 2, 228–240. DOI: .Google ScholarDigital Library
- X. Hu, J. Downie, C. Laurier, M. Bay, and A. Ehmann. January. 2008a. The 2007 MIREX audio mood classification task: Lessons learned. In Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR ’08), Drexel University, Philadelphia, PA. ISMIR, 462–467. DOI: .Google ScholarCross Ref
- Y. Hu, Y. Koren, and C. Volinsky. 2008b. Collaborative filtering for implicit feedback datasets. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM ’08). IEEE, Washington, DC, 228–240. DOI: .Google ScholarDigital Library
- Y. Hu, C. Xiao, and Y. Ishikawa. 2018b. Context-sensitive query auto-completion with knowledge base. In Proceedings of the 10th Forum on Data Engineering and Information Management (the 16th Annual Meeting of Database Society of Japan), Awara, Japan.Google Scholar
- P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. 2013. Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM International Conference on Information & Knowledge Management (CIKM ’13). ACM, New York, NY, 2333–2338. DOI: .Google ScholarDigital Library
- Z. Huang and N. Mamoulis. July. 2017. Location-aware query recommendation for search engines at scale. In 15th International Symposium in Advances in Spatial and Temporal Databases, Vol. 10411: Lecture Notes in Computer Science. Springer, Cham, 203–220. DOI: .Google ScholarCross Ref
- Z. Huang, B. Cautis, R. Cheng, Y. Zheng, N. Mamoulis, and J. Yan. August. 2018. Entity-based query recommendation for long-tail queries. ACM Trans. Knowl. Discov. Data 12, 6, 1–24. DOI: .Google ScholarDigital Library
- Z. Huang, H. Bonab, S. M. Sarwar, R. Rahimi, and J. Allan. 2021. Mixed attention transformer for leveraging word-level knowledge to neural cross-lingual information retrieval. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM ’21). ACM, New York, NY, 760–770. DOI: .Google ScholarDigital Library
- K. Hui, A. Yates, K. Berberich, and G. de Melo. 2017. PACRR: A position-aware neural IR model for relevance matching. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark. Association for Computational Linguistics, 1049–1058. DOI: .Google ScholarCross Ref
- K. Hui, A. Yates, K. Berberich, and G. de Melo. 2018. Co-PACRR: A context-aware neural IR model for ad-hoc retrieval. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM ’18). ACM, New York, NY, 279–287. DOI: .Google ScholarDigital Library
- D. A. Hull. 1993. Using statistical testing in the evaluation of retrieval experiments. In R. Korfhage, E. Rasmussen, and P. Willett (Eds.), Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’93). ACM, New York, NY, 329–338. DOI: .Google ScholarDigital Library
- S. Humeau, K. Shuster, M.-A. Lachaux, and J. Weston. 2019. Real-Time Inference in Multi-Sentence Tasks with Deep Pretrained Transformers. DeepAI Technical Report.Google Scholar
- E. J. Humphrey, O. Nieto, and J. P. Bello. 2013. Data driven and discriminative projections for large-scale cover song identification. In Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR ’13), Curitiba, Brazil. ISMIR, 149–154. DOI: .Google ScholarCross Ref
- B. L. Humphreys, D. A. Lindberg, H. M. Schoolman, and G. O. Barnett. February. 1998. The unified medical language system: An informatics research collaboration. J. Am. Med. Inform. Assoc. 5, 1, 1–11. DOI: .Google ScholarCross Ref
- B. L. Humphreys, G. Del Fiol, and H. Xu. October. 2020. The UMLS knowledge sources at 30: Indispensable to current research and applications in biomedical informatics. J. Am. Med. Inform. Assoc. 27, 10, 1499–1501. DOI: .Google ScholarCross Ref
- P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. 2010. Zookeeper: Wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference (USENIXATC ’10). USENIX Association, 11.Google Scholar
- S. Huo, N. Arabzadeh, and C. L. A. Clarke. 2023. Retrieving supporting evidence for generative question answering. In Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region (SIGIR-AP ’23). ACM, New York, NY, 11–20. DOI: .Google ScholarDigital Library
- N. Hurley and M. Zhang. 2011. Novelty and diversity in top-N recommendation—Analysis and evaluation. ACM Trans. Internet Technol. 10, 4, 1–30 pages. DOI: .Google ScholarDigital Library
- F. Huszár, S. I. Ktena, C. O’Brien, L. Belli, A. Schlaikjer, and M. Hardt. December. 2021. Algorithmic amplification of politics on Twitter. Proc. Natl. Acad. Sci. U. S. A. 119, 1, e2025334119. DOI: .Google ScholarCross Ref
- P. Indyk and R. Motwani. 1998. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (STOC ’98). ACM, New York, NY, 604–613. DOI: .Google ScholarDigital Library
- P. Ingwersen and K. Järvelin. 2005. The Turn: Integration of Information Seeking and Retrieval in Context. Springer, Dordrecht. DOI: .Google ScholarCross Ref
- P. G. Ipeirotis and E. Gabrilovich. 2014. Quizz: Targeted crowdsourcing with a billion (potential) users. In C.-W. Chung, A. Broder, K. Shim, and T. Suel (Eds.), Proceedings of the 23rd International Conference on World Wide Web (WWW ’14). ACM, New York, NY, 143–154. DOI: .Google ScholarDigital Library
- A. Ismayilov, D. Kontokostas, S. Auer, J. Lehmann, and S. Hellmann. 2018. Wikidata through the eyes of DBpedia. Semant. Web. 9, 4, 493–503. DOI: .Google ScholarDigital Library
- P. K. Ito. 1980. 7 Robustness of ANOVA and MANOVA test procedures. Handb. Stat. 1, 199–236. DOI: .Google ScholarCross Ref
- M. Izawa. 2010. What Makes Viral Videos Viral?: Roles of Emotion, Impression, Utility, and Social Ties in Online Sharing Behavior. Master’s thesis. Johns Hopkins University.Google Scholar
- A. Jadhav, D. Andrews, A. Fiksdal, A. Kumbamu, J. B. McCormick, A. Misitano, L. Nelsen, E. Ryu, A. Sheth, S. Wu, and J. Pathak. July. 2014. Comparative analysis of online health queries originating from personal computers and smart devices on a consumer health information portal. J. Med. Internet Res. 16, 7, e160. DOI: .Google ScholarCross Ref
- A. H. Jadidinejad, C. Macdonald, and I. Ounis. September. 2021. The Simpson’s paradox in the offline evaluation of recommendation systems. ACM Trans. Inf. Syst. 40, 1, 1–22. DOI: .Google ScholarDigital Library
- A. Jaech and M. Ostendorf. July. 2018. Personalized language model for query auto-completion. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia. Association for Computational Linguistics, 700–705. DOI: .Google ScholarCross Ref
- F. Jahanbakhsh, A. H. Awadallah, S. T. Dumais, and X. Xu. 2020. Effects of past interactions on user experience with recommended documents. In Proceedings of the 2020 Conference on Human Information Interaction and Retrieval (CHIIR ’20). ACM, New York, NY, 153–162. DOI: .Google ScholarDigital Library
- D. Jannach and G. Adomavicius. 2016. Recommendations with a purpose. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16). ACM, New York, NY, 7–10. DOI: .Google ScholarDigital Library
- D. Jannach and G. Adomavicius. 2017. Price and profit awareness in recommender systems. In Proceedings of the ACM RecSys 2017 Workshop on Value-Aware and Multi-Stakeholder Recommendation.Google Scholar
- D. Jannach and C. Bauer. 2020. Escaping the McNamara fallacy: Towards more impactful recommender systems research. AI Mag. 41, 4, 79–95. DOI: .Google ScholarDigital Library
- D. Jannach and K. Hegelich. 2009. A case study on the effectiveness of recommendations in the mobile internet. In Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys ’09). ACM, New York, NY, 205–208. DOI: .Google ScholarDigital Library
- D. Jannach and M. Jugovac. 2019. Measuring the business value of recommender systems. ACM Trans. Manage. Inf. Syst. 10, 4, 1–23. DOI: .Google ScholarDigital Library
- D. Jannach and M. Ludewig. 2017. When recurrent neural networks meet the neighborhood for session-based recommendation. In Proceedings of the 11th Recommender Systems Conference (RecSys ’17). ACM, New York, NY, 306–310. DOI: .Google ScholarDigital Library
- D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. 2010. Recommender Systems—An Introduction. Cambridge University Press. DOI: .Google ScholarCross Ref
- D. Jannach, M. Zanker, M. Ge, and M. Gröning. 2012. Recommender systems in computer science and information systems—A landscape of research. In E-Commerce and Web Technologies: EC-Web 2012. Springer, Berlin, 76–87. DOI: .Google ScholarCross Ref
- D. Jannach, L. Lerche, and I. Kamehkhosh. 2015a. Beyond “hitting the hits”: Generating coherent music playlist continuations with the right tracks. In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys ’15). ACM, New York, NY, 187–194. DOI: .Google ScholarDigital Library
- D. Jannach, L. Lerche, I. Kamehkhosh, and M. Jugovac. 2015b. What recommenders recommend: An analysis of recommendation biases and possible countermeasures. User Model. User-Adapt. Interact. 25, 5, 427–491. DOI: .Google ScholarDigital Library
- D. Jannach, S. Naveed, and M. Jugovac. 2016a. User control in recommender systems: Overview and interaction challenges. In Proceedings of the 17th International Conference on Electronic Commerce and Web Technologies (EC-Web ’16). Springer, Cham, 21–33. DOI: .Google ScholarCross Ref
- D. Jannach, P. Resnick, A. Tuzhilin, and M. Zanker. 2016b. Recommender systems—Beyond matrix completion. Commun. ACM 59, 11, 94–102. DOI: .Google ScholarDigital Library
- D. Jannach, M. Ludewig, and L. Lerche. 2017. Session-based item recommendation in e-commerce: On short-term intents, reminders, trends, and discounts. User Model. User-Adapt. Interact. 27, 3–5, 351–392. DOI: .Google ScholarDigital Library
- D. Jannach, L. Lerche, and M. Zanker. 2018. Recommending based on implicit feedback. In P. Brusilovsky and D. He (Eds.), Social Information Access, Vol. 10100: Lecture Notes in Computer Science. Springer, Cham, 510–569. DOI: .Google ScholarCross Ref
- D. Jannach, S. Kallumadi, T. H. King, W. Luo, and S. Malmasi (Eds.). 2020. Proceedings of the SIGIR 2020 Workshop On eCommerce. CEUR-WS.org.Google Scholar
- D. Jannach, A. Manzoor, W. Cai, and L. Chen. 2021. A survey on conversational recommender systems. ACM Comput. Surv. 54, 5, 1–36. DOI: .Google ScholarDigital Library
- D. Jannach, P. Cremonesi, and M. Quadrana. 2022. Session-based recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd ed.). Springer, New York, NY, 301–224. DOI: .Google ScholarCross Ref
- B. J. Jansen, A. Spink, and V. Kathuria. 2006. How to define searching sessions on web search engines. In O. Nasraoui, M. Spiliopoulou, J. Srivastava, B. Mobasher, and B. M. Masand (Eds.), Advances in Web Mining and Web Usage Analysis, 8th International Workshop on Knowledge Discovery on the Web, WebKDD 2006, Philadelphia, PA, USA, August 20, 2006, Revised Papers, Vol. 4811: Lecture Notes in Computer Science. Springer, Berlin, 92–109. DOI: .Google ScholarCross Ref
- B. J. Jansen, A. Spink, C. Blakely, and S. Koshman. 2007. Defining a session on web search engines. J. Am. Soc. Inf. Sci. Technol. 58, 6, 862–871. DOI: .Google ScholarCross Ref
- K. Järvelin and J. Kekäläinen. October. 2002. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20, 4, 422–446. DOI: .Google ScholarDigital Library
- H. Jégou, M. Douze, and C. Schmid. 2011. Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1, 117–128. DOI: .Google ScholarDigital Library
- L. Jehl, F. Hieber, and S. Riezler. 2012. Twitter translation using translation-based cross-lingual retrieval. In Proceedings of the Seventh Workshop on Statistical Machine Translation (WMT ’12), Association for Computational Linguistics, 410–421.Google Scholar
- Z. Jia, S. Pramanik, R. S. Roy, and G. Weikum. 2021a. Complex temporal question answering on knowledge graphs. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM ’21), Virtual Event, Queensland, Australia, November 1–5, 2021. ACM, New York, NY, 792–802. DOI: .Google ScholarDigital Library
- C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le, Y. Sung, Z. Li, and T. Duerig. 2021b. Scaling up visual and vision-language representation learning with noisy text supervision. In Proceedings of the 38th International Conference on Machine Learning. JMLR.org, 4904–4916.Google Scholar
- C. Jiang, D. Yang, and X. Chen. 2020a. Learn a robust representation for cover song identification via aggregating local and global music temporal context. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), London, UK. IEEE, 1–6. DOI: .Google ScholarCross Ref
- J. Jiang and N. Ahuja. 2020. Response quality in human–chatbot collaborative systems. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1545–1548. DOI: .Google ScholarDigital Library
- J.-Y. Jiang, Y.-Y. Ke, P.-Y. Chien, and P.-J. Cheng. 2014. Learning user reformulation behavior for query auto-completion. In Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’14). ACM, New York, NY, 445–454. DOI: .Google ScholarDigital Library
- R. Jiang, S. Chiappa, T. Lattimore, A. György, and P. Kohli. 2019. Degenerate feedback loops in recommender systems. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’19). ACM, New York, NY, 383–390. DOI: .Google ScholarDigital Library
- Z. Jiang, A. El-Jaroudi, W. Hartmann, D. Karakos, and L. Zhao. May. 2020b. Cross-lingual information retrieval with BERT. In Proceedings of the Workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS2020), Marseille, France. European Language Resources Association, 26–31.Google Scholar
- Jimmy, G. Zuccon, J. Palotti, L. Goeuriot, and L. Kelly. 2018. Overview of the CLEF 2018 consumer health search task. In Working Notes of CLEF 2018—Conference and Labs of the Evaluation Forum, Avignon, France, September 10-14, 2018. CEUR-WS.org.Google Scholar
- Q. Jin, W. Kim, Q. Chen, D. C. Comeau, L. Yeganova, W. J. Wilbur, and Z. Lu. 2023a. MedCPT: Contrastive pre-trained transformers with large-scale PubMed search logs for zero-shot biomedical information retrieval. Bioinformatics 39, 11, btad651. DOI: .Google ScholarCross Ref
- Q. Jin, Z. Wang, C. S. Floudas, F. Chen, C. Gong, D. Bracken-Clarke, E. Xue, Y. Yang, J. Sun, and Z. Lu. 2023b. Matching patients to clinical trials with large language models. arXiv:2307.15051. DOI: .Google ScholarCross Ref
- T. Joachims. 2002. Optimizing search engines using clickthrough data. In O. Zaane, R. Goebel, D. Hand, D. Keim, and R. Ng (Eds.), Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’02). ACM, New York, NY, 133–142. DOI: .Google ScholarDigital Library
- T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. 2005. Accurately interpreting clickthrough data as implicit feedback. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’05). ACM, New York, NY, 154–161. DOI: .Google ScholarDigital Library
- T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. 2007. Evaluating the accuracy of implicit feedback from clicks and query reformulations in web search. ACM Trans. Inf. Syst. 25, 2, 7. DOI: .Google ScholarDigital Library
- T. Joachims, A. Swaminathan, and T. Schnabel. 2017. Unbiased learning-to-rank with biased feedback. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (WSDM ’17). ACM, New York, NY, 781–789. DOI: .Google ScholarDigital Library
- J. Johansen, T. Pedersen, and C. Johansen. 2021. Studying human-to-computer bias transference. AI Soc. 38, 1659–1683. DOI: .Google ScholarDigital Library
- J. Johnson, M. Douze, and H. Jégou. 2021. Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7, 3, 535–547. DOI: .Google ScholarCross Ref
- T. B. Johnson and C. Guestrin. 2018. Training deep models faster with robust, approximate importance sampling. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS ’18). Curran Associates, Red Hook, NY, 7276–7286.Google Scholar
- R. Jones, R. Kumar, B. Pang, and A. Tomkins. 2007. “I know what you did last summer”: Query logs and user privacy. In Proceedings of the 16th ACM Conference on Information and Knowledge Management (CIKM ’07). ACM, New York, NY, 909–914. DOI: .Google ScholarDigital Library
- S. M. Jones, M. Klein, M. C. Weigle, and M. L. Nelson. 2024. Summarizing web archive corpora via social media storytelling by automatically selecting and visualizing exemplars. ACM Trans. Web 18, 1, 1–48. DOI: .Google ScholarDigital Library
- M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. 2017. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. In R. Barzilay and K. Min-Yen (Eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, Canada. Association for Computational Linguistics, 1601–1611. DOI: .Google ScholarCross Ref
- A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. 2017. Bag of tricks for efficient text classification. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, Valencia, Spain. Association for Computational Linguistics, 427–431.Google Scholar
- A. Joulin, P. Bojanowski, T. Mikolov, H. Jégou, and E. Grave. 2018. Loss in translation: Learning bilingual word mapping with a retrieval criterion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium. Association for Computational Linguistics, 2979–2984. DOI: .Google ScholarCross Ref
- M. Jugovac and D. Jannach. 2017. Interacting with recommenders—Overview and research directions. ACM Trans. Interact. Intell. Syst. 7, 3, 1–46. DOI: .Google ScholarDigital Library
- M. Jugovac, D. Jannach, and L. Lerche. 2017. Efficient optimization of multiple recommendation quality factors according to individual user tendencies. Expert Syst. Appl. 81, 321–331. DOI: .Google ScholarDigital Library
- H. J. Jung and M. Lease. 2015. A discriminative approach to predicting assessor accuracy. In N. Fuhr, A. Rauber, G. Kazai, and A. Hanbury (Eds.), Advances in Information Retrieval. Proceedings of the 37th European Conference on IR Research (ECIR ’15), Vol. 9022: Lecture Notes in Computer Science. Springer, Cham, 159–171. DOI: .Google ScholarCross Ref
- P. N. Juslin. 2010. Handbook of Music and Emotion: Theory, Research, Applications. Oxford University Press, Oxford. DOI: .Google ScholarCross Ref
- P. N. Juslin. 2019. Musical Emotions Explained. Oxford University Press, Oxford. DOI: .Google ScholarCross Ref
- D. Kahneman. 2011. Thinking Fast and Slow. Farrar, Straus and Giroux.Google Scholar
- M. Kaiser, R. S. Roy, and G. Weikum. 2020. Conversational question answering over passages by leveraging word proximity networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 2129–2132. DOI: .Google ScholarDigital Library
- M. Kaisser, M. A. Hearst, and J. B. Lowe. 2008. Improving search results quality by customizing summary lengths. In Proceedings of Association for Computational Linguistics (ACL). Association for Computational Linguistics, 701–709.Google Scholar
- S. Kallumadi, T. H. King, S. Malmasi, and M. de Rijke. 2021. ECOM ’21: The SIGIR 2021 Workshop on eCommerce. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 2685–2688. DOI: .Google ScholarDigital Library
- E. Kamalloo, A. Jafari, X. Zhang, N. Thakur, and J. Lin. July. 2023. HAGRID: A Human–LLM collaborative dataset for generative information-seeking with attribution. arXiv:2307.16883. DOI: .Google ScholarCross Ref
- I. Kamehkhosh and D. Jannach. 2017. User perception of next-track music recommendations. In Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization (UMAP ’17). ACM, New York, NY, 113–121. DOI: .Google ScholarDigital Library
- M. Kaminskas and D. Bridge. 2016. Diversity, serendipity, novelty, and coverage: A survey and empirical analysis of beyond-accuracy objectives in recommender systems. ACM Trans. Interact. Intell. Syst. 7, 1, 1–42. DOI: .Google ScholarDigital Library
- M. Kamvar, M. Kellar, R. Patel, and Y. Xu. 2009. Computers and iPhones and mobile phones, oh my!: A logs-based comparison of search users on different devices. In Proceedings of the 18th International Conference on World Wide Web (WWW ’09). ACM, New York, NY, 801–810. DOI: .Google ScholarDigital Library
- N. Kando. 2007. Overview of the sixth NTCIR workshop. In Proceedings of the Sixth NTCIR Workshop.Google Scholar
- W. Kang and J. J. McAuley. 2018. Self-attentive sequential recommendation. In Proceedings of the 18th IEEE International Conference on Data Mining (ICDM ’18). IEEE, 197–206. DOI: .Google ScholarCross Ref
- N. Kanhabua, R. Blanco, and K. Nørvåg. 2015. Temporal information retrieval. Found. Trends Inf. Retr. 9, 2, 91–208. DOI: .Google ScholarDigital Library
- Y. Kano, M.-Y. Kim, M. Yoshioka, Y. Lu, J. Rabelo, N. Kiyota, R. Goebel, and K. Satoh. 2018. COLIEE-2018: Evaluation of the competition on legal information extraction and entailment. In New Frontiers in Artificial Intelligence, JSAI-isAI 2018, Vol. 11717: Lecture Notes in Computer Science. Springer, Cham, 177–192. DOI: .Google ScholarDigital Library
- E. Kanoulas, D. Li, L. Azzopardi, and R. Spijker. September. 2019. CLEF 2019 technology assisted reviews in empirical medicine overview. CEUR Workshop Proceedings, 2380, Article 250. CEUR-WS.org.Google Scholar
- K. Kapoor, V. Kumar, L. Terveen, J. A. Konstan, and P. Schrater. 2015. “I like to explore sometimes”: Adapting to dynamic user novelty preferences. In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys ’15). ACM, New York, NY, 19–26. DOI: .Google ScholarDigital Library
- D. Karakos, R. Zbib, W. Hartmann, R. Schwartz, and J. Makhoul. 2020. Reformulating information retrieval from speech and text as a detection problem. In Proceedings of the Workshop on Cross-Language Search and Summarization of Text and Speech, Marseille, France. European Language Resources Association, 38–43.Google Scholar
- S. Karimi, S. Pohl, F. Scholer, L. Cavedon, and J. Zobel. 2010. Boolean versus ranked querying for biomedical systematic reviews. BMC Med. Inform. Decis. Mak. 10, 1, 58. DOI: .Google ScholarCross Ref
- J. Karlgren, L. Dürlich, E. Gogoulou, L. Guillou, J. Nivre, M. Sahlgren, and A. Talman. 2023. ELOQUENT CLEF shared tasks for evaluation of generative language model quality. In N. Goharian, N. Tonellotto, Y. He, A. Lipani, G. McDonald, C. Macdonald, and I. Ounis (Eds.), Proceedings of the Advances in Information Retrieval: 46th European Conference on Information Retrieval, ECIR 2024, Part V , Glasgow, UK, March 24–28, 2024, Vol. 14612: Lecture Notes in Computer Science. Springer, Berlin, 459–465. .Google ScholarCross Ref
- R. M. Karp. 1972. Reducibility among combinatorial problems. In R. Miller and J. Thatcher (Eds.), Complexity of Computer Computations. Plenum Press, 85–103.Google Scholar
- V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih. 2020. Dense passage retrieval for open-domain question answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 6769–6781. DOI: .Google ScholarCross Ref
- A. Katharopoulos and F. Fleuret. 2018. Not all samples are created equal: Deep learning with importance sampling. In Proceedings of the 35th International Conference on Machine Learning. PMLR 80, 2525–2534.Google Scholar
- A. Kaushik. 2006. Experimentation and Testing: A Primer. Occam’s Razor. Retrieved from https://www.kaushik.net/avinash/experimentation-and-testing-a-primer/.Google Scholar
- V. Kayhan. 2015. Confirmation bias: Roles of search engines and search contexts. In Thirty Sixth International Conference on Information Systems. Association for Information Systems.Google Scholar
- K. Kayode and E. Ayetiran. October. 2018. Survey on cross-lingual information retrieval. Int. J. Sci. Eng. Res. 9, 484–491.Google Scholar
- G. Kazai, J. Kamps, M. Koolen, and N. Milić-Frayling. 2011. Crowdsourcing for book search evaluation: Impact of HIT design on comparative system ranking. In W.-Y. Ma, J.-Y. Nie, R. Baeza-Yates, T.-S. Chua, W. B. Croft (Eds.), Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 205–214. DOI: .Google ScholarDigital Library
- G. Kazai, J. Kamps, and N. Milić-Frayling. 2012. The face of quality in crowdsourcing relevance labels: Demographics, personality and labeling accuracy. In I. Ounis, I. Ruthven, B. Berendt, A. P. de Vries, and F. Wenfei (Eds.), Proceedings of the 21st International Conference on Information and Knowledge Management (CIKM ’12). ACM, New York, NY, 2583–2586. DOI: .Google ScholarDigital Library
- M. T. Keane, M. O’Brien, and B. Smyth. 2008. Are people biased in their use of search engines? Commun. ACM 51, 2, 49–52. DOI: .Google ScholarDigital Library
- J. Kekäläinen and K. Järvelin. November. 2002. Using graded relevance assessments in IR evaluation. J. Am. Soc. Inf. Sci. Technol. 53, 13, 1120–1129. DOI: .Google ScholarDigital Library
- D. Kelly. 2009. Methods for evaluating interactive information retrieval systems with users. Found. Trends Inf. Retr. 3, 1–2, 1–224. DOI: .Google ScholarDigital Library
- D. Kelly and J. Teevan. 2003. Implicit feedback for inferring user preference: A bibliography. SIGIR Forum 37, 2, 18–28. DOI: .Google ScholarDigital Library
- L. Kelly, L. Goeuriot, H. Suominen, T. Schreck, G. Leroy, D. Mowery, S. Velupillai, W. Chapman, D. Martinez, G. Zuccon, and J. Palotti. September. 2014. Overview of the ShARe/CLEF eHealth evaluation lab 2014. In Information Access Evaluation. Multilinguality, Multimodality, and Interaction (CLEF ’14), Vol. 8685: Lecture Notes in Computer Science. Springer, Cham, 172–191. DOI: .Google ScholarCross Ref
- L. Kelly, L. Goeuriot, H. Suominen, A. Névéol, J. Palotti, and G. Zuccon. September. 2016. Overview of the CLEF eHealth evaluation lab 2016. In Experimental IR Meets Multilinguality, Multimodality, and Interaction, CLEF 2016, Vol. 9822: Lecture Notes in Computer Science. Springer, Cham, 255–266. DOI: .Google ScholarCross Ref
- L. Kelly, H. Suominen, L. Goeuriot, M. Neves, E. Kanoulas, D. Li, L. Azzopardi, R. Spijker, G. Zuccon, H. Scells, and J. Palotti. 2019. Overview of the CLEF eHealth evaluation lab 2019. In F. Crestani, M. Braschler, J. Savoy, A. Rauber, H. Müller, D. E. Losada, G. Heinatz Bürki, L. Cappellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction: Proceedings of the 10th International Conference of the CLEF Association (CLEF ’19), Vol. 11696: Lecture Notes in Computer Science. Springer, Cham, 322–339. DOI: .Google ScholarDigital Library
- T. Kenter and M. de Rijke. 2017. Attentive memory networks: Efficient machine reading for conversational search. In SIGIR 1st International Workshop on Conversational Approaches to Information Retrieval (CAIR ’17), Tokyo, Japan. DOI: .Google ScholarCross Ref
- M. Khadkevich and M. Omologo. 2013. Large-scale cover song identification using chord profiles. In Proceedings of the 14th International Society for Music Information Retrieval Conference. Curitiba, Brazil. ISMIR, 233–238. DOI: .Google ScholarCross Ref
- M. Khadkevich, T. Fillon, G. Richard, and M. Omologo. 2012. A probabilistic approach to simultaneous extraction of beats and downbeats. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 445–448. DOI: .Google ScholarCross Ref
- F. A. Khan, E. Manis, and J. Stoyanovich. 2021. Translation tutorial: Fairness and friends. In Proceedings of the ACM Conference on Fairness, Accountability, and Transparency. ACM, New York, NY.Google Scholar
- S. Kharazmi, F. Scholer, D. Vallet, and M. Sanderson. June. 2016. Examining additivity and weak baselines. ACM Trans. Inf. Syst. 34, 4, 1–18. DOI: .Google ScholarDigital Library
- E. Kharitonov, C. Macdonald, P. Serdyukov, and I. Ounis. 2013. User model-based metrics for offline query suggestion evaluation. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 633–642. DOI: .Google ScholarDigital Library
- O. Khattab and M. Zaharia. 2020. ColBERT: Efficient and effective passage search via contextualized late interaction over BERT. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 39–48. DOI: .Google ScholarDigital Library
- S. Khenissi and O. Nasraoui. 2020. Modeling and Counteracting Exposure Bias in Recommender Systems. Electronic Theses and Dissertations. Paper 3182. University of Louisville. DOI: .Google ScholarCross Ref
- A. Khwileh, D. Ganguly, and G. J. F. Jones. January. 2016. Utilisation of metadata fields and query expansion in cross-lingual search of user-generated internet video. J. Artif. Intell. Res. 55, 1, 249–281. DOI: .Google ScholarCross Ref
- J. Kiesel, A. Bahrami, B. Stein, A. Anand, and M. Hagen. 2018. Toward voice query clarification. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 1257–1260. DOI: .Google ScholarDigital Library
- J. Kiesel, D. Spina, H. Wachsmuth, and B. Stein. 2021. The meant, the said, and the understood: Conversational argument search and cognitive biases. In Proceedings of the 3rd Conference on Conversational User Interfaces (CUI ’21). ACM, New York, NY, 1–5. DOI: .Google ScholarDigital Library
- J. Kim and W. B. Croft. 2009. Retrieval experiments using pseudo-desktop collections. In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM ’09). ACM, New York, NY, 1297–1306. DOI: .Google ScholarDigital Library
- J. Kim and W. B. Croft. 2010. Ranking using multiple document types in desktop search. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’10). ACM, New York, NY, 50–57. DOI: .Google ScholarDigital Library
- J. Kim, A. Bakalov, D. A. Smith, and W. B. Croft. 2010. Building a semantic representation for personal information. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM ’10). ACM, New York, NY, 1741–1744. DOI: .Google ScholarDigital Library
- J. Kim, W. B. Croft, D. A. Smith, and A. Bakalov. 2011a. Evaluating an associative browsing model for personal information. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM ’11). ACM, New York, NY, 647–652. DOI: .Google ScholarDigital Library
- J. W. Kim, J. Salamon, P. Li, and J. P. Bello. 2018. CREPE: A convolutional representation for pitch estimation. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada. IEEE, 161–165. DOI: .Google ScholarDigital Library
- S. Kim, H. Noveck, J. Galt, L. Hogshire, L. Willett, and K. O’Rourke. June. 2014. Searching for answers to clinical questions using Google versus evidence-based summary resources: A randomized controlled crossover study. Acad. Med. 89, 6, 940–943. DOI: .Google ScholarCross Ref
- Y. Kim, J. Seo, and W. B. Croft. 2011b. Automatic Boolean query suggestion for professional search. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 825–834. DOI: .Google ScholarDigital Library
- I. King, K.-T. Chen, O. Alonso, and M. Larson. May. 2016. Special issue: Crowd in intelligent systems. ACM Trans. Intell. Syst. Technol. 7, 4, 1–2. DOI: .Google ScholarDigital Library
- T. H. King, C. Arora, F. Guerin, S. Kelkar, and J. Massuda. 2021. The last mile: Taking query language identification from model ready to production. In Proceedings of SIGIR ECOM ’21. CEUR-WS.org.Google Scholar
- E. Kirshenbaum, G. Forman, and M. Dugan. 2012. A live comparison of methods for personalized article recommendation at Forbes.com. In Machine Learning and Knowledge Discovery in Databases, ECML PKDD ’12, Vol. 7524: Lecture Notes in Computer Science. Springer, Berlin, 51–66. DOI: .Google ScholarCross Ref
- K. Kishida and N. Kando. 2006. A hybrid approach to query and document translation using a pivot language for cross-language information retrieval. In C. Peters, F. C. Gey, J. Gonzalo, H. Müller, G. J. F. Jones, M. Kluck, B. Magnini, and M. de Rijke (Eds.), Accessing Multilingual Information Repositories, Vol. 4022: Lecture Notes in Computer Science. Springer, Berlin, 93–101. DOI: .Google ScholarCross Ref
- K. Kishida, K. Chen, S. Lee, K. Kuriyama, N. Kando, H. Chen, S. Myaeng, and K. Eguchi. 2004. Overview of CLIR task at the Fourth NTCIR workshop. In N. Kando and H. Ishikawa (Eds.), Proceedings of the Fourth NTCIR Workshop on Research in Information Access Technologies Information Retrieval, Question Answering and Summarization, NTCIR-4, National Center of Sciences, Tokyo, Japan, June 2–4, 2004. National Institute of Informatics (NII), Tokyo, Japan.Google Scholar
- N. Kitaev, Ł. Kaiser, and A. Levskaya. 2020. Reformer: The efficient transformer. arXiv:2001.04451. DOI: .Google ScholarCross Ref
- A. P. Klapuri. 2005. A perceptually motivated multiple-f0 estimation method. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. IEEE, 291–294. DOI: .Google ScholarCross Ref
- A. P. Klapuri. 2006. Multiple fundamental frequency estimation by summing harmonic amplitudes. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 216–221. DOI: .Google ScholarCross Ref
- A. P. Klapuri, A. J. Eronen, and J. T. Astola. 2005. Analysis of the meter of acoustic musical signals. IEEE Trans. Audio Speech Lang. Process. 14, 1, 342–355. DOI: .Google ScholarDigital Library
- J. Kleinberg. 2000. The small-world phenomenon: An algorithmic perspective. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing (STOC ’00). ACM, New York, NY, 163–170. DOI: .Google ScholarDigital Library
- J. Kleinberg, H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan. February. 2017. Human Decisions and Machine Predictions. Working Paper 23180. National Bureau of Economic Research.Google Scholar
- S. R. Klemmer, A. K. Sinha, J. Chen, J. A. Landay, N. Aboobaker, and A. Wang. 2000. SUEDE: A wizard of Oz prototyping tool for speech user interfaces. In Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology (UIST ’00). ACM, New York, NY, 1–10. DOI: .Google ScholarDigital Library
- B. Klimt and Y. Yang. 2004. The Enron corpus: A new dataset for email classification research. In Machine Learning: ECML 2004, Proceedings of the 15th European Conference on Machine Learning, Vol. 3201: Lecture Notes in Computer Science. Springer, Berlin, 217–226. DOI: .Google ScholarCross Ref
- M. Kluck. 2005. The domain-specific track in CLEF 2004: Overview of the results and remarks on the assessment process. In C. Peters, P. Clough, J. Gonzalo, G. J. F. Jones, M. Kluck, and B. Magnini (Eds.), Multilingual Information Access for Text, Speech and Images, Vol. 3491: Lecture Notes in Computer Science. Springer, Berlin, 260–270. DOI: .Google ScholarCross Ref
- M. Kluck and M. Stempfhuber. 2006. Domain-specific track CLEF 2005: Overview of results and approaches, remarks on the assessment analysis. In C. Peters, F. C. Gey, J. Gonzalo, H. Müller, G. J. F. Jones, M. Kluck, B. Magnini, and M. de Rijke (Eds.), Accessing Multilingual Information Repositories, Vol. 4022: Lecture Notes in Computer Science. Springer, Berlin, 212–221. DOI: .Google ScholarCross Ref
- P. Knees and M. Schedl. 2016. Music Similarity and Retrieval: An Introduction to Audio- and Web-based Strategies. Springer, Berlin. DOI: .Google ScholarCross Ref
- P. Knees, A. Faraldo, P. Herrera, R. Vogl, S. Böck, F. Hörschläger, and M. Le Goff. 2015. Two data sets for tempo estimation and key detection in electronic dance music annotated from user corrections. In Proceedings of the 16th International Society for Music Information Retrieval Conference. ISMIR, 364–370. DOI: .Google ScholarCross Ref
- B. P. Knijnenburg and M. C. Willemsen. 2015. Evaluating recommender systems with user experiments. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook. Springer, New York, NY, 309–352. DOI: .Google ScholarCross Ref
- B. P. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu, and C. Newell. 2012. Explaining the user experience of recommender systems. User Model. User-Adapt. Interact. 22, 441–504. DOI: .Google ScholarDigital Library
- S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras. 2012. DEAP: A database for emotion analysis using physiological signals. IEEE Trans. Affect. Comput. 3, 1, 18–31. DOI: .Google ScholarDigital Library
- R. Kohavi and R. Longbotham. March. 2011. Unexpected results in online controlled experiments. SIGKDD Explor. Newsl. 12, 2, 31–35. DOI: .Google ScholarDigital Library
- R. Kohavi, T. Crook, R. Longbotham, B. Frasca, R. Henne, J. L. Ferres, and T. Melamed. 2009. Online experimentation at Microsoft. In P. van der Putten, G. Melli, and B. Kitts (Eds.), Proceedings of the 3rd International Workshop on Data Mining Case Studies (DMCS ’09). ACM, New York, NY, 11–22.Google Scholar
- R. Kohavi, A. Deng, R. Longbotham, and Y. Xu. 2014. Seven rules of thumb for web site experimenters. In S. A. Macskassy, C. Perlich, J. Leskovec, W. Wang, and R. Ghani (Eds.), Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’14). ACM, New York, NY, 1857–1866. DOI: .Google ScholarDigital Library
- R. Kohavi, D. Tang, and Y. Xu. April. 2020. Trustworthy Online Controlled Experiments. A Practical Guide to A/B Testing. Cambridge University Press, Cambridge, UK. DOI: .Google ScholarCross Ref
- W. Kong, M. Bendersky, M. Najork, B. Vargo, and M. Colagrosso. 2020. Learning to cluster documents into workspaces using large scale activity logs. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20). ACM, New York, NY, 2416–2424. DOI: .Google ScholarDigital Library
- M. Koolen, S. Kumpulainen, and L. Melgar-Estrada. 2020. A workflow analysis perspective to scholarly research tasks. In Proceedings of the 2020 Conference on Human Information Interaction and Retrieval (CHIIR ’20). ACM, New York, NY, 183–192. DOI: .Google ScholarDigital Library
- B. Koopman and G. Zuccon. 2023. Dr ChatGPT tell me what I want to hear: How different prompts impact health answer correctness. In H. Bouamor, J. Pino, and K. Bali (Eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 15012–15022. DOI: .Google ScholarCross Ref
- B. Koopman, G. Zuccon, and P. Bruza. 2017. What makes an effective clinical query and querier? J. Assoc. Inf. Sci. Technol. 68, 11, 2557–2571. DOI: .Google ScholarDigital Library
- H. V. Koops, W. Bas De Haas, J. A. Burgoyne, J. Bransen, A. Kent-Muller, and A. Volk. 2019. Annotator subjectivity in harmony annotations of popular music. J. New Music Res. 48, 3, 232–252. DOI: .Google ScholarCross Ref
- Y. Koren. 2008. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’08). ACM, New York, NY, 426–434. DOI: .Google ScholarDigital Library
- Y. Koren. 2009. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’09). ACM, New York, NY, 447–456. DOI: .Google ScholarDigital Library
- Y. Koren, R. M. Bell, and C. Volinsky. 2009. Matrix factorization techniques for recommender systems. Computer 42, 8, 30–37. DOI: .Google ScholarDigital Library
- A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas. 2009. Releasing search queries and clicks privately. In Proceedings of the 18th International Conference on World Wide Web (WWW ’09). ACM, New York, NY, 171–180. DOI: .Google ScholarDigital Library
- F. Korzeniowski, S. Böck, and G. Widmer. 2014. Probabilistic extraction of beat positions from a beat activation function. In Proceedings of the 15th International Society for Music Information Retrieval Conference (ISMIR ’14). ISMIR, 513–518. DOI: .Google ScholarCross Ref
- P. Kouki, I. Fountalis, N. Vasiloglou, X. Cui, E. Liberty, and K. Al Jadda. 2020. From the lab to production: A case study of session-based recommendations in the home-improvement domain. In Proceedings of the 14th ACM Conference on Recommender Systems (RecSys ’20). ACM, New York, NY, 140–149. DOI: .Google ScholarDigital Library
- D. H. Krantz, R. D. Luce, P. Suppes, and A. Tversky. 1971. Foundations of Measurement. Additive and Polynomial Representations, Vol. 1. Academic Press, New York, NY.Google Scholar
- A. Krause and E. Horvitz. 2010. A utility-theoretic approach to privacy in online services. J. Artif. Intell. Res. 39, 1, 633–662. DOI: .Google ScholarCross Ref
- F. Krebs, S. Böck, and G. Widmer. 2013. Rhythmic pattern modeling for beat and downbeat tracking in musical audio. In Proceedings of the 14th International Society for Music Information Retrieval Conference. ISMIR, 227–232. DOI: .Google ScholarCross Ref
- F. Krebs, S. Böck, and G. Widmer. 2015. An efficient state-space model for joint tempo and meter tracking. In Proceedings of the 16th International Society for Music Information Retrieval Conference. ISMIR, 72–78. DOI: .Google ScholarCross Ref
- W. Krichene and S. Rendle. 2020. On sampled metrics for item recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’20). ACM, New York, NY, 1748–1757. DOI: .Google ScholarDigital Library
- K. H. Krippendorff. 2004. Content Analysis: An Introduction to Its Methodology. SAGE Publications.Google Scholar
- W. H. Kruskal and W. A. Wallis. December. 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 260, 583–621. DOI: .Google ScholarCross Ref
- T. Kudo and J. Richardson. 2018. SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Brussels, Belgium. Association for Computational Linguistics, 66–71. DOI: .Google ScholarCross Ref
- C. C. Kuhlthau. 1991. Inside the search process: Information seeking from the user’s perspective. J. Am. Soc. Inf. Sci. 42, 5, 361–371. DOI: .Google ScholarCross Ref
- T. S. Kuhn. 1996. The Structure of Scientific Revolutions (3rd. ed.). University of Chicago Press.Google Scholar
- S. Kum, C. Oh, and J. Nam. 2016. Melody extraction on vocal segments using multi-column deep neural networks. In Proceedings of the 17th International Society for Music Information Retrieval Conference. ISMIR, 819–825. DOI: .Google ScholarCross Ref
- R. Kumar, M. Kumar, N. Shah, and C. Faloutsos. 2018. Did we get it right? Predicting query performance in e-commerce search. In Proceedings of ECOM ’18, CEUR-WS.org.Google Scholar
- M. Kunaver and T. Požrl. May. 2017. Diversity in recommender systems—A survey. Knowl. Based Syst. 123, 154–162. DOI: .Google ScholarDigital Library
- O. Kurland and J. S. Culpepper. 2018. Fusion in information retrieval: SIGIR 2018 half-day tutorial. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 1383–1386. DOI: .Google ScholarDigital Library
- W. Kusa, O. E. Mendoza, P. Knoth, G. Pasi, and A. Hanbury. 2023. Effective matching of patients to clinical trials using entity extraction and neural re-ranking. J. Biomed. Inform. 144, 104444. DOI: .Google ScholarDigital Library
- A. Kutiyanawala, P. Verma, and Z. Yan. 2018. Towards a simplified ontology for better e-commerce search. In Proceedings of ECOM ’18, CEUR-WS.org.Google Scholar
- M. H. Kutner, C. J. Nachtsheim, J. Neter, and W. Li. 2005. Applied Linear Statistical Models (5th. ed.). McGraw-Hill/Irwin, New York.Google Scholar
- S. Kuzi, D. Carmel, A. Libov, and A. Raviv. 2017. Query expansion for email search. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 849–852. DOI: .Google ScholarDigital Library
- T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.-W. Chang, A. M. Dai, J. Uszkoreit, Q. Le, and S. Petrov. 2019. Natural questions: A benchmark for question answering research. Trans. Assoc. Comput. Linguist. 7, 452–466. DOI: .Google ScholarCross Ref
- A. Lakshman and P. Malik. 2010. Cassandra: A decentralized structured storage system. SIGOPS Oper. Syst. Rev. 44, 2, 35–40. DOI: .Google ScholarDigital Library
- M. Lalmas, H. O’Brien, and E. Yom-Tov. 2014. Measuring User Engagement. Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan & Claypool Publishers.Google Scholar
- M. Lamming, P. Brown, K. Carter, M. Eldridge, M. Flynn, G. Louie, P. Robinson, and A. Sellen. 1994. The design of a human memory prosthesis. Comput. J. 37, 3, 153–163. DOI: .Google ScholarCross Ref
- G. Lample and A. Conneau. 2019. Cross-lingual language model pretraining. In Advances in Neural Information Processing Systems (NIPS ’19). Curran Associates, Red Hook, NY, 7059–7069.Google Scholar
- G. Lample, A. Conneau, M. Ranzato, L. Denoyer, and H. Jégou. 2018. Word translation without parallel data. In 6th International Conference on Learning Representations (ICLR ’18), Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings. OpenReview.net.Google Scholar
- F. W. Lancaster. 1979. Information Retrieval Systems: Characteristics, Testing, and Evaluation (2nd. ed.). John Wiley & Sons, New York, NY.Google Scholar
- T. K. Landauer and M. L. Littman. 1991. A statistical method for language-independent representation of the topical content of text segments. In Proceedings of the 11th International Conference: Expert Systems and Their Applications. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=feaaf5b0b066862077cec9d61b24dc97f676c214.Google Scholar
- H. A. Landsberger. 1958. Hawthorne Revisited: Management and the Worker, Its Critics, and Developments in Human Relations in Industry. Cornell University, Ithaca, NY.Google Scholar
- M. Lansdale and E. Edmonds. 1992. Using memory for events in the design of personal filing systems. Int. J. Man Mach. Stud. 36, 1, 97–126. DOI: .Google ScholarDigital Library
- M. W. Lansdale. March. 1988. The psychology of personal information management. Appl. Ergon. 19, 1, 55–66. DOI: .Google ScholarCross Ref
- B. Larsen. 2019. The scholarly impact of CLEF 2010–2017. In N. Ferro and C. Peters (Eds.), Information Retrieval Evaluation in a Changing World. The Information Retrieval Series, Vol. 41. Springer, Cham, 547–554. DOI: .Google ScholarCross Ref
- S. A. Lastres. 2013. Rebooting Legal Research in a Digital Age. Technical Report. LexisNexis.Google Scholar
- N. K. Lathia. 2010. Evaluating Collaborative Filtering Over Time. Ph.D. thesis. University College London, UK.Google Scholar
- N. Lathia, S. Hailes, L. Capra, and X. Amatriain. 2010. Temporal diversity in recommender systems. In Proceedings of the 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’10). ACM, New York, NY, 210–217. DOI: .Google ScholarDigital Library
- S. Latifi, N. Mauro, and D. Jannach. 2020. Session-aware recommendation: A surprising quest for the state-of-the-art. Inf. Sci. 573, 291–315. DOI: .Google ScholarCross Ref
- C. Laurier. 2011. Automatic Classification of Musical Mood by Content-Based Analysis. Ph.D. thesis. Universitat Pompeu Fabra, Spain.Google Scholar
- V. Lavrenko and W. B. Croft. 2001. Relevance-based language models. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’01). ACM, New York, NY, 120–127. DOI: .Google ScholarDigital Library
- E. Law, P. N. Bennett, and E. Horvitz. 2011. The effects of choice in routing relevance judgments. In W.-Y. Ma, J.-Y. Nie, R. Baeza-Yates, T.-S. Chua, and W. Bruce Croft (Eds.), Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 1127–1128. DOI: .Google ScholarDigital Library
- D. Lawrie, J. Mayfield, D. W. Oard, and E. Yang. 2022. HC4: A new suite of test collections for ad hoc CLIR. In Advances in Information Retrieval, Proceedings of the 44th European Conference on Information Retrieval (ECIR ’22), Vol. 13185: Lecture Notes in Computer Science. Springer, Cham, 351–366. DOI: .Google ScholarDigital Library
- T. Lazovich, L. Belli, A. Gonzales, A. Bower, U. Tantipongpipat, K. Lum, F. Huszár, and R. Chowdhury. August. 2022. Measuring disparate outcomes of content recommendation algorithms with distributional inequality metrics. Patterns 3, 8, 100568. DOI: .Google ScholarCross Ref
- E. Le Merrer, G. Trédan, and A. Yesilkanat. 2023. Modeling rabbit-holes on YouTube. Soc. Netw. Anal. Min. 13, 1, 100. DOI: .Google ScholarCross Ref
- M. Lease and E. Yilmaz. April. 2013. Crowdsourcing for information retrieval: Introduction to the special issue. Inf. Retr. 16, 2, 91–100. DOI: .Google ScholarDigital Library
- Y. LeCun and Y. Bengio. 1998. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA, 255–258.Google Scholar
- J. Lee, N. J. Bryan, J. Salamon, Z. Jin, and J. Nam. 2020a. Disentangled multidimensional metric learning for music similarity. In 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020). IEEE, 6–10. DOI: .Google ScholarCross Ref
- J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. 2020b. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36, 4, 1234–1240. DOI: .Google ScholarCross Ref
- J. H. Lee. 1997. Analyses of multiple evidence combination. In N. J. Belkin, A. D. Narasimhalu, P. Willett, W. Hersh, F. Can, and E. M. Voorhees (Eds.), Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’97). ACM, New York, NY, 267–276. DOI: .Google ScholarDigital Library
- J.-S. Lee and J. Hsiang. 2019. PatentBERT: Patent classification with fine-tuning a pre-trained BERT model. arXiv:1906.02124. DOI: .Google ScholarCross Ref
- S. Lee, S.-H. Myaeng, H. Kim, J. Seo, B. Lee, and S. Cho. January. 2002. Characteristics of the Korean test collection for CLIR in NTCIR-3. In Proceedings of the Third NTCIR Workshop. National Institute of Informatics.Google Scholar
- E. L. Lehmann. December. 1993. The Fisher, Neyman–Pearson theories of testing hypotheses: One theory or two? J. Am. Stat. Assoc. 88, 424, 1242–1249. DOI: .Google ScholarCross Ref
- J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. 2015. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6, 2, 167–195. DOI: .Google ScholarCross Ref
- D. B. Lenat. 1995. CYC: A large-scale investment in knowledge infrastructure. Commun. ACM 38, 11, 32–38. DOI: .Google ScholarDigital Library
- F. Lerdahl and R. S. Jackendoff. 1996. A Generative Theory of Tonal Music. MIT Press.Google Scholar
- M. Lesk. 1986. Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone. In Proceedings of the 5th Annual International Conference on Systems Documentation (SIGDOC ’86). ACM, New York, NY, 24–26. DOI: .Google ScholarDigital Library
- V. I. Levenshtein. February. 1966. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10, 707–710.Google Scholar
- M. Levy. 2011. Improving perceptual tempo estimation with crowd-sourced annotations. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR ’11), Miami. ISMIR, 317–322. DOI: .Google ScholarCross Ref
- D. D. Lewis and K. A. Knowles. 1997. Threading electronic mail: A preliminary case study. Inf. Process. Manag. 33, 2, 209–217. DOI: .Google ScholarDigital Library
- M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer. 2020a. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 7871–7880. DOI: .Google ScholarCross Ref
- P. Lewis, B. Oğuz, R. Rinott, S. Riedel, and H. Schwenk. 2019. MLQA: Evaluating cross-lingual extractive question answering. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 7315–7330. DOI: .Google ScholarCross Ref
- P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela. 2020b. Retrieval-augmented generation for knowledge-intensive NLP tasks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Proceedings of the 34th Annual Conference on Neural Information Processing Systems (NIPS ’20). Curran Associates, Red Hook, NY, 9459–9474.Google Scholar
- M. Ley. 2009. DBLP: Some lessons learned. Proc. VLDB Endow. 2, 2, 1493–1500. DOI: .Google ScholarDigital Library
- B. Li and P. Cheng. 2018. Learning neural representation for CLIR with adversarial framework. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 1861–1870. DOI: .Google ScholarCross Ref
- C. Li, M. Zhang, M. Bendersky, H. Deng, D. Metzler, and M. Najork. 2019a. Multi-view embedding-based synonyms for email search. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 575–584. DOI: .Google ScholarDigital Library
- C. Li, A. Yates, S. MacAvaney, B. He, and Y. Sun. August. 2023a. PARADE: Passage representation aggregation for document reranking. ACM Trans. Inf. Syst. 42, 2, 1–26. DOI: .Google ScholarDigital Library
- D. Li and M. de Rijke. 2023. Extending label aggregation models with a Gaussian process to denoise crowdsourcing labels. In H.-H. Chen, E. W.-J. Duh, H.-H. Huang, M. P. Kato, J. Mothe, and B. Poblete (Eds.), Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’23). ACM, New York, NY, 729–738. DOI: .Google ScholarDigital Library
- D. Li, Z. Ren, and E. Kanoulas. 2021. CrowdGP: A Gaussian process model for inferring relevance from crowd annotations. In J. Leskovec, M. Grobelnik, M. Najork, J. Tang, and Z. Leila (Eds.), Proceedings of the Web Conference 2021 (WWW ’21). ACM, New York, NY, 1821–1832. DOI: .Google ScholarDigital Library
- H. Li. 2011. A short introduction to learning to rank. IEICE Trans. Inf. Syst. 94, 10, 1854–1862. DOI: .Google ScholarCross Ref
- H. Li. 2022. Learning to Rank for Information Retrieval and Natural Language Processing. Springer Nature.Google Scholar
- J. Li, S. Huffman, and A. Tokuda. 2009. Good abandonment in mobile and PC internet search. In J. Allan, J. Aslam, M. Sanderson, C. Zhai, and J. Zobel (Eds.), Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’09). ACM, New York, NY, 43–50. DOI: .Google ScholarDigital Library
- J. Li, C. Liu, J. Wang, L. Bing, H. Li, X. Liu, D. Zhao, and R. Yan. 2020. Cross-lingual low-resource set-to-description retrieval for global e-commerce. In The Thirty-Fourth AAAI Conference on Artificial Intelligence AAAI ’20, New York, NY, February 7–12, 2020. AAAI Press, Palo Alto, CA, 8212–8219. DOI: .Google ScholarCross Ref
- L. Li, H. Deng, A. Dong, Y. Chang, H. Zha, and R. Baeza-Yates. 2015. Analyzing user’s sequential behavior in query auto-completion via Markov processes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 123–132. DOI: .Google ScholarDigital Library
- L. Li, H. Deng, J. Chen, and Y. Chang. 2017a. Learning parametric models for context-aware query auto-completion via Hawkes processes. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM ’17). ACM, New York, NY, 131–139. DOI: .Google ScholarDigital Library
- L. Li, H. Deng, A. Dong, Y. Chang, R. Baeza-Yates, and H. Zha. 2017b. Exploring query auto-completion and click logs for contextual-aware web search and query suggestion. In Proceedings of the 26th International Conference on World Wide Web (WWW ’17). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 539–548. DOI: .Google ScholarDigital Library
- P. Li, Z. Qin, X. Wang, and D. Metzler. 2019b. Combining decision trees and neural networks for learning-to-rank in personal search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’19). ACM, New York, NY, 2032–2040. DOI: .Google ScholarDigital Library
- Q. Li, S. H. Myaeng, Y. Jin, and B.-Y. Kang. 2006. Translation of unknown terms via web mining for information retrieval. In Information Retrieval Technology, Proceedings of the 3rd Asia Conference on Information Retrieval Technology (AIRS ’06), Vol. 4182: Lecture Notes in Computer Science. Springer, Berlin, 258–269. DOI: .Google ScholarCross Ref
- S. Li, A. Karatzoglou, and C. Gentile. 2016a. Collaborative filtering bandits. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 539–548. DOI: .Google ScholarDigital Library
- X. Li, H. Xianyu, J. T. W. Chen, F. Meng, M. Xu, and L. Cai. 2016b. A deep bidirectional long short-term memory based multi-scale approach for music dynamic emotion prediction. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 544–548. DOI: .Google ScholarDigital Library
- X. Li, C. Xu, X. Wang, W. Lan, Z. Jia, G. Yang, and J. Xu. 2019c. COCO-CN for cross-lingual image tagging, captioning, and retrieval. IEEE Trans. Multimed. 21, 9, 2347–2360. DOI: .Google ScholarCross Ref
- X. Li, Y. Cao, L. Pan, Y. Ma, and A. Sun. 2023b. Towards verifiable generation: A benchmark for knowledge-aware language model attribution. arXiv:2310.05634. DOI: .Google ScholarCross Ref
- Y. Li, A. Dong, H. Wang, H. Deng, Y. Chang, and C. Zhai. 2014. A two-dimensional click model for query auto-completion. In Proceedings of the 37th International ACM SIGIR Conference (SIGIR ’14). ACM, New York, NY, 455–464. DOI: .Google ScholarDigital Library
- Y. Li, M. Franz, M. A. Sultan, B. Iyer, Y.-S. Lee, and A. Sil. 2022. Learning cross-lingual IR from an English retriever. In M. Carpuat, M.-C. de Marneffe, and I. V. Meza Ruiz (Eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Seattle, 4428–4436. DOI: .Google ScholarCross Ref
- Z. Li, X. Zhang, H. Müller, and S. Zhang. January. 2018. Large-scale retrieval for medical image analytics: A comprehensive review. Med. Image Anal. 43, 66–84. DOI: .Google ScholarCross Ref
- D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara. 2018. Variational autoencoders for collaborative filtering. In Proceedings of the World Wide Web Conference (WWW ’18). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 689–698. DOI: .Google ScholarDigital Library
- L. Liao, L. H. Long, Z. Zhang, M. Huang, and T.-S. Chua. 2021. MMConv: An environment for multimodal conversational search across multiple domains. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 675–684. DOI: .Google ScholarDigital Library
- Q. V. Liao, W. Geyer, M. Muller, and Y. Khazaen. 2020. Conversational interfaces for information search. In Understanding and Improving Information Search. Springer, Cham, 267–287. DOI: .Google ScholarCross Ref
- J. C. R. Licklider. March. 1960. Man–computer symbiosis. IRE Trans. Hum. Factors Electron. HFE-1, 1, 4–11. DOI: .Google ScholarCross Ref
- C. Lin, J. Wang, and J. Lu. 2017. Location-sensitive query auto-completion. In Proceedings of the 26th International Conference on World Wide Web Companion (WWW ’17). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 819–820. DOI: .Google ScholarDigital Library
- H. Lin, P. Xiong, D. Zhang, F. Yang, R. Kato, M. Kumar, W. Headden, and B. Yin. 2020. Light feed-forward networks for shard selection in large-scale product search. In Proceedings of ECOM ’20. CEUR-WS.org.Google Scholar
- J. Lin. 2019. The neural hype, justified!: A recantation. SIGIR Forum 53, 2, 88–93. DOI: .Google ScholarDigital Library
- J. Lin and X. Ma. 2021. A few brief notes on DeepImpact, COIL, and a conceptual framework for information retrieval techniques. arXiv:2106.14807. DOI: .Google ScholarCross Ref
- J. Lin, R. Nogueira, and A. Yates. 2021. Pretrained Transformers for Text Ranking: BERT and Beyond, Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers.Google Scholar
- L. I.-K. Lin. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 1, 255–268. DOI: .Google ScholarCross Ref
- Y. Lin, P. Ren, Z. Chen, Z. Ren, J. Ma, and M. de Rijke. 2019. Improving outfit recommendation with co-supervision of fashion generation. In The World Wide Web Conference (WWW ’19). ACM, New York, NY, 1095–1105. DOI: .Google ScholarDigital Library
- G. Linden, B. Smith, and J. York. 2003. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Comput. 7, 1, 76–80. DOI: .Google ScholarDigital Library
- C. Ling, B. Steichen, and A. G. Choulos. 2018. A comparative user study of interactive multilingual search interfaces. In Proceedings of the 2018 Conference on Human Information Interaction & Retrieval (CHIIR ’18). ACM, New York, NY, 211–220. DOI: .Google ScholarDigital Library
- X. Ling and D. S. Weld. 2010. Temporal information extraction. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI). AAAI Press, Palo Alto, CA, 1385–1390. DOI: .Google ScholarCross Ref
- C. Lioma, J. G. Simonsen, and B. Larsen. 2017. Evaluation measures for relevance and credibility in ranked lists. In J. Kamps, E. Kanoulas, M. de Rijke, H. Fang, and E. Yilmaz (Eds.), Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR ’17). ACM, New York, NY, 91–98. DOI: .Google ScholarDigital Library
- A. Lipani, M. Lupu, A. Aizawa, and A. Hanbury. 2015a. An initial analytical exploration of retrievability. In Proceedings of the 2015 International Conference on the Theory of Information Retrieval (ICTIR ’15). ACM, New York, NY, 329–332. DOI: .Google ScholarDigital Library
- A. Lipani, M. Lupu, and A. Hanbury. 2015b. Splitting water: Precision and anti-precision to reduce pool bias. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 103–112. DOI: .Google ScholarDigital Library
- A. Lipani, D. E. Losada, G. Zuccon, and M. Lupu. April. 2021. Fixed-cost pooling strategies. IEEE Trans. Knowl. Data Eng. 33, 4, 1503–1522. DOI: .Google ScholarCross Ref
- J. List. 2013. The name of the game: Information seeking in a professional context. In Proceedings of the Integrating IR Technologies for Professional Search Workshop, Moscow, Russia (March 24, 2013). CEUR-WS.org.Google Scholar
- R. Litschko, G. Glavaš, S. P. Ponzetto, and I. Vulić. 2018. Unsupervised cross-lingual information retrieval using monolingual data only. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 1253–1256. DOI: .Google ScholarDigital Library
- R. Litschko, G. Glavaš, I. Vulic, and L. Dietz. 2019. Evaluating resource-lean cross-lingual embedding models in unsupervised retrieval. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 1109–1112. DOI: .Google ScholarDigital Library
- R. Litschko, I. Vulić, S. P. Ponzetto, and G. Glavaš. 2021. Evaluating multilingual text encoders for unsupervised cross-lingual retrieval. In Advances in Information Retrieval, 43rd European Conference on IR Research, Vol. 12656: Lecture Notes in Computer Science. Springer, Cham, 342–358. DOI: .Google ScholarDigital Library
- R. Litschko, I. Vulić, and G. Glavaš. 2022a. Parameter-efficient neural reranking for cross-lingual and multilingual retrieval. In Proceedings of the 29th International Conference on Computational Linguistics. International Committee on Computational Linguistics, 1071–1082.Google Scholar
- R. Litschko, I. Vulić, S. P. Ponzetto, and G. Glavaš. 2022b. On cross-lingual retrieval with multilingual text encoders. Inf. Retr. J. 25, 149–183. DOI: .Google ScholarDigital Library
- M. L. Littman, S. T. Dumais, and T. K. Landauer. 1998a. Automatic cross-language information retrieval using latent semantic indexing. In Cross-Language Information Retrieval. Springer, Boston, MA, 51–62. DOI: .Google ScholarCross Ref
- M. L. Littman, F. Jiang, and G. A. Keim. 1998b. Learning a language-independent representation for terms from a partially aligned corpus. In Proceedings of the Fifteenth International Conference on Machine Learning (ICML ’98). Morgan Kaufmann Publishers, San Francisco, CA, 314–322.Google Scholar
- B. Liu, J. Bennett, C. Elkan, P. Smyth, and D. Tikk. 2007. KDD Cup and workshop 2007. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’07). ACM, New York, NY, 1. DOI: .Google ScholarDigital Library
- D. Liu, P. Cheng, Z. Dong, X. He, W. Pan, and Z. Ming. 2020. A general knowledge distillation framework for counterfactual recommendation via uniform data. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 831–840. DOI: .Google ScholarDigital Library
- J. Liu, Y. Lin, Z. Liu, and M. Sun. July. 2019a. XQA: A cross-lingual open-domain question answering dataset. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy. Association for Computational Linguistics, 2358–2368. DOI: .Google ScholarCross Ref
- Q. Liu, J. Chao, T. Mahoney, A. Chern, C. Min, F. Javed, and V. Jijkoun. 2018. Lessons learned from developing and deploying a large-scale employer name normalization system for online recruitment. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18). ACM, New York, NY, 556–565. DOI: .Google ScholarDigital Library
- T.-Y. Liu. March. 2009. Learning to rank for information retrieval. Found. Trends Inf. Retr. 3, 3, 225–331. DOI: .Google ScholarDigital Library
- T.-Y. Liu. 2011. Learning to Rank for Information Retrieval. Springer, Berlin. DOI: .Google ScholarCross Ref
- Y. Liu, R. Song, Y. Chen, J.-Y. Nie, and J.-R. Wen. 2012. Adaptive query suggestion for difficult queries. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’12). ACM, New York, NY, 15–24. DOI: .Google ScholarDigital Library
- Y. Liu, Y. Liu, K. Zhou, M. Zhang, S. Ma, Y. Yin, and H. Luo. 2016. Detecting promotion campaigns in query auto completion. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM ’16). ACM, New York, NY, 125–134. DOI: .Google ScholarDigital Library
- Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. 2019b. RoBERTa: A robustly optimized BERT pretraining approach. arXiv:1907.11692. DOI: .Google ScholarCross Ref
- Y.-H. Liu and N. Wacholder. July. 2017. Evaluating the impact of MeSH (Medical Subject Headings) terms on different types of searchers. Inf. Process. Manag. 53, 4, 851–870. DOI: .Google ScholarDigital Library
- Z. Liu, K. Zhou, and M. L. Wilson. 2021. Meta-evaluation of conversational search evaluation metrics. ACM Trans. Inf. Syst. 39, 4, 52:1–52:42. DOI: .Google ScholarDigital Library
- D. Locke, G. Zuccon, and H. Scells. 2017. Automatic query generation from legal texts for case law retrieval. In Information Retrieval Technology, Asia Information Retrieval Symposium, Vol. 10648: Lecture Notes in Computer Science. Springer, Cham, 181–193. DOI: .Google ScholarDigital Library
- E. Loginova, S. Varanasi, and G. Neumann. 2018. Towards multilingual neural question answering. In A. Benczúr, B. Thalheim, T. Horváth, S. Chiusano, T. Cerquitelli, C. Sidló, and P. Z. Revesz (Eds.), New Trends in Databases and Information Systems. Springer, Cham, 274–285. DOI: .Google ScholarCross Ref
- S. Longpre, Y. Lu, and J. Daiber. 2021. MKQA: A linguistically diverse benchmark for multilingual open domain question answering. Trans. Assoc. Comput. Linguist. 9, 1389–1406. DOI: .Google ScholarCross Ref
- F. M. Lord. 1953. On the statistical treatment of football numbers. Am. Psychol. 8, 12, 750–751. DOI: .Google ScholarCross Ref
- D. E. Losada, J. Parapar, and A. Barreiro. 2016. Feeling lucky? Multi-armed bandits for ordering judgements in pooling-based evaluation. In S. Ossowski (Ed.), Proceedings of the 31st Annual ACM Symposium on Applied Computing (SAC ’16). ACM, New York, NY, 1027–1034. DOI: .Google ScholarDigital Library
- D. E. Losada, J. Parapar, and A. Barreiro. September. 2017. Multi-armed bandits for adjudicating documents in pooling-based evaluation of information retrieval systems. Inf. Process. Manag. 53, 5, 1005–1025. DOI: .Google ScholarCross Ref
- J. Lovejoy, B. R. Watson, S. Lacy, and D. Riffe. 2016. Three decades of reliability in communication content analyses: Reporting of reliability statistics and coefficient levels in three top journals. J. Mass Commun. Q. 93, 4, 1135–1159. DOI: .Google ScholarCross Ref
- H. Lu, Y. Xu, Q. Yin, T. Cao, B. Aleksandrovsky, Y. Song, X. Fan, and B. Yin. 2021. Unsupervised synonym extraction for document enhancement in e-commerce search. In The Web Conference 2021 Workshop on Knowledge Management in E-Commerce. ACM, New York, NY.Google Scholar
- J. Lu and J. Callan. 2005. Federated search of text-based digital libraries in hierarchical peer-to-peer networks. In Advances in Information Retrieval, European Conference on Information Retrieval, Vol. 3408: Lecture Notes in Computer Science. Springer, Berlin, 52–66. DOI: .Google ScholarCross Ref
- X. Lu, S. Pramanik, R. Saha Roy, A. Abujabal, Y. Wang, and G. Weikum. 2019. Answering complex questions by joining multi-document evidence with quasi knowledge graphs. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 105–114. DOI: .Google ScholarDigital Library
- Y. Luan, J. Eisenstein, K. Toutanova, and M. Collins. 2021. Sparse, dense, and attentional representations for text retrieval. Trans. Assoc. Comput. Linguist. 9, 329–345. DOI: .Google ScholarCross Ref
- R. D. Luce and J. W. Tukey. January. 1964. Simultaneous conjoint measurement: A new type of fundamental measurement. J. Math. Psychol. 1, 1, 1–27. DOI: .Google ScholarCross Ref
- R. D. Luce, D. H. Krantz, P. Suppes, and A. Tversky. 1990. Foundations of Measurement. Representation, Axiomatization, and Invariance, Vol. 3. Academic Press, New York.Google Scholar
- M. Ludewig and D. Jannach. 2019. User-centric evaluation of session-based recommendations for an automated radio station. In Proceedings of the 13th ACM Conference on Recommender Systems (RecSys ’19). ACM, New York, NY, 516–520. DOI: .Google ScholarDigital Library
- M. Ludewig, S. Latifi, N. Mauro, and D. Jannach. 2021. Empirical analysis of session-based recommendation algorithms. User Model. User-Adapt. Interact. 31, 149–181. DOI: .Google ScholarDigital Library
- M. Lupu, A. Fujii, D. W. Oard, M. Iwayama, and N. Kando. 2017a. Patent-related tasks at NTCIR. In M. Lupu, K. Mayer, N. Kando, and A. J. Trippe (Eds.), Current Challenges in Patent Information Retrieval. Springer, Berlin, 77–111. DOI: .Google ScholarCross Ref
- M. Lupu, K. Mayer, N. Kando, and A. J. Trippe. (Eds.). 2017b. Current Challenges in Patent Information Retrieval, Vol. 37. Springer, Berlin. DOI: .Google ScholarCross Ref
- Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. 2007. Multi-Probe LSH: Efficient indexing for high-dimensional similarity search. In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB ’07), VLDB Endowment, 950–961.Google Scholar
- M. Lykke, B. Larsen, H. Lund, and P. Ingwersen. 2010. Developing a test collection for the evaluation of integrated search. In C. Gurrin, Y. He, G. Kazai, U. Kruschwitz, S. Little, T. Roelleke, S. Rüger, and K. van Rijsbergen (Eds.), Advances in Information Retrieval, 32nd European Conference on IR Research, ECIR 2010, Vol. 5993: Lecture Notes in Computer Science. Springer, Berlin, 627–630. DOI: .Google ScholarCross Ref
- C. Ma and B. Zhang. 2018. A new query recommendation method supporting exploratory search based on search goal shift graphs. IEEE Trans. Knowl. Data Eng. 30, 2024–2036. DOI: .Google ScholarDigital Library
- S. MacAvaney, A. Yates, A. Cohan, and N. Goharian. 2019. CEDR: Contextualized embeddings for document ranking. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 1101–1104. DOI: .Google ScholarDigital Library
- S. MacAvaney, F. M. Nardini, R. Perego, N. Tonellotto, N. Goharian, and O. Frieder. 2020a. Efficient document re-ranking for transformers by precomputing term representations. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 49–58. DOI: .Google ScholarDigital Library
- S. MacAvaney, F. M. Nardini, R. Perego, N. Tonellotto, N. Goharian, and O. Frieder. 2020b. Expansion via prediction of importance with contextualization. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1573–1576. DOI: .Google ScholarDigital Library
- S. MacAvaney, A. Yates, S. Feldman, D. Downey, A. Cohan, and N. Goharian. 2021. Simplified data wrangling with ir˙datasets. In F. Diaz, C. Shah, T. Suel, P. Castells, R. Jones, T. Sakai, A. Bellogín, and M. Yoshioka (Eds.), Proceedings of the 44th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 2429–2436. DOI: .Google ScholarDigital Library
- C. Macdonald and I. Ounis. 2006. Combining fields in known-item email search. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’06). ACM, New York, NY, 675–676. DOI: .Google ScholarDigital Library
- C. Macdonald and N. Tonellotto. 2021. On approximate nearest neighbour selection for multi-stage dense retrieval. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM ’21). ACM, New York, NY, 3318–3322. DOI: .Google ScholarDigital Library
- C. Macdonald, R. L. T. Santos, and I. Ounis. 2012. The whens and hows of learning to rank for web search. Inf. Retr. 16, 5, 584–628. DOI: .Google ScholarDigital Library
- J. Mackenzie, K. Gupta, F. Qiao, A. H. Awadallah, and M. Shokouhi. 2019. Exploring user behavior in email re-finding tasks. In Proceedings of the 2019 World Wide Web Conference (WWW ’19). ACM, New York, NY, 1245–1255. DOI: .Google ScholarDigital Library
- E. Maddalena and S. Mizzaro. 2014. Axiometrics: Axioms of information retrieval effectiveness metrics. In S. Mizzaro and R. Song (Eds.), Proceedings of the 6th International Workshop on Evaluating Information Access (EVIA ’14), Tokyo, Japan. National Institute of Informatics, 17–24.Google Scholar
- E. Maddalena, S. Mizzaro, F. Scholer, and A. Turpin. January. 2017. On crowdsourcing relevance magnitudes for information retrieval evaluation. ACM Trans. Inf. Syst. 35, 3, 1–32. DOI: .Google ScholarDigital Library
- L. A. Maggio, C. A. Aakre, G. Del Fiol, J. Shellum, and D. A. Cook. July. 2019. Impact of clinicians’ use of electronic knowledge resources on clinical and learning outcomes: Systematic review and meta-analysis. J. Med. Internet Res. 21, 7, e13315. DOI: .Google ScholarCross Ref
- P. P. Maglio and T. Matlock. 1999. The conceptual structure of information space. In A. J. Munro, K. Höök, and D. Benyon (Eds.), Social Navigation of Information Space. Springer, London, 155–173. DOI: .Google ScholarCross Ref
- B. Magnini, S. Romagnoli, A. Vallin, J. Herrera, A. Peñas, V. Peinado, M. Verdejo, and M. Rijke. August. 2003. The multiple language question answering track at CLEF 2003. In Comparative Evaluation of Multilingual Information Access Systems, CLEF 2003, Vol. 3237: Lecture Notes in Computer Science. Springer, Berlin, 471–486. DOI: .Google ScholarCross Ref
- B. Magnini, A. Vallin, C. Ayache, G. Erbach, A. Peñas, M. de Rijke, P. Rocha, K. Simov, and R. Sutcliffe. 2005. Overview of the CLEF 2004 multilingual question answering track. In C. Peters, P. Clough, J. Gonzalo, G. J. F. Jones, M. Kluck, and B. Magnini (Eds.), Multilingual Information Access for Text, Speech and Images, Vol. 3491: Lecture Notes in Computer Science. Springer, Berlin, 371–391. DOI: .Google ScholarCross Ref
- B. Magnini, D. Giampiccolo, P. Forner, C. Ayache, V. Jijkoun, P. Osenova, A. Peñas, P. Rocha, B. Sacaleanu, and R. Sutcliffe. 2007. Overview of the CLEF 2006 multilingual question answering track. In C. Peters, P. Clough, F. C. Gey, J. Karlgren, B. Magnini, D. W. Oard, M. de Rijke, and M. Stempfhuber (Eds.), Evaluation of Multilingual and Multi-modal Information Retrieval, Vol. 4730: Lecture Notes in Computer Science. Springer, Berlin, 223–256. DOI: .Google ScholarCross Ref
- M. Maistro, L. C. Lima, J. G. Simonsen, and C. Lioma. 2021. Principled multi-aspect evaluation measures of rankings. In G. Demartini, G. Zuccon, S. Culpepper, Z. Huang, and H. Tong (Eds.), Proceedings of the 30th International Conference on Information and Knowledge Management (CIKM ’21). ACM, New York, NY, 1232–1242. DOI: .Google ScholarDigital Library
- M. Maistro, T. Breuer, P. Schaer, and N. Ferro. May. 2023. An in-depth investigation on the behavior of measures to quantify reproducibility. Inf. Process. Manag. 60, 3, 103332. DOI: .Google ScholarDigital Library
- P. Majumder, M. Mitra, M. Agrawal, and P. Mehta (Eds.). 2007. FIRE 2012 & 2013: Post-Proceedings of the 4th and 5th Workshops of the Forum for Information Retrieval Evaluation: Fourth International Workshop, FIRE 2012, Kolkata, India, December 19–21, 2012 and Fifth International Workshop, FIRE 2013 New Delhi, India, December 4–6, 2013. ACM, New York, NY.Google Scholar
- P. Majumder, M. Mitra, P. Bhattacharyya, L. V. Subramaniam, and P. Rosso (Eds.). 2013. Multilingual Information Access in South Asian Languages—Second and Third International Workshop of the Forum for Information Retrieval Evaluation (FIRE 2010 and 2011), Vol. 7536: Lecture Notes in Computer Science. Springer, Berlin. DOI: .Google ScholarCross Ref
- S. Makri, A. Blandford, and A. L. Cox. 2008. Investigating the information-seeking behaviour of academic lawyers: From Ellis’s model to design. Inf. Process. Manag. 44, 2, 613–634. DOI: .Google ScholarDigital Library
- Y. A. Malkov and D. A. Yashunin. 2020. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42, 4, 824–836. DOI: .Google ScholarDigital Library
- Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. January. 2013. Approximate nearest neighbor algorithm based on navigable small world graphs. Inf. Syst. 45, 61–68. DOI: .Google ScholarCross Ref
- A. Mallia, O. Khattab, T. Suel, and N. Tonellotto. 2021. Learning passage impacts for inverted indexes. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 1723–1727. DOI: .Google ScholarDigital Library
- A. Mallia, J. Mackenzie, T. Suel, and N. Tonellotto. 2022. Faster learned sparse retrieval with guided traversal. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 1901–1905. DOI: .Google ScholarDigital Library
- S. Malmasi, S. Kallumadi, N. Ueffing, O. Rokhlenko, E. Agichtein, and I. Guy (Eds.). 2020. Proceedings of the 3rd Workshop on e-Commerce and NLP. Association for Computational Linguistics.Google Scholar
- S. Malmasi, S. Kallumadi, N. Ueffing, O. Rokhlenko, E. Agichtein, and I. Guy (Eds.). 2021. Proceedings of the 4th Workshop on e-Commerce and NLP. Association for Computational Linguistics.Google Scholar
- T. W. Malone. January. 1983. How do people organize their desks? Implications for the design of office information systems. ACM Trans. Inf. Syst. 1, 1, 99–112. DOI: .Google ScholarDigital Library
- U. Manber and S. Wu. 1994. Glimpse: A tool to search through entire file systems. In Proceedings of the USENIX Winter 1994 Technical Conference (WTEC ’94). USENIX Association, 23–32.Google ScholarDigital Library
- C. D. Manning, P. Raghavan, and H. Schütze. 2008. Introduction to Information Retrieval, Vol. 39. Cambridge University Press, Cambridge. DOI: .Google ScholarCross Ref
- M. Mansoury, H. Abdollahpouri, B. Mobasher, M. Pechenizkiy, R. Burke, and M. Sabouri. 2021a. Unbiased cascade bandits: Mitigating exposure bias in online learning to rank recommendation. arXiv:2108.03440. DOI: .Google ScholarCross Ref
- M. Mansoury, H. Abdollahpouri, M. Pechenizkiy, B. Mobasher, and R. D. Burke. 2021b. A graph-based approach for mitigating multi-sided exposure bias in recommender systems. ACM Trans. Inf. Syst. 40, 1–31. DOI: .Google ScholarDigital Library
- J. Manzi. May. 2012. Uncontrolled: The Surprising Payoff of Trial-and-Error for Business, Politics, and Society. Basic Books, New York, NY.Google Scholar
- J. Mao, C. Luo, M. Zhang, and S. Ma. 2018. Constructing click models for mobile search. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 775–784. DOI: .Google ScholarDigital Library
- Y. Mao, T. Zhao, A. Kan, C. Zhang, X. L. Dong, C. Faloutsos, and J. Han. 2020. Octet: Online catalog taxonomy enrichment with self-supervision. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20). ACM, New York, NY, 2247–2257. DOI: .Google ScholarDigital Library
- F. Marcello and N. Bertoldi. 2002. Statistical cross-language information retrieval using n-best query translations. In K. Järvelin, M. Beaulieu, R. A. Baeza-Yates, and S. Myaeng (Eds.), Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’02), August 11–15, 2002, Tampere, Finland. ACM, New York, NY, 167–174. DOI: .Google ScholarDigital Library
- U. Marchand and G. Peeters. 2015. Swing ratio estimation. In Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15).Google Scholar
- G. Marchionini. 1997. Information Seeking in Electronic Environments. Cambridge University Press. DOI: .Google ScholarCross Ref
- A. Marcus and A. Parameswaran. December. 2015. Crowdsourced data management: Industry and academic perspectives. Found. Trends Databases 6, 1–2, 1–161. DOI: .Google ScholarDigital Library
- H. M. Marcus-Roberts and F. S. Roberts. Winter. 1987. Meaningless statistics. J. Educ. Behav. Stat. 12, 4, 383–394. DOI: .Google ScholarCross Ref
- B. M. Marlin and R. S. Zemel. 2009. Collaborative prediction and ranking with non-random missing data. In Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys ’09). ACM, New York, NY, 5–12. DOI: .Google ScholarDigital Library
- M. Marolt. 2006. A mid-level melody-based representation for calculating audio similarity. In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR ’06). ISMIR, 280–285. DOI: .Google ScholarCross Ref
- F. Martínez-Plumed, S. Tolan, A. Pesole, J. Hernández-Orallo, E. Fernández-Macas, and E. Gómez. 2020. Does AI qualify for the job? A bidirectional model mapping labour and AI intensities. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES ’20). ACM, New York, NY, 94–100. DOI: .Google ScholarDigital Library
- D. Mason. 2006. Legal information retrieval study—Lexis professional and Westlaw UK. Leg. Inf. Manag. 6, 4, 246–250. DOI: .Google ScholarCross Ref
- J. Masthoff and A. Delić. 2022. Group recommender systems: Beyond preference aggregation. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 381–420. DOI: .Google ScholarCross Ref
- A. Mathur, J. Vitak, A. Narayanan, and M. Chetty. 2018. Characterizing the use of browser-based blocking extensions to prevent online tracking. In Proceedings of the Fourteenth USENIX Conference on Usable Privacy and Security (SOUPS ’18). USENIX Association, 103–116.Google Scholar
- M. Mauch. 2010. Automatic Chord Transcription from Audio Using Computational Models of Musical Context. Ph.D. thesis. Queen Mary University London, UK.Google Scholar
- M. Mauch and S. Dixon. 2014. PYIN: A fundamental frequency estimator using probabilistic threshold distributions. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy. IEEE, 659–663. DOI: .Google ScholarCross Ref
- D. Maxwell and L. Azzopardi. 2016a. Simulating interactive information retrieval: SimIIR: A framework for the simulation of interaction. In R. Perego, F. Sebastiani, J. Aslam, I. Ruthven, and J. Zobel (Eds.), Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 1141–1144. DOI: .Google ScholarDigital Library
- D. Maxwell and L. Azzopardi. 2016b. Agents, simulated users and humans: An analysis of performance and behaviour. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM ’16). ACM, New York, NY, 731–740. DOI: .Google ScholarDigital Library
- D. Maxwell, L. Azzopardi, and Y. Moshfeghi. 2017. A study of snippet length and informativeness: Behaviour, performance and user experience. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 135–144. DOI: .Google ScholarDigital Library
- S. Maxwell and H. D. Delaney. 2004. Designing Experiments and Analyzing Data. A Model Comparison Perspective (2nd. ed.). Lawrence Erlbaum Associates, Mahwah, NJ.Google Scholar
- P. P. Mazur and R. Dale. 2010. WikiWars: A new corpus for research on temporal expressions. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, Cambridge, MA, 913–922.Google Scholar
- J. S. McCarley. 1999. Should we translate the documents or the queries in cross-language information retrieval? In R. Dale and K. W. Church (Eds.), Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, University of Maryland, College Park, MD, June 20–26, 1999. Association for Computational Linguistics, 208–214.Google Scholar
- D. McClure. 2007. Startup metrics for pirates: AARRR!!! Retrieved from https://www.slideshare.net/dmc500hats/startup-metrics-for-pirates-long-version.Google Scholar
- J. H. McDermott, A. F. Schultz, E. A. Undurraga, and R. A. Godoy. 2016. Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature 535, 547–550. DOI: .Google ScholarCross Ref
- N. McDonald and A. Forte. 2020. The politics of privacy theories: Moving from norms to vulnerabilities. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20). ACM, New York, NY, 1–14. DOI: .Google ScholarDigital Library
- R. McGill, J. W. Tukey, and W. A. Larsen. February. 1978. Variations of box plots. Am. Stat. 32, 1, 12–16. DOI: .Google ScholarCross Ref
- K. A. McKibbon and D. B. Fridsma. December. 2006. Effectiveness of clinician-selected electronic information resources for answering primary care physicians’ information needs. J. Am. Med. Inform. Assoc. 13, 6, 653–659. DOI: .Google ScholarCross Ref
- M. F. McKinney and D. Moelants. 2004. Deviations from the resonance theory of tempo induction. In Proceedings of the Conference on Interdisciplinary Musicology (CIM ’04), Graz/Austria, April 15–18, 2004. Department of Musicology, University of Graz, Austria.Google Scholar
- P. McNamee. 2008. Textual Representations for Corpus-Based Bilingual Retrieval. Ph.D. thesis. University of Maryland, Baltimore County.Google Scholar
- P. McNamee and J. Mayfield. 2002. Comparing cross-language query expansion techniques by degrading translation resources. In K. Järvelin, M. Beaulieu, R. A. Baeza-Yates, and S. Myaeng (Eds.), Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’02), Tampere, Finland, August 11–15, 2002. ACM, New York, NY, 159–166. DOI: .Google ScholarDigital Library
- S. M. McNee, J. Riedl, and J. A. Konstan. 2006. Being accurate is not enough: How accuracy metrics have hurt recommender systems. In Proceedings of ACM CHI 2006 Conference on Human Factors in Computing Systems—Extended Abstracts (CHI EA ’06). ACM, New York, NY, 1097–1101. DOI: .Google ScholarDigital Library
- M. McTear, Z. Callejas, and D. Griol. 2016. The Conversational Interface: Talking to Smart Devices. Springer, Cham. DOI: .Google ScholarCross Ref
- Mediative. 2014. The Evolution of Google’s Search Results Pages and Their Effects on User Behavior (white paper).Google Scholar
- R. Mehrotra, J. McInerney, H. Bouchard, M. Lalmas, and F. Diaz. 2018. Towards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fairness & satisfaction in recommendation systems. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, 2243–2251. DOI: .Google ScholarDigital Library
- E. Mena-Maldonado, R. Cañamares, P. Castells, Y. Ren, and M. Sanderson. 2021. Popularity bias in false-positive metrics for recommender systems evaluation. ACM Trans. Inf. Syst. 39, 3, 1–43. DOI: .Google ScholarDigital Library
- E. Ménard and V. Girouard. 2015. Image retrieval with SINCERITY: A search engine designed for our multilingual world! OCLC Syst. Serv. 31, 4, 204–218. DOI: .Google ScholarCross Ref
- W. Mendenhall and T. Sincich. 2012. A Second Course in Statistics. Regression Analysis (7th. ed). Prentice Hall.Google Scholar
- P. N. Mendes, M. Jakob, A. Garca-Silva, and C. Bizer. 2011. DBpedia spotlight: Shedding light on the web of documents. In Proceedings of the 7th International Conference on Semantic Systems (I-Semantics ’11). ACM, New York, NY, 1–8. DOI: .Google ScholarDigital Library
- R. K. Merton. 1968. The Matthew effect in science. The reward and communication systems of science are considered. Science 159, 3810, 56–63. DOI: .Google ScholarCross Ref
- D. Metzler and W. B. Croft. 2005. A Markov random field model for term dependencies. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’05). ACM, New York, NY, 472–479. DOI: .Google ScholarDigital Library
- J. Michel. 1986. Measurement scales and statistics: A clash of paradigms. Psychol. Bull. 100, 3, 398–407. DOI: .Google ScholarCross Ref
- J. Michel. 1990. An Introduction to the Logic of Psychological Measurement. Lawrence Erlbaum Associates, Mahwah, NJ.Google Scholar
- T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal. September. 2018. Can a suit of armor conduct electricity? A new dataset for open book question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2381–2391. DOI: .Google ScholarCross Ref
- T. Mikolov, Q. V. Le, and I. Sutskever. 2013a. Exploiting similarities among languages for machine translation. arXiv:1309.4168. DOI: .Google ScholarCross Ref
- T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013b. Distributed representations of words and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS ’13). Curran Associates, Red Hook, NY, 3111–3119.Google Scholar
- W. D. Miles. 1982. A History of the National Library of Medicine: The Nation’s Treasury of Medical Knowledge—Digital Collections—National Library of Medicine. U.S. Department of Health and Human Services.Google Scholar
- A. Mishra and K. Berberich. 2016. Event digest: A holistic view on past events. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 493–502. DOI: .Google ScholarDigital Library
- T. Mitamura, H. Shima, T. Sakai, N. Kando, T. Mori, K. Takeda, C.-Y. Lin, R. Song, C.-J. Lin, and C.-W. Lee. January. 2010. Overview of the NTCIR-8 ACLIA tasks: Advanced cross-lingual information access. In Proceedings of the 8th NTCIR Workshop Meeting, Tokyo, Japan, June 15–18, 2010. National Institute of Informatics, 15–24.Google Scholar
- S. Mitchell, E. Potash, S. Barocas, A. D’Amour, and K. Lum. March. 2021. Algorithmic fairness: Choices, assumptions, and definitions. Annu. Rev. Stat. Appl. 8, 1, 141–163. DOI: .Google ScholarCross Ref
- B. Mitra. 2015. Exploring session context using distributed representations of queries and reformulations. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 3–12. DOI: .Google ScholarDigital Library
- B. Mitra, M. Shokouhi, F. Radlinski, and K. Hofmann. 2014. On user interactions with query auto-completion. In Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 1055–1058. DOI: .Google ScholarDigital Library
- M. Mitra and P. Majumdar. 2008. FIRE: Forum for information retrieval evaluation. In Proceedings of the 2nd Workshop on Cross Lingual Information Access (CLIA) Addressing the Information Need of Multilingual Societies.Google Scholar
- T. Miyanishi and T. Sakai. 2013. Time-aware structured query suggestion. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 809–812. DOI: .Google ScholarDigital Library
- S. Mizzaro. September. 1997. Relevance: The whole history. J. Am. Soc. Inf. Sci. Technol. 48, 9, 810–832. DOI: .Google ScholarCross Ref
- A. Moffat. 2013. Seven numeric properties of effectiveness metrics. In R. E. Banchs, F. Silvestri, T.-Y. Liu, M. Zhang, S. Gao, and J. Lang (Eds.), Information Retrieval Technology, Proceedings of the 9th Asia Information Retrieval Societies Conference (AIRS ’13), Vol. 8281: Lecture Notes in Computer Science. Springer, Berlin, 1–12. DOI: .Google ScholarCross Ref
- A. Moffat. 2022. Batch evaluation metrics in information retrieval: Measures, scales, and meaning. IEEE Access 10, 105564–105577. DOI: .Google ScholarCross Ref
- A. Moffat. December. 2023. Categorical, ratio, and professorial data: The case for reciprocal rank. arXiv:2312.12672. DOI: .Google ScholarCross Ref
- A. Moffat and J. Zobel. December. 2008. Rank-biased precision for measurement of retrieval effectiveness. ACM Trans. Inf. Syst. 27, 1, 2:1–2:27. DOI: .Google ScholarDigital Library
- A. Moffat, P. Thomas, and F. Scholer. 2013. Users versus models: What observation tells us about effectiveness metrics. In A. Iyengar, Q. He, J. Pei, R. Rastogi, and W. Nejdl (Eds.), Proceedings of the 22nd International Conference on Information and Knowledge Management (CIKM ’13). ACM, New York, NY, 659–668. DOI: .Google ScholarDigital Library
- A. Moffat, P. Bailey, F. Scholer, and P. Thomas. June. 2017. Incorporating user expectations and behavior into the measurement of search effectiveness. ACM Trans. Inf. Syst. 35, 3, 1–38. DOI: .Google ScholarDigital Library
- A. Moffat, J. Mackenzie, P. Thomas, and L. Azzopardi. 2022. A flexible framework for offline effectiveness metrics. In E. Amigo, P. Castells, J. Gonzalo, B. Carterette, J. Shane Culpepper, and G. Kazai (Eds.), Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 578–587. DOI: .Google ScholarDigital Library
- J. C. Mogul. 1984. Representing information about files. In Proceedings of the 4th International Conference on Distributed Computing Systems. IEEE, 432–439.Google Scholar
- V. Mohan, Y. Song, P. Nigam, C. H. Teo, W. Ding, V. Lakshman, A. Shingavi, H. Gu, and B. Yin. 2019. Semantic product search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’19). ACM, New York, NY, 2876–2885. DOI: .Google ScholarDigital Library
- J. Molino, J. A. Underwood, and C. Ayrey. 1990. Musical fact and the semiology of music. Music Anal. 9, 2, 105–156. DOI: .Google ScholarCross Ref
- M. Momma, A. B. Garakani, and Y. Sun. 2019. Multi-objective relevance ranking. In Proceedings of the SIGIR 2019 eCom Workshop, Paris, France, July 2019. CEUR-WS.org.Google Scholar
- F. Morreale. 2021. Where does the buck stop? Ethical and political issues with AI in music creation. Trans. Int. Soc. Music Inf. Retr. 4, 1, 105–113. DOI: .Google ScholarCross Ref
- F. Morreale, M. Sharma, and I.-C. Wei. 2023. Data collection in music generation training sets: A critical analysis. In Proceedings of the 24th International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 37–46. DOI: .Google ScholarCross Ref
- Y. Moshfeghi and A. F. Huertas-Rosero. July. 2022. A game theory approach for estimating reliability of crowdsourced relevance assessments. ACM Trans. Inf. Syst. 40, 3, 1–19. DOI: .Google ScholarDigital Library
- Y. Moshfeghi, A. F. Huertas-Rosero, and J. M. Jose. 2016. A game-theory approach for effective crowdsource-based relevance assessment. ACM Trans. Intell. Syst. Technol. 7, 4, 1–5. DOI: .Google ScholarDigital Library
- H. Müller and D. Unay. September. 2017. Retrieval from and understanding of large-scale multi-modal medical datasets: A review. IEEE Trans. Multimed. 19, 9, 2093–2104. DOI: .Google ScholarDigital Library
- C. Mulwa, S. Lawless, M. Sharp, and V. Wade. 2011. The evaluation of adaptive and personalised information retrieval systems: A review. Int. J. Knowl. Web Intell. 2, 2/3, 138–156. DOI: .Google ScholarDigital Library
- T. Murakami, K. Mori, and R. Orihara. 2008. Metrics for evaluating the serendipity of recommendation lists. In New Frontiers in Artificial Intelligence: JSAI 2007 Conference and Workshops, Revised Selected Papers, Miyazaki, Japan, June 18–22, 2007, Vol. 4914: Lecture Notes in Computer Science. Springer, Berlin, 40–46. DOI: .Google ScholarCross Ref
- L. Murgai. 2023. Mitigating Bias in Machine Learning. Retrieved from https://www.mitigatingbias.ml.Google Scholar
- C. Musto, M. de Gemmis, P. Lops, F. Narducci, and G. Semeraro. 2022. Semantics and content-based recommendations. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 251–298. DOI: .Google ScholarCross Ref
- T. H. Myer and D. A. Henderson. April. 1975. Message Transmission Protocol. Internet Engineering Task Force, Network Working Group, Request for Comment 680.Google Scholar
- B. T. Mynatt, L. M. Leventhal, K. Instone, J. Farhat, and D. S. Rohlman. June. 1992. Hypertext or book: Which is better for answering questions? In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’92). ACM, New York, NY, 19–25. DOI: .Google ScholarDigital Library
- S. Nair, P. Galuscakova, and D. W. Oard. 2020a. Combining contextualized and non-contextualized query translations to improve CLIR. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1581–1584. DOI: .Google ScholarDigital Library
- S. Nair, A. Ragni, O. Klejch, P. Galuščáková, and D. Oard. February. 2020b. Experiments with cross-language speech retrieval for lower-resource languages. In Information Retrieval Technology, Proceedings of the Information Retrieval Technology: 15th Asia Information Retrieval Societies Conference (AIRS ’19), Hong Kong, China, November 7–9, Vol. 12004: Lecture Notes in Computer Science. Springer, Cham, 145–157. DOI: .Google ScholarDigital Library
- S. Nair, E. Yang, D. Lawrie, K. Duh, P. McNamee, K. Murray, J. Mayfield, and D. W. Oard. 2022. Transfer learning approaches for building cross-language dense retrieval models. In M. Hagen, S. Verberne, C. Macdonald, C. Seifert, K. Balog, K. Nørvåg, and V. Setty (Eds.), Advances in Information Retrieval, Proceedings of the 44th European Conference on IR Research (ECIR ’22), Part I, Vol. 13185: Lecture Notes in Computer Science. Springer, Cham, 382–396. DOI: .Google ScholarDigital Library
- B. Nardi, K. Anderson, and T. Erickson. 1994. Filing and Finding Computer Files. Technical Report # 118. Apple Computer Inc.Google Scholar
- L. Narens. 2002. Theories of Meaningfulness. Lawrence Erlbaum Associates, Mahwah, NJ.Google Scholar
- National Academies of Sciences, Engineering, and Medicine. 2019. Reproducibility and Replicability in Science. The National Academies Press, Washington, DC. DOI: .Google ScholarCross Ref
- National Institute of Standards and Technology. 2017. The Official Original Derivation of AQWV. Retrieved from https://www.nist.gov/system/files/documents/2017/10/26/aqwv˙derivation.pdf.Google Scholar
- National Institute of Standards and Technology. 2020. NIST Privacy Framework: A Tool for Improving Privacy through Enterprise Risk Management, Version 1.0. Technical Report NIST CSWP 01162020. National Institute of Standards and Technology.Google Scholar
- R. P. Neco and M. L. Forcada. 1997. Asynchronous translations with recurrent neural nets. In Proceedings of International Conference on Neural Networks (ICNN ’97), Vol. 4. IEEE, 2535–2540. DOI: .Google ScholarCross Ref
- D. Newman. July. 1939. The distribution of range in samples from a normal population, expressed in terms of an independent estimate of standard deviation. Biometrika 31, 2, 20–30. DOI: .Google ScholarCross Ref
- M. E. J. Newman. September. 2005. Power laws, pareto distributions and Zipf’s law. Contemp. Phys. 46, 5, 323–351. DOI: .Google ScholarCross Ref
- J. Neyman and E. S. Pearson. July. 1928. On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika 20A, 1/2,175–240. DOI: .Google ScholarCross Ref
- B. Neyshabur and N. Srebro. 2015. On symmetric and asymmetric LSHs for inner product search. In Proceedings of the 32nd International Conference on Machine Learning (ICML ’15), Vol. 37. JMLR.org, 1926—1934.Google Scholar
- T. V. Nguyen, N. Rao, and K. Subbian. 2020. Learning robust models for e-commerce product search. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 6861–6869. DOI: .Google ScholarCross Ref
- J.-Y. Nie. 2010. Cross-Language Information Retrieval. Morgan & Claypool Publishers.Google Scholar
- J. Nielsen. 2005. Ten Usability Heuristics. Retrieved from https://www.nngroup.com/articles/ten-usability-heuristics/.Google Scholar
- J. Nielsen, October. 2006. The 90-9-1 Rule for Participation Inequality in Social Media and Online Communities. Retrieved from https://www.nngroup.com/articles/participation-inequality/.Google Scholar
- J. Nielsen and T. K. Landauer. 1993. A mathematical model of the finding of usability problems. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing Systems (CHI ’93). ACM, New York, NY, 206–213. DOI: .Google ScholarDigital Library
- O. Nieto, M. McCallum, M. E. Davies, A. Robertson, A. M. Stark, and E. Egozy. 2019. The Harmonix set: Beats, downbeats, and functional segment annotations of western popular music. In Proceedings of the 20th International Society for Music Information Retrieval Conference. ISMIR, 565–572. DOI: .Google ScholarCross Ref
- A. N. Nikolakopoulos, X. Ning, C. Desrosiers, and G. Karypis. 2022. Trust your neighbors: A comprehensive survey of neighborhood-based methods for recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 39–89. DOI: .Google ScholarCross Ref
- V. Nikoulina and S. Clinchant. 2013. Domain adaptation of statistical machine translation models with monolingual data for cross lingual information retrieval. In Advances in Information Retrieval, Proceedings of the 35th European Conference on IR Research (ECIR ’13), Vol. 7814: Lecture Notes in Computer Science. Springer, Berlin, 768–771. DOI: .Google ScholarCross Ref
- V. Nikoulina, B. Kovachev, N. Lagos, and C. Monz. April. 2012. Adaptation of statistical machine translation model for cross-lingual information retrieval in a service context. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France. Association for Computational Linguistics, 109–119.Google Scholar
- X. Ning and G. Karypis. 2011. SLIM: Sparse linear methods for top-N recommender systems. In Proceedings of the 11th IEEE International Conference on Data Mining (ICDM ’11). IEEE, Washington, DC, 497–506. DOI: .Google ScholarDigital Library
- R. Nishikimi, E. Nakamura, M. Goto, and K. Yoshii. 2019. End-to-end melody note transcription based on a beat-synchronous attention mechanism. In 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). IEEE, 26–30. DOI: .Google ScholarCross Ref
- S. U. Noble. 2018. Algorithms of Oppression: How Search Engines Reinforce Racism. New York University Press.Google Scholar
- R. Nogueira and K. Cho. 2019. Passage re-ranking with BERT. arXiv:1901.04085. DOI: .Google ScholarCross Ref
- R. Nogueira and J. Lin. 2019. From doc2query to docTTTTTquery. Online preprint.Google Scholar
- R. Nogueira, W. Yang, K. Cho, and J. Lin. 2019a. Multi-stage document ranking with BERT. arXiv:1910.14424. DOI: .Google ScholarCross Ref
- R. Nogueira, W. Yang, J. Lin, and K. Cho. 2019b. Document expansion by query prediction. arXiv:1904.08375. DOI: .Google ScholarCross Ref
- R. Nogueira, Z. Jiang, R. Pradeep, and J. Lin. 2020. Document ranking with a pretrained sequence-to-sequence model. In Findings of the Association for Computational Linguistics: EMNLP 2020. Association for Computational Linguistics, 708–718. DOI: .Google ScholarCross Ref
- M. Nørgaard and K. Hornbæk. 2006. What do usability evaluators do in practice? An explorative study of think-aloud testing. In Proceedings of the 6th Conference on Designing Interactive Systems (DIS ’06). ACM, New York, NY, 209–218. DOI: .Google ScholarDigital Library
- H. Nori, Y. T. Lee, S. Zhang, D. Carignan, R. Edgar, N. Fusi, N. King, J. Larson, Y. Li, W. Liu, R. Luo, S. M. McKinney, R. O. Ness, H. Poon, T. Qin, N. Usuyama, C. White, and E. Horvitz. 2023. Can generalist foundation models outcompete special-purpose tuning? Case study in medicine. arXiv:2311.16452. DOI: .Google ScholarCross Ref
- O. C. Norocel and D. Lewandowski. 2023. Google, data voids, and the dynamics of the politics of exclusion. Big Data Soc. 10, 1, 20539517221149099. DOI: .Google ScholarCross Ref
- C. Nota, G. Theocharous, M. Saad, and P. S. Thomas. 2021. Preventing contrast effect exploitation in recommendations. In Proceedings of ECOM ’21. CEUR-WS.org.Google Scholar
- G. M. D. Nunzio, N. Ferro, G. J. F. Jones, and C. Peters. 2005. CLEF 2005: Ad hoc track overview. In C. Peters and N. Ferro (Eds.), Working Notes for CLEF 2005 Workshop co-located with the 9th European Conference on Digital Libraries (ECDL ’05), Wien, Austria, September 21–22, 2005, CEUR Workshop Proceedings, Vol. 1171. CEUR-WS.org.Google Scholar
- D. Oard, W. Webber, D. A. Kirsch, and S. Golitsynskiy. 2015. Avocado research email collection. Linguistic Data Consortium. DOI: .Google ScholarCross Ref
- D. W. Oard and A. R. Diekema. 1998. Cross-language information retrieval. Annu. Rev. Inf. Sci. Technol. (ARIST) 33, 223–256.Google Scholar
- D. W. Oard and F. Ertunc. 2002. Translation-based indexing for cross-language retrieval. In Advances in Information Retrieval, Proceedings of the 24th BCS-IRSG European Colloquium on IR, Vol. 2291: Lecture Notes in Computer Science. Springer, Berlin, 324–333. DOI: .Google ScholarCross Ref
- D. W. Oard and F. C. Gey. February. 2003. The TREC 2002 Arabic/English CLIR track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Eleventh Text REtrieval Conference (TREC 2002), November 19–22, 2002, Special Publication 500-251. National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
- D. W. Oard and W. Webber. 2013. Information retrieval for e-discovery. Found. Trends Inf. Retr. 7, 2–3, 99–237. DOI: .Google ScholarCross Ref
- D. W. Oard, J. Wang, G. J. F. Jones, R. W. White, P. Pecina, D. Soergel, X. Huang, and I. Shafran. 2006. Overview of the CLEF-2006 cross-language speech retrieval track. In A. Nardi, C. Peters, J. L. Vicedo, and N. Ferro (Eds.), CLEF 2006 Working Notes. CEUR-WS.org.Google Scholar
- R. M. O’Brien. June. 1985. The relationship between ordinal measures and their underlying values: Why all the disagreement? Qual. Quant. 19, 3, 265–277. DOI: .Google ScholarCross Ref
- R. N. Oddy. 1977. Information retrieval through man–machine dialogue. J. Doc. 33, 1, 1–14. DOI: .Google ScholarCross Ref
- W. Ogden, J. Cowie, M. Davis, E. Ludovik, S. Nirenburg, H. Molina-Salgado, and N. Sharples. 1999. Keizai: An interactive cross-language text retrieval system. In Proceedings of the MT SUMMIT VII Workshop on Machine Translation for Cross Language Information Retrieval, Vol. 416.Google Scholar
- W. C. Ogden and M. W. Davis. 2000. Improving cross-language text retrieval with human interactions. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences (HICSS-33), Maui, Hawaii, January 4–7, 2000. IEEE, 9. DOI: .Google ScholarCross Ref
- J. Oh, S. Park, H. Yu, M. Song, and S.-T. Park. 2011. Novel recommendation based on personal popularity tendency. In Proceedings of the 11th IEEE Conference on Data Mining (ICDM ’11). IEEE, 507–516. DOI: .Google ScholarDigital Library
- S. Okura, Y. Tagami, S. Ono, and A. Tajima. 2017. Embedding-based news recommendation for millions of users. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’17). ACM, New York, NY, 1933–1942. DOI: .Google ScholarDigital Library
- S. Olejnik and J. Algina. December. 2003. Generalized eta and omega squared statistics: Measures of effect size for some common research designs. Psychol. Methods 8, 4, 434–447. DOI: .Google ScholarCross Ref
- A. Olteanu, C. Castillo, F. Diaz, and E. Kiciman. January. 2016. Social data: Biases, methodological pitfalls, and ethical boundaries. Front. Big Data 2, 13. DOI: .Google ScholarCross Ref
- A. Olteanu, J. Garcia-Gathright, M. de Rijke, and M. D. Ekstrand, A. Roegiest, A. Lipani, A. Beutel, A. Olteanu, A. Lučić, A. A. Stoica, A. Das, A. Biega, B. Voorn, C. Hauff, D. Spina, D. D. Lewis, D. W. Oard, E. Yilmaz, F. Hasibi, G. Kazai, G. McDonald, H. Haned, I. Ounis, I. Van Der Linden, J. Garcia-Gathright, J. Baan, K. N. Lau, K. Balog, M. De Rijke, M. Sayed, M. Panteli, M. Sanderson, M. Lease, M. D. Ekstrand, P. Lahoti, T. Kamishima. 2019. FACTS-IR: Fairness, accountability, confidentiality, transparency, and safety in information retrieval. ACM SIGIR Forum 53, 2, 20–43. DOI: .Google ScholarDigital Library
- K. Ong, K. Järvelin, M. Sanderson, and F. Scholer. 2018. QWERTY: The effects of typing on web search behavior. In Proceedings of the 2018 Conference on Human Information Interaction and Retrieval (CHIIR ’18). ACM, New York, NY, 281–284. DOI: .Google ScholarDigital Library
- H. Oosterhuis and M. de Rijke. 2021. Unifying online and counterfactual learning to rank: A novel counterfactual estimator that effectively utilizes online interventions. In L. Lewin-Eytan, D. Carmel, E. Yom-Tov, E. Agichtein, and E. Gabrilovich (Eds.), Proceedings of the 14th ACM International Conference on Web Searching and Data Mining (WSDM ’21). ACM, New York, NY, 463–471. DOI: .Google ScholarDigital Library
- Open Science Collaboration. August. 2015. Estimating the reproducibility of psychological science. Science 349, 6251, 943–952. DOI: .Google ScholarCross Ref
- OpenAI. March. 2023. GPT-4 Technical Report. arXiv:2303.08774. DOI: .Google Scholar
- OpenStreetMap contributors. 2021. OpenStreetMap. https://www.openstreetmap.org.Google Scholar
- J. Osmalskyj. 2017. A Combining Approach to Cover Song Identification. Ph.D. thesis. University of Liege, Belgium.Google Scholar
- D. Otero, J. Parapar, and N. Ferro. 2023. How discriminative are your qrels? How to study the statistical significance of document adjudication methods. In I. Frommholz, F. Hopfgartner, M. Lee, M. Oakes, M. Lalmas, M. Zhang, and R. Santos (Eds.), Proceedings of the 32nd International Conference on Information and Knowledge Management (CIKM ’23). ACM, New York, NY, 1960–1970. DOI: .Google ScholarDigital Library
- L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano, J. Leike, and R. Lowe. 2022. Training language models to follow instructions with human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Proceedings of the 36th Annual Conference on Neural Information Processing Systems (NeurIPS ’22). Curran Associates, Red Hook, NY, 27730–27744. https://proceedings.neurips.cc/paper˙files/paper/2022.Google Scholar
- A. Overwijk, C. Xiong, and J. Callan. 2022. ClueWeb22: 10 billion web documents with rich information. In E. Amigo, P. Castells, J. Gonzalo, B. Carterette, J. Shane Culpepper, and G. Kazai (Eds.), Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 3360–3362. DOI: .Google ScholarDigital Library
- P. Owoicho, J. Dalton, M. Aliannejadi, L. Azzopardi, J. Trippas, and S. Vakulenko. February. 2023. TREC CAsT 2022: Going beyond user ask and system retrieve with initiative and response generation. In Proceedings of the Thirty-First Text REtrieval Conference (TREC 2022), Special Publication 500-338. National Institute of Standards and Technology.Google ScholarCross Ref
- I. Palomares, C. Porcel, L. Pizzato, I. Guy, and E. Herrera-Viedma. 2021. Reciprocal recommender systems: Analysis of state-of-art literature, challenges and opportunities towards social recommendation. Inf. Fusion 69, 103–127. DOI: .Google ScholarCross Ref
- J. Palotti, A. Hanbury, H. Müller, and C. E. Kahn. April. 2016. How users search and what they search for in the medical domain. Inf. Retr. J. 19, 1, 189–224. DOI: .Google ScholarDigital Library
- J. Palotti, G. Zuccon, and A. Hanbury. 2018. MM: A new framework for multidimensional evaluation of search engines. In A. Cuzzocrea, J. Allan, N. W. Paton, D. Srivastava, R. Agrawal, A. Broder, M. J. Zaki, S. Candan, A. Labrinidis, A. Schuster, and H. Wang (Eds.), Proceedings of the 27th International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, 1699–1702. DOI: .Google ScholarDigital Library
- J. R. M. Palotti, G. Zuccon, Jimmy, P. Pecina, M. Lupu, L. Goeuriot, L. Kelly, and A. Hanbury. 2017. CLEF 2017 task overview: The IR task at the eHealth evaluation lab—Evaluating retrieval methods for consumer health search. In L. Cappellato, N. Ferro, L. Goeuriot, and T. Mandl (Eds.), Working Notes of CLEF 2017—Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings, Vol. 1866. CEUR-WS.org.Google Scholar
- R. Panda. 2019. Emotion-based Analysis and Classification of Audio Music Emotion. Ph.D. thesis. Universidade de Coimbra, Portugal.Google Scholar
- R. Panda, R. M. Rui, and P. Paiva. 2018. Musical texture and expressivity features for music emotion recognition. In Proceedings of the 19th International Society for Music Information Retrieval Conference, Paris, France. ISMIR, 383–391. DOI: .Google ScholarCross Ref
- L. Pang, Y. Lan, J. Guo, J. Xu, and X. Cheng. 2016. A study of MatchPyramid models on ad-hoc retrieval. arXiv:1606.04648. DOI: .Google ScholarCross Ref
- L. Pang, Y. Lan, J. Guo, J. Xu, J. Xu, and X. Cheng. 2017. DeepRank: A new deep architecture for relevance ranking in information retrieval. In Proceedings of the 2017 ACM Conference on Information and Knowledge Management (CIKM ’17). ACM, New York, NY, 257–266. DOI: .Google ScholarDigital Library
- H. Papadopoulos and G. Peeters. 2007. Large-scale study of chord estimation algorithms based on chroma representation and HMM. In 2007 International Workshop on Content-Based Multimedia Indexing. IEEE, 53–60. DOI: .Google ScholarCross Ref
- B. Paria, C. Yeh, I. E. Yen, N. Xu, P. Ravikumar, and B. Póczos. 2020. Minimizing FLOPs to learn efficient sparse representations. In Proceedings of the ICLR 2020.Google Scholar
- N. Parikh and N. Sundaresan. 2011. Beyond relevance in marketplace search. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM ’11). ACM, New York, NY, 2109–2112. DOI: .Google ScholarDigital Library
- E. Pariser. 2011. The Filter Bubble: What the Internet Is Hiding from You. Penguin, UK.Google ScholarDigital Library
- D. H. Park and R. Chiba. 2017. A neural language model for query auto-completion. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 1189–1192. DOI: .Google ScholarDigital Library
- G. Pass, A. Chowdhury, and C. Torgeson. 2006. A picture of search. In Proceedings of the 1st International Conference on Scalable Information Systems (InfoScale ’06). ACM, New York, NY, 1-es. DOI: .Google ScholarDigital Library
- G. P. Patil and C. Taillie. 1982. Diversity as a concept and its measurement. J. Am. Stat. Assoc. 77, 379, 548–561. DOI: .Google ScholarCross Ref
- G. K. Patro, A. Biswas, N. Ganguly, K. P. Gummadi, and A. Chakraborty. 2020. FairRec: Two-sided fairness for personalized recommendations in two-sided platforms. In Proceedings of the Web Conference (WWW ’20). ACM/IW3C2, 1194–1204. DOI: .Google ScholarDigital Library
- M. J. Pazzani and D. Billsus. 2007. Content-based recommendation systems. In P. Brusilovsky, A. Kobsa, and W. Nejdl (Eds) The Adaptive Web: Methods and Strategies of Web Personalization, Vol. 4321: Lecture Notes in Computer Science. Springer, Berlin, 325–341. DOI: .Google ScholarCross Ref
- P. Pecina, P. Hoffmannová, G. Jones, Y. Zhang, and D. Oard. January. 2007. Overview of the CLEF-2007 cross-language speech retrieval track. In Advances in Multilingual and Multimodal Information Retrieval: 8th Workshop of the Cross-Language Evaluation Forum (CLEF ’07), Vol. 5152: Lecture Notes in Computer Science. Springer, Berlin, 674–686. DOI: .Google ScholarCross Ref
- G. Peeters. 2005. Time variable tempo detection and beat marking. In Proceedings of the International Computer Music Conference (ICMC). International Computer Music Association, 539–542.Google Scholar
- G. Peeters and J. Flocon-Cholet. 2012. Perceptual tempo estimation using GMM-regression. In Proceedings of the Second International ACM Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies (MIRUM ’12). ACM, New York, NY, 45–50. DOI: .Google ScholarDigital Library
- G. Peeters and H. Papadopoulos. 2010. Simultaneous beat and downbeat-tracking using a probabilistic framework: Theory and large-scale evaluation. IEEE Trans. Audio Speech Lang. Process. 19, 6, 1754–1769. DOI: .Google ScholarDigital Library
- G. Penha and C. Hauff. 2020. Challenges in the evaluation of conversational search systems. In Proceedings of KDD Workshop on Conversational Systems Towards Mainstream Adoption (KDD Converse ’20). CEUR-WS.org, 5.Google Scholar
- G. Penha, A. Balan, and C. Hauff. 2019. Introducing MANtIS: A novel multi-domain information seeking dialogues dataset. arXiv:1912.04639. DOI: .Google ScholarCross Ref
- J. Pennington, R. Socher, and C. Manning. October. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar. Association for Computational Linguistics, 1532–1543. DOI: .Google ScholarCross Ref
- G. Percival and G. Tzanetakis. 2014. Streamlined tempo estimation based on autocorrelation and cross-correlation with pulses. IEEE/ACM Trans. Audio Speech Lang. Process. 22, 12, 1765–1776. DOI: .Google ScholarDigital Library
- P. O. Perry and P. J. Wolfe. 2013. Point process modeling for directed interaction networks. J. R. Stat. Soc. Ser. B Stat. Methodol. 75, 5, 821–849. DOI: .Google ScholarCross Ref
- C. Peters (Ed.). 2001. Cross-Language Information Retrieval and Evaluation: Workshop of Cross-Language Evaluation Forum (CLEF ’2000), Vol. 2069: Lecture Notes in Computer Science. Springer, Berlin. DOI: .Google ScholarCross Ref
- C. Peters. August. 2005. What happened in CLEF 2004? In Multilingual Information Access for Text, Speech and Images (CLEF ’04), Vol. 3491: Lecture Notes in Computer Science. Springer, Berlin, 1–9. DOI: .Google ScholarCross Ref
- C. Peters, M. Braschler, J. Gonzalo, and M. Kluck (Eds.). 2002. Evaluation of Cross-Language Information Retrieval Systems: Second Workshop of the Cross-Language Evaluation Forum (CLEF ’01) Revised Papers, Vol. 2406: Lecture Notes in Computer Science. Springer, Berlin. DOI: .Google ScholarCross Ref
- C. Peters, M. Braschler, J. Gonzalo, and M. Kluck (Eds.). 2003. Advances in Cross-Language Information Retrieval: Third Workshop of the Cross-Language Evaluation Forum (CLEF ’02) Revised Papers, Vol. 2785: Lecture Notes in Computer Science. Springer, Berlin. DOI: .Google ScholarCross Ref
- C. Peters, M. Braschler, and P. Clough. 2012. Multilingual Information Retrieval: From Research to Practice. Computer Science. Springer, Berlin. DOI: .Google ScholarCross Ref
- M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. June. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana. Association for Computational Linguistics, 2227–2237. DOI: .Google ScholarCross Ref
- V. Petras and S. Baerisch. 2009. The domain-specific track at CLEF 2008. In C. Peters, T. Deselaers, N. Ferro, J. Gonzalo, G. J. F. Jones, M. Kurimo, T. Mandl, A. Peñas, and V. Petras (Eds.), Evaluating Systems for Multilingual and Multimodal Information Access, Vol. 5706: Lecture Notes in Computer Science. Springer, Berlin, 186–198. DOI: .Google ScholarCross Ref
- V. Petras, S. Baerisch, and M. Stempfhuber. 2008. The domain-specific track at CLEF 2007. In C. Peters, V. Jijkoun, T. Mandl, H. Müller, D. W. Oard, A. Peñas, V. Petras, and D. Santos (Eds.), Advances in Multilingual and Multimodal Information Retrieval, CLEF 2007, Vol. 5152: Lecture Notes in Computer Science. Springer, Berlin, 160–173. DOI: .Google ScholarCross Ref
- D. Petrelli and E. Not. 2005. User-centred design of flexible hypermedia for a mobile guide: Reflections on the HyperAudio experience. User Model. User Adap. Interact. 15, 303–338. DOI: .Google ScholarDigital Library
- F. Petroni, T. Rocktäschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu, and A. Miller. 2019. Language models as knowledge bases? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics, 2463–2473. DOI: .Google ScholarCross Ref
- T. Pica. 1994. Research on negotiation: What does it reveal about second-language learning conditions, processes, and outcomes? Lang. Learn. 44, 3, 493–527. DOI: .Google ScholarCross Ref
- A. Pikrakis, I. Antonopoulos, and S. Theodoridis. 2004. Music meter and tempo tracking from raw polyphonic audio. In Proceedings of the 5th International Conference on Music Information Retrieval (ISMIR ’04). ISMIR. DOI: .Google ScholarCross Ref
- I. Pillai, I. Fumera, and F. Roli. August. 2013. Multi-label classification with a reject option. Pattern Recognit. 46, 8, 2256–2266. DOI: .Google ScholarDigital Library
- A. Pirkola. 1998. The effects of query structure and dictionary setups in dictionary-based cross-language information retrieval. In W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel (Eds.), Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’98), Melbourne, Australia, August 24–28, 1998. ACM, New York, NY, 55–63. DOI: .Google ScholarDigital Library
- F. Piroi and A. Hanbury. 2019. Multilingual patent text retrieval evaluation: CLEF–IP. In Information Retrieval Evaluation in a Changing World. Springer, Cham, 365–387. DOI: .Google ScholarCross Ref
- F. Piroi, M. Lupu, A. Hanbury, and V. Zenz. 2011. CLEF-IP 2011: Retrieval in the intellectual property domain. In CLEF 2011 Labs and Workshop, Notebook Papers. CEUR-WS.org.Google Scholar
- P. Pluye and R. M. Grad. August. 2004. How information retrieval technology may impact on physician practice: An organizational case study in family medicine. J. Eval. Clin. Pract. 10, 3, 413–430. DOI: .Google ScholarCross Ref
- G. E. Poliner, D. P. W. Ellis, A. F. Ehmann, E. Gómez, S. Streich, and B. Ong. 2007. Melody transcription from music audio: Approaches and evaluation. IEEE Trans. Audio Speech Lang. Process. 15, 4, 1247–1256. DOI: .Google ScholarDigital Library
- S. Polley. 2022. Towards explainable search in legal text. In Advances in Information Retrieval: 44th European Conference on Information Retrieval (ECIR ’22), Vol. 13186: Lecture Notes in Computer Science. Springer, Cham, 528–536. DOI: .Google ScholarDigital Library
- S. Polley, R. R. Koparde, A. B. Gowri, M. Perera, and A. Nuernberger. 2021. Towards trustworthiness in the context of explainable search. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 2580–2584. DOI: .Google ScholarDigital Library
- J. Pons. 2019. Deep Neural Networks for Music and Audio Tagging. Ph.D. thesis. Universitat Pompeu Fabra, Spain, Barcelona.Google Scholar
- J. M. Ponte and W. B. Croft. 1998. A language modeling approach to information retrieval. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’98). ACM, New York, NY, 275–281. DOI: .Google ScholarDigital Library
- K. Popper. 2002. The Logic of Scientific Discovery (2nd. ed). Routledge, Taylor & Francis Group, UK.Google Scholar
- L. Porcaro, C. Castillo, and E. Gómez. 2021. Diversity by design in music recommender systems. Trans. Int. Soc. Music Inf. Retr. 4, 1, 114–126. DOI: .Google ScholarCross Ref
- L. Porcaro, E. Gómez, and C. Castillo. 2022a. Perceptions of diversity in electronic music: The impact of listener, artist, and track characteristics. Proc. ACM Hum. Comput. Interact. 6, CSCW1, 1–26. DOI: .Google ScholarDigital Library
- L. Porcaro, E. Gómez, and C. Castillo. 2022b. Diversity in the music listening experience: Insights from focus group interviews. In Proceedings of the 2022 Conference on Human Information Interaction and Retrieval (CHIIR ’22). ACM, New York, NY, 272–276. DOI: .Google ScholarDigital Library
- L. Porcaro, E. Gómez, and C. Castillo. 2024. Assessing the impact of music recommendation diversity on listeners: A longitudinal study. ACM Trans. Recommender Syst. 2, 1, 1–47. DOI: .Google ScholarDigital Library
- J. Postel, November. 1975. On the Junk Mail Problem. Internet Engineering Task Force, Network Working Group, Request for Comments 706.Google Scholar
- M. Potthast, T. Gollub, M. Wiegmann, and B. Stein. 2019. TIRA integrated research architecture. In N. Ferro and C. Peters (Eds.), Information Retrieval Evaluation in a Changing World. Springer, Cham, 123–160. DOI: .Google ScholarCross Ref
- P. Pu, L. Chen, and R. Hu. 2011. A user-centric evaluation framework for recommender systems. In Proceedings of the 5th ACM Conference on Recommender Systems (RecSys ’11). ACM, New York, NY, 157–164. DOI: .Google ScholarDigital Library
- I. Purificato. 2021. Behind the scenes of Deliveroo’s algorithm: In the blindness of “Frank” its discriminatory potential. Italian Labour Law E J. 14, 1, 169–194. DOI: .Google ScholarCross Ref
- J. Pustejovsky, R. Ingria, R. Saur, J. M. Castaño, J. Littman, R. J. Gaizauskas, A. Setzer, G. Katz, and I. Mani. 2005. The specification language timeML. In I. Mani, J. Pustejovsky, and R. J. Gaizauskas (Eds.), The Language of Time—A Reader. Oxford University Press, 545–558. DOI: .Google ScholarCross Ref
- S. Qi, D. Wu, and N. Mamoulis. 2016. Location aware keyword query suggestion based on document proximity. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, 1566–1567. DOI: .Google ScholarCross Ref
- X. Qi, D. Yang, and X. Chen. 2018. Triplet convolutional network for music version identification. In Multimedia Modeling (MMM ’18), Vol. 10704: Lecture Notes in Computer Science. Springer, Cham, 544–555. DOI: .Google ScholarCross Ref
- H. Qian, P. Gu, R. Yan, and H. Tang. 2019. Robust multipitch estimation of piano sounds using deep spiking neural networks. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2335–2341. DOI: .Google ScholarCross Ref
- QLever. 2023. QLever. https://qlever.cs.uni-freiburg.de/ir-book.Google Scholar
- C. Qu, L. Yang, W. B. Croft, J. R. Trippas, Y. Zhang, and M. Qiu. 2018. Analyzing and characterizing user intent in information-seeking conversations. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 989–992. DOI: .Google ScholarDigital Library
- C. Qu, L. Yang, W. B. Croft, Y. Zhang, J. R. Trippas, and M. Qiu. 2019a. User intent prediction in information-seeking conversations. In Proceedings of the 2019 Conference on Information Interaction and Retrieval (CHIIR ’19). ACM, New York, NY, 25–33. DOI: .Google ScholarDigital Library
- C. Qu, L. Yang, M. Qiu, Y. Zhang, C. Chen, W. B. Croft, and M. Iyyer. 2019b. Attentive history selection for conversational question answering. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM ’19). ACM, New York, NY, 1391–1400. DOI: .Google ScholarDigital Library
- M. Quadrana, P. Cremonesi, and D. Jannach. 2018. Sequence-aware recommender systems. ACM Comput. Surv. 51, 4, 1–36. DOI: .Google ScholarDigital Library
- W. V. Quine. 1998. From Stimulus to Science. Harvard University Press, Cambridge, MA.Google Scholar
- J. Rabelo, M.-Y. Kim, R. Goebel, M. Yoshioka, Y. Kano, and K. Satoh. 2020. COLIEE 2020: Methods for legal document retrieval and entailment. In New Frontiers in Artificial Intelligence: JSAI International Symposium on Artificial Intelligence, Vol. 12758: Lecture Notes in Computer Science. Springer, Cham, 196–210. DOI: .Google ScholarDigital Library
- A. Radford and K. Narasimhan. 2018. Improving Language Understanding by Generative Pre-Training. OpenAI Technical Report.Google Scholar
- A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. 2019. Language Models are Unsupervised Multitask Learners. OpenAI Technical Report.Google Scholar
- A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. 2021. Learning transferable visual models from natural language supervision. Proceedings of the 38th International Conference on Machine Learning, Vol. 139. JMLR, 8748–8763.Google Scholar
- F. Radlinski and N. Craswell. 2017. A theoretical framework for conversational search. In Proceedings of the 2017 Conference on Human Information Interaction and Retrieval (CHIIR ’17). ACM, New York, NY, 117–126. DOI: .Google ScholarDigital Library
- F. Radlinski and T. Joachims. 2006. Minimally invasive randomization for collecting unbiased preferences from clickthrough logs. In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI ’06:), Vol. 2. AAAI Press, 1406–1412.Google Scholar
- F. Radlinski, R. Kleinberg, and T. Joachims. 2008a. Learning diverse rankings with multi-armed bandits. In W. W. Cohen, A. McCallum, and S. T. Roweis (Eds.), Proceedings of the Twenty-Fifth International Conference on Machine Learning (ICML ’08). ACM International Conference Proceeding Series, Vol. 307. ACM, New York, NY, 784–791. DOI: .Google ScholarDigital Library
- F. Radlinski, M. Kurup, and T. Joachims. 2008b. How does clickthrough data reflect retrieval quality? In J. G. Shanahan, S. Amer-Yahia, I. Manolescu, Y. Zhang, D. A. Evans, A. Kolcz, K.-S. Choi, and A. Chowdhury (Eds.), Proceedings of the 17th International Conference on Information and Knowledge Management (CIKM ’08). ACM, New York, NY, 43–52. DOI: .Google ScholarDigital Library
- M. Rae, C. Cox, and G. Claxton. March. 2020. Coverage and utilization of telemedicine services by enrollees in large employer plans. Peterson-KFF Health System Tracker. https://www.healthsystemtracker.org/brief/coverage-and-utilization-of-telemedicine-services-by-enrollees-in-large-employer-plans/.Google Scholar
- C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 140, 1–67.Google Scholar
- R. Rahimi, A. Montazeralghaem, and A. Shakery. 2020. An axiomatic approach to corpus-based cross-language information retrieval. Inf. Retr. J. 23, 3, 191–215. DOI: .Google ScholarDigital Library
- R. Rahimi, Y. Kim, H. Zamani, and J. Allan. 2021. Explaining documents’ relevance to search queries. arXiv:2111.01314. DOI: .Google ScholarCross Ref
- A. Raj and M. D. Ekstrand. 2022. Measuring fairness in ranked results: An analytical and empirical comparison. In E. Amigo, P. Castells, J. Gonzalo, B. Carterette, J. Shane Culpepper, and G. Kazai (Eds.), Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 726–736. DOI: .Google ScholarDigital Library
- T. V. Rampisela, M. Maistro, T. Ruotsalo, and C. Lioma. 2024. Evaluation measures of individual item fairness for recommender systems: A critical study. ACM Trans. Recommender Syst. (TOIS), 1–55. DOI: .Google ScholarDigital Library
- L. Rashidi, J. Zobel, and A. Moffat. August. 2023. The impact of judgment variability on the consistency of offline effectiveness measures. ACM Trans. Inf. Syst. (TOIS) 42, 1, 19:1–19:31. DOI: .Google ScholarDigital Library
- H. Rashkin, V. Nikolaev, M. Lamm, L. Aroyo, M. Collins, D. Das, S. Petrov, G. S. Tomar, I. Turc, and D. Reitter. August. 2023. Measuring attribution in natural language generation models. Comput. Linguist. 49, 4, 777–840. DOI: .Google ScholarCross Ref
- S. Ravuri and D. P. Ellis. 2010. Cover song detection: From high scores to general classification. In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 65–68. DOI: .Google ScholarCross Ref
- V. C. Raykar and S. Yu. February. 2012. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. J. Mach. Learn. Res. 13, 491–518.Google ScholarDigital Library
- V. C. Raykar, L. H. Zhao, G. Hermosillo Valadez, C. Florin, L. Bogoni, and L. Moy. April. 2010. Learning from crowds. J. Mach. Learn. Res. 11, 1297–1322.Google ScholarDigital Library
- Redis Enterprise. 2011. Redis In-Memory Database. https://redis.io.Google Scholar
- N. Rekabsaz, O. Lesota, M. Schedl, J. Brassey, and C. Eickhoff. 2021. TripClick: The log files of a large health web search engine. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 2507–2513. DOI: .Google ScholarDigital Library
- P. Ren, Z. Chen, Z. Ren, E. Kanoulas, C. Monz, and M. De Rijke. October. 2021. Conversations with search engines: SERP-based conversational response generation. ACM Trans. Inf. Syst. 39, 4, 47. DOI: .Google ScholarDigital Library
- Y. Ren, M. Tomko, F. Salim, J. Chan, C. Clarke, and M. Sanderson. October. 2018. A location-query-browse graph for contextual recommendation. IEEE Trans. Knowl. Data Eng. 30, 204–218. DOI: .Google ScholarCross Ref
- S. Rendle. 2010. Factorization machines. In Proceedings of the 10th IEEE International Conference on Data Mining (ICDM ’10). IEEE, 995–1000. DOI: .Google ScholarDigital Library
- S. Rendle. May. 2012. Factorization machines with libFM. ACM Trans. Intell. Syst. Technol. 3, 3, 1–22. DOI: .Google ScholarDigital Library
- S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In J. A. Bilmes and A. Y. Ng (Eds.), Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI ’09). AUAI Press, Arlington, VA, 452–461.Google Scholar
- S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. 2010. Factorizing personalized Markov chains for next-basket recommendation. In Proceedings of the 19th International Conference on World Wide Web (WWW ’10). ACM, New York, NY, 811–820. DOI: .Google ScholarDigital Library
- S. Rendle, W. Krichene, L. Zhang, and J. R. Anderson. 2020. Neural collaborative filtering vs. matrix factorization revisited. In Proceedings of the 14th ACM Conference on Recommender Systems (RecSys ’20). ACM, New York, NY, 240–248. DOI: .Google ScholarDigital Library
- P. Resnick. April. 2001. Internet Message Format. Internet Engineering Task Force, Network Working Group, Request for Comment 2822.Google Scholar
- P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. 1994. GroupLens: An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work (CSCW ’94). ACM, New York, NY, 175–186. DOI: .Google ScholarDigital Library
- P. Resnik, D. Oard, and G. Levow. 2001. Improved cross-language retrieval using backoff translation. In Proceedings of the First International Conference on Human Language Technology Research (HLT ’01). Association for Computational Linguistics, 1–3. DOI: .Google ScholarDigital Library
- F. Ricci, L. Rokach, and B. Shapira (Eds.). 2022. Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 1060. DOI: .Google ScholarCross Ref
- D. J. Rigden and X. M. Fernández. January. 2022. The 2022 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res. 50, D1, D1–D10. DOI: .Google ScholarCross Ref
- M. Ringel, E. Cutrell, S. Dumais, and E. Horvitz. September. 2003. Milestones in time: The value of landmarks in retrieving information from personal stores. In Proceedings of the 9th IFIP TC13 International Conference on Human–Computer Interaction. IOS Press, 184–191.Google Scholar
- S. G. Rizzo, M. Brucato, and D. Montesi. 2023. Ranking models for the temporal dimension of text. ACM Trans. Inf. Syst. 41, 2, 49:1–49:34. DOI: .Google ScholarDigital Library
- A. Roberts, C. Raffel, and N. Shazeer. 2020. How much knowledge can you pack into the parameters of a language model? In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 5418–5426. DOI: .Google ScholarCross Ref
- F. S. Roberts. September. 1985. Applications of the theory of meaningfulness to psychology. J. Math. Psychol. 29, 3, 311–332. DOI: .Google ScholarCross Ref
- K. Roberts, M. Simpson, D. Demner-Fushman, E. Voorhees, and W. Hersh. April. 2016. State-of-the-art in biomedical literature retrieval for clinical cases: A survey of the TREC 2014 CDS track. Inf. Retr. J. 19, 1, 113–148. DOI: .Google ScholarDigital Library
- K. Roberts, D. Demner-Fushman, E. M. Voorhees, S. Bedrick, and W. R. Hersh. February. 2021. Overview of the TREC 2020 precision medicine track. In Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC 2020), Special Publication 1266. National Institute of Standards and Technology.Google Scholar
- G. G. Robertson, J. D. Mackinlay, and S. K. Card. 1991. Cone trees: Animated 3D visualizations of hierarchical information. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’91). ACM, New York, NY, 189–194. DOI: .Google ScholarDigital Library
- S. Robertson. 2006. On GMAP: And other transformations. In P. S. Yu, V. Tsotras, E. Fox, and B. Liu (Eds.), Proceedings of the 15th ACM International Conference on Information and Knowledge Management (CIKM ’06). ACM, New York, NY, 78–83. DOI: .Google ScholarDigital Library
- S. Robertson. 2008. A new interpretation of average precision. In T.-S. Chua, M.-K. Leong, S. H. Myaeng, D. W. Oard, and F. Sebastiani (Eds.), Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’08). ACM, New York, NY, 689–690. DOI: .Google ScholarDigital Library
- S. Robertson and H. Zaragoza. 2009. The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retr. 3, 4, 333–389. DOI: .Google ScholarDigital Library
- S. Robertson, H. Zaragoza, and M. Taylor. 2004. Simple BM25 extension to multiple weighted fields. In Proceedings of the 13th ACM International Conference on Information and Knowledge Management. ACM, New York, NY, 42–49. DOI: .Google ScholarDigital Library
- S. E. Robertson. 1977. The probability ranking principle in IR. J. Doc. 33, 4, 294–304. DOI: .Google ScholarCross Ref
- S. E. Robertson and S. Walker. 1994. Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’94). Springer, London, 232–241. DOI: .Google ScholarCross Ref
- J. Rocchio. 1971. Relevance feedback in information retrieval. In The Smart Retrieval System—Experiments in Automatic Document Processing. Prentice-Hall, Englewood Cliffs, NJ, 313–323.Google Scholar
- K. Rodden, H. B. Hutchinson, and X. Fu. 2010. Measuring the user experience on a large scale: User-centered metrics for web applications. In E. D. Mynatt, D. Schoner, G. Fitzpatrick, S. E. Hudson, W. K. Edwards, and T. Rodden (Eds.), Proceedings of the 28th International Conference on Human Factors in Computing Systems (CHI ’10). ACM, New York, NY, 2395–2398. DOI: .Google ScholarDigital Library
- K. Roitero, E. Maddalena, S. Mizzaro, and F. Scholer. November. 2021. On the effect of relevance scales in crowdsourcing relevance assessments for information retrieval evaluation. Inf. Process. Manag. 58, 6, 102688. DOI: .Google ScholarDigital Library
- S. Roller, E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu, J. Xu, M. Ott, E. M. Smith, Y.-L. Boureau, and J. Weston. 2021. Recipes for building an open-domain chatbot. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Association for Computational Linguistics, 300–325. DOI: .Google ScholarCross Ref
- G. Rosemblat, D. Gemoets, A. C. Browne, and T. Tse. 2003. Machine translation-supported cross-language information retrieval for a consumer health resource. AMIA Annu. Symp. Proc. 2003, 564–568.Google Scholar
- G. D. Rosin, I. Guy, and K. Radinsky. 2022. Time masking for temporal language models. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (WSDM ’22). ACM, New York, NY, 833–841. DOI: .Google ScholarDigital Library
- C. Rosset, C. Xiong, X. Song, D. Campos, N. Craswell, S. Tiwary, and P. Bennett. 2020. Leading conversational search by suggesting useful questions. In Proceedings of World Wide Web Conference (WWW ’20). ACM, New York, NY, 1160–1170. DOI: .Google ScholarDigital Library
- M. Rossetti, F. Stella, and M. Zanker. 2016. Contrasting offline and online results when evaluating recommendation algorithms. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16). ACM, New York, NY, 31–34. DOI: .Google ScholarDigital Library
- K. Roteiro, A. Brunello, G. Serra, and S. Mizzaro. March. 2020. Effectiveness evaluation without human relevance judgments: A systematic analysis of existing methods and of their combinations. Inf. Process. Manag. 57, 2, 102149. DOI: .Google ScholarDigital Library
- B. R. Rowe, D. W. Wood, A. L. Link, and D. A. Simoni. July. 2010. Economic Impact Assessment of NIST’s Text REtrieval Conference (TREC) Program. RTI Project Number 0211875. RTI International. https://trec.nist.gov/pubs/2010.economic.impact.pdf.Google Scholar
- J. Rowley. 2000. Product search in e-shopping: A review and research propositions. J. Consum. Mark. 17, 1, 20–35. DOI: .Google ScholarCross Ref
- J. Rowley. 2007. The wisdom hierarchy: Representations of the DIKW hierarchy. J. Inf. Sci. 33, 2, 163–180. DOI: .Google ScholarDigital Library
- R. K. Roy. 2001. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement. John Wiley & Sons, New York.Google Scholar
- C. Rubino. 2020. The effect of linguistic parameters in cross-language information retrieval performance: Evidence from IARPA’s MATERIAL program. In Proceedings of the Cross-Language Search and Summarization of Text and Speech Workshop. European Language Resources Association, 1–6.Google Scholar
- A. Rücklé, K. Swarnkar, and I. Gurevych. 2019. Improved cross-lingual question retrieval for community question answering. In The World Wide Web Conference (WWW ’19). ACM, New York, NY, 3179–3186. DOI: .Google ScholarDigital Library
- S. Ruder, I. Vulić, and A. Søgaard. 2019. A survey of cross-lingual word embedding models. J. Artif. Intell. Res. 65, 569–631. DOI: .Google ScholarDigital Library
- P. Ruiz, P. Morales-Álvarez, R. Molina, and A. K. Katsaggelos. April. 2019. Learning from crowds with variational Gaussian processes. Pattern Recognit. 88, 298–311. DOI: .Google ScholarDigital Library
- J. A. Russell. 1980. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 6, 1161–1178. DOI: .Google ScholarCross Ref
- T. Russell-Rose. 2020. Toward explainability in professional search. In The 3rd International Workshop on ExplainAble Recommendation and Search (EARS ’20).Google Scholar
- T. Russell-Rose, J. Lamantia, and M. Burrell. 2011. A taxonomy of enterprise search. In EuroHCIR, Proceedings of the 1st European Workshop on Human–Computer Interaction and Information Retrieval. CEUR-WS.org, 15–18.Google Scholar
- T. Russell-Rose, J. Chamberlain, and L. Azzopardi. 2018. Information retrieval in the workplace: A comparison of professional search practices. Inf. Process. Manag. 54, 6, 1042–1057. DOI: .Google ScholarCross Ref
- A. Rutherford. 2011. ANOVA and ANCOVA. A GLM Approach (2nd. ed.). John Wiley & Sons, New York. DOI: .Google ScholarCross Ref
- I. Ruthven and D. Kelly (Eds.). 2011. Interactive Information Seeking, Behaviour and Retrieval. Facet Publishing, UK.Google Scholar
- M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. 1998. A Bayesian approach to filtering junk e-mail. In M. Sahami (Ed.), Papers from the 1998 AAAI Workshop on Learning for Text Categorization, AAAI Technical Report WS-98-05. AAAI Press, 55–62.Google Scholar
- N. G. Sahib, D. Al Thani, A. Tombros, and T. Stockman. 2012. Accessible information seeking. In Proceedings of Digital Futures ’12. 1–3.Google Scholar
- A. Said, D. Tikk, K. Stumpf, Y. Shi, M. A. Larson, and P. Cremonesi. 2012. Recommender systems evaluation: A 3D benchmark. In Proceedings of the Workshop on Recommendation Utility Evaluation: Beyond RMSE (RUE 2011), RUE@ RecSys. 21–23.Google Scholar
- Y. Saito, S. Yaginuma, Y. Nishino, H. Sakata, and K. Nakata. 2020. Unbiased recommender learning from missing-not-at-random implicit feedback. In Proceedings of the 13th International Conference on Web Search and Data Mining (WSDM ’20). ACM, New York, NY, 501–509. DOI: .Google ScholarDigital Library
- K. Sakaguchi, R. Le Bras, C. Bhagavatula, and Y. Choi. September. 2021. WinoGrande: An adversarial Winograd Schema Challenge at scale. Commun ACM 64, 9, 99–106. DOI: .Google ScholarDigital Library
- T. Sakai. 2014a. Metrics, statistics, tests. In N. Ferro (Ed.), Bridging Between Information Retrieval and Databases—PROMISE Winter School 2013, Revised Tutorial Lectures, Vol. 8173: Lecture Notes in Computer Science. Springer, Berlin, 116–163. DOI: .Google ScholarCross Ref
- T. Sakai. June. 2014b. Statistical reform in information retrieval? ACM SIGIR Forum 48, 1, 3–12. DOI: .Google ScholarDigital Library
- T. Sakai. June. 2016a. Topic set size design. Inf. Retr. J. 19, 3, 256–283. DOI: .Google ScholarDigital Library
- T. Sakai. 2016b. A simple and effective approach to score standardisation. In B. A. Carterette, H. Fang, M. Lalmas, and J.-Y. Nie (Eds.), Proceedings of the 2nd ACM International Conference on the Theory of Information Retrieval (ICTIR ’16). ACM, New York, NY, 95–104. DOI: .Google ScholarDigital Library
- T. Sakai. 2016c. Statistical significance, power, and sample sizes: A systematic review of SIGIR and TOIS, 2006–2015. In R. Perego, F. Sebastiani, J. Aslam, I. Ruthven, and J. Zobel (Eds.), Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 5–14. DOI: .Google ScholarDigital Library
- T. Sakai. 2017. Evaluating evaluation measures with worst-case confidence interval widths. In N. Ferro and I. Soboroff (Eds.), Proceedings of the 8th International Workshop on Evaluating Information Access (EVIA ’17). CEUR Workshop Proceedings. CEUR-WS.org, 16–19. ISSN 1613-0073. https://ceur-ws.org/Vol-2008/.Google Scholar
- T. Sakai. 2018. Conclusions. In Laboratory Experiments in Information Retrieval. The Information Retrieval Series, Vol. 40. Springer, Singapore, 147–148. DOI: .Google ScholarCross Ref
- T. Sakai. 2019. How to run an evaluation task. In N. Ferro and C. Peters (Eds.), Information Retrieval Evaluation in a Changing World. The Information Retrieval Series, Vol. 41. Springer, Cham, 71–102. DOI: .Google ScholarCross Ref
- T. Sakai. June. 2020. On Fuhr’s guideline for IR evaluation. ACM SIGIR Forum 54, 1, 1–8. DOI: .Google ScholarDigital Library
- T. Sakai and R. Song. 2011. Evaluating diversified search results using per-intent graded relevance. In W.-Y. Ma, J.-Y. Nie, R. Baeza-Yates, T.-S. Chua, and W. Bruce Croft (Eds.), Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 1043–1052. DOI: .Google ScholarDigital Library
- T. Sakai, N. Kando, C.-J. Lin, T. Mitamura, H. Shima, D. Ji, K.-H. Chen, and E. Nyberg. 2008. Overview of the NTCIR-7 ACLIA IR4QA task. In Proceedings of the 7th NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-Lingual Information Access, NTCIR-7, Tokyo, Japan, December 16–19, 2008. National Institute of Informatics.Google Scholar
- T. Sakai, D. W. Oard, and N. Kando (Eds.). 2020. Evaluating Information Retrieval and Access Tasks – NTCIR’s Legacy of Research Impact. The Information Retrieval Series, Vol. 43. Springer, Singapore. DOI: .Google ScholarCross Ref
- T. Sakai, S. Tao, Z. Chu, M. Maistro, Y. Li, N. Chen, N. Ferro, J. Wang, I. Soboroff, and Y. Liu. 2022. Overview of the NTCIR-16 We Want Web with CENTRE (WWW-4) task. In M. P. Kato, T. Yamamoto, and Z. Dou (Eds.), Proceedings of the 16th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-16). National Institute of Informatics, Tokyo, Japan, 231–242.Google Scholar
- R. Salakhutdinov and A. Mnih. 2007. Probabilistic matrix factorization. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis (Eds.), Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems (NIPS ’07). Curran Associates, Red Hook, NY, 1257–1264.Google Scholar
- J. Salamon. 2019. What’s broken in music informatics research? Three uncomfortable statements. In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, California.Google Scholar
- J. Salamon and E. Gómez. August. 2012. Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Trans. Audio Speech Lang. Process. 20, 1759–1770. DOI: .Google ScholarDigital Library
- J. Salamon and J. Urbano. 2012. Current challenges in the evaluation of predominant melody extraction algorithms. In Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR ’12). ISMIR, 289–294. DOI: .Google ScholarCross Ref
- J. Salamon, J. Serrà, and E. Gómez. 2012. Melody, bass line, and harmony representations for music version identification. In Proceedings of the International World Wide Web Conference (WWW ’12 Companion): 4th International Workshop on Advances in Music Information Research (AdMIRe ’12). ACM, New York, NY, 887–894. DOI: .Google ScholarDigital Library
- J. Salamon, E. Gómez, D. P. W. Ellis, and G. Richard. 2014. Melody extraction from polyphonic music signals: Approaches, applications, and challenges. IEEE Signal Process. Mag. 31, 2, 118–134. DOI: .Google ScholarCross Ref
- M. Salampasis and A. Hanbury. 2014. PerFedPat: An integrated federated system for patent search. World Pat. Inf. 38, 4–11. DOI: .Google ScholarCross Ref
- S. Saleh and P. Pecina. 2016. Reranking hypotheses of machine-translated queries for cross-lingual information retrieval. In N. Fuhr, P. Quaresma, T. Goncalves, B. Larsen, K. Balog, C. Macdonald, L. Cappellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the Seventh International Conference of the CLEF Association (CLEF ’16), Vol. 9822: Lecture Notes in Computer Science. Springer, Cham, 54–66. DOI: .Google ScholarCross Ref
- S. Saleh and P. Pecina. 2019. An extended CLEF eHealth test collection for cross-lingual information retrieval in the medical domain. In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra (Eds.), Advances in Information Retrieval, Proceedings of the 41st European Conference on IR Research, ECIR 2019, Part II, Vol. 11438: Lecture Notes in Computer Science. Springer, Cham, 188–195. DOI: .Google ScholarDigital Library
- S. Saleh and P. Pecina. July. 2020. Document translation vs. query translation for cross-lingual information retrieval in the medical domain. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 6849–6860. DOI: .Google ScholarCross Ref
- G. Salton and M. E. Lesk. January. 1968. Computer evaluation of indexing and text processing. J. ACM 15, 1, 8–36. DOI: .Google ScholarDigital Library
- G. Salton, A. Wong, and C. S. Yang. November. 1975. A vector space model for automatic indexing. Commun. ACM 18, 11, 613–620. DOI: .Google ScholarDigital Library
- M. Sanderson. 2010. Test collection based evaluation of information retrieval systems. Found. Trends Inf. Retr. 4, 4, 247–375. DOI: .Google ScholarCross Ref
- M. Sanderson and W. B. Croft. 2012. The history of information retrieval research. Proc. IEEE 100, Special Centennial Issue, 1444–1451. DOI: .Google ScholarCross Ref
- M. Sanderson and J. Zobel. 2005. Information retrieval system evaluation: Effort, sensitivity, and reliability. In R. Baeza-Yates, N. Ziviani, G. Marchionini, A. Moffat, and J. Tait (Eds.), Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’05). ACM, New York, NY, 162–169. DOI: .Google ScholarDigital Library
- M. Sanderson, M. Lestari Paramita, P. Clough, and E. Kanoulas. 2010. Do user preferences and evaluation measures line up? In F. Crestani, S. Marchand-Maillet, E. N. Efthimiadis, and J. Savoy (Eds.), Proceedings of the 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’10). ACM, New York, NY, 555–562. DOI: .Google ScholarDigital Library
- V. Sanh, L. Debut, J. Chaumond, and T. Wolf. 2019. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. In Proceedings of the 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @ NeurIPS 2019.Google Scholar
- S. K. K. Santu, P. Sondhi, and C. Zhai. 2017. On application of learning to rank for e-commerce search. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 475–484. DOI: .Google ScholarDigital Library
- J. Sanz-Cruzado and P. Castells. 2018. Enhancing structural diversity in social networks by recommending weak ties. In S. Pera, M. D. Ekstrand, X. Amatriain, and J. O’Donovan (Eds.), Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY, 233–241. DOI: .Google ScholarDigital Library
- T. Saracevic. 1968. Comparative Systems Laboratory Final Technical Report, An Inquiry into Testing of Information Retrieval Systems. Part II: Analysis of Results. Technical Report. Case Western Reserve University.Google Scholar
- T. Saracevic. November/December. 1975. RELEVANCE: A review of and a framework for the thinking on the notion in information science. J. Am. Soc. Inf. Sci. Technol. 26, 6, 321–343. DOI: .Google ScholarCross Ref
- Á. Sarasúa, C. Laurier, and P. Herrera. 2012. Support vector machine active learning for music mood tagging. In Proceedings of the 9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012). Queen Mary University of London, 518–525.Google Scholar
- B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. 2001. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web (WWW ’01). ACM, New York, NY, 285–295. DOI: .Google ScholarDigital Library
- S. M. Sarwar, H. Bonab, and J. Allan. July. 2019. A multi-task architecture on relevance-based neural query translation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy. Association for Computational Linguistics, 6339–6344. DOI: .Google ScholarCross Ref
- S. Sasaki, S. Sun, S. Schamoni, K. Duh, and K. Inui. June. 2018. Cross-lingual learning-to-rank with shared representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), New Orleans, Louisiana. Association for Computational Linguistics, 458–463. DOI: .Google ScholarCross Ref
- Y. Sasaki, H.-H. Chen, K.-H. Chen, and C.-J. Lin. 2005. Overview of the NTCIR-5 cross-lingual question answering task (CLQA1). In Proceedings of the Fifth {NTCIR} Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-Lingual Information Access, NTCIR-5, Tokyo, Japan, December 6–9, 2005. National Institute of Informatics, 175–185.Google Scholar
- Y. Sasaki, C.-J. Lin, K.-H. Chen, and H.-H. Chen. April. 2007. Overview of the NTCIR-6 cross-Lingual question answering (CLQA) task. In Proceedings of the NTCIR-6 Workshop Meeting, Tokyo, Japan, May 15–18, 2007.Google Scholar
- J. Sauro and J. R. Lewis. 2016. Quantifying the User Experience: Practical Statistics for User Research (2nd. ed.). Morgan Kaufmann Publisher, San Francisco, CA.Google Scholar
- J. Savoy. 1997. Statistical inference in retrieval effectiveness evaluation. Inf. Process. Manag. 33, 44, 495–512. DOI: .Google ScholarDigital Library
- M. F. Sayed and D. W. Oard. 2019. Jointly modeling relevance and sensitivity for search among sensitive content. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 615–624. DOI: .Google ScholarDigital Library
- M. F. Sayed, W. Cox, J. L. Rivera, C. Christian-Lamb, M. Iqbal, D. W. Oard, and K. Shilton. 2020. A test collection for relevance and sensitivity. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1605–1608. DOI: .Google ScholarDigital Library
- E. W. Sayers, E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau, R. Connor, K. Funk, C. Kelly, S. Kim, T. Madej, A. Marchler-Bauer, C. Lanczycki, S. Lathrop, Z. Lu, F. Thibaud-Nissen, T. Murphy, L. Phan, Y. Skripchenko, T. Tse, J. Wang, R. Williams, B. W. Trawick, K. D. Pruitt, and S. T. Sherry. January. 2022. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 50, D1, D20–D26. DOI: .Google ScholarCross Ref
- M. A. Scaffidi, R. Khan, C. Wang, D. Keren, C. Tsui, A. Garg, S. Brar, K. Valoo, M. Bonert, J. F. de Wolff, J. Heilman, and S. C. Grover. October. 2017. Comparison of the impact of Wikipedia, UpToDate, and a digital textbook on short-term knowledge acquisition among medical students: Randomized controlled trial of three web-based resources. JMIR Med. Educ. 3, 2, e20. DOI: .Google ScholarCross Ref
- S. M. Scariano and J. M. Davenport. 1987. The effects of violations of independence assumptions in the one-way ANOVA. Am. Stat. 41, 2, 123–129. DOI: .Google ScholarCross Ref
- H. Scells and G. Zuccon. 2018. Generating better queries for systematic reviews. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 475–484. DOI: .Google ScholarDigital Library
- H. Scells, G. Zuccon, B. Koopman, A. Deacon, L. Azzopardi, and S. Geva. 2017. A test collection for evaluating retrieval of studies for inclusion in systematic reviews. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 1237–1240. DOI: .Google ScholarDigital Library
- J. B. Schafer, J. Konstan, and J. Riedl. 1999. Recommender systems in e-commerce. In Proceedings of the 1st ACM Conference on Electronic Commerce (EC ’99). ACM, New York, NY, 158–166. DOI: .Google ScholarDigital Library
- J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne, C. Chelba, M. Cohen, M. Kamvar, and B. Strope. 2010. “Your word is my command”: Google search by voice: A case study. In Advances in Speech Recognition. Springer, Boston, MA, 61–90. DOI: .Google ScholarCross Ref
- S. Schamoni, F. Hieber, A. Sokolov, and S. Riezler. June. 2014. Learning translational and knowledge-based similarities from relevance rankings for cross-language retrieval. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Baltimore, MD. Association for Computational Linguistics, 488–494. DOI: .Google ScholarCross Ref
- M. Schedl, A. Flexer, and J. Urbano. 2013. The neglected user in music information retrieval research. J. Intell. Inf. Syst. 41, 3, 523–539. DOI: .Google ScholarDigital Library
- M. Schedl, E. Gómez, and J. Urbano. 2014. Music information retrieval: Recent developments and applications. Found. Trends Inf. Retr. 8, 2–3, 127–261. DOI: .Google ScholarDigital Library
- M. Schedl, E. Gómez, E. S. Trent, M. Tkalčič, H. Eghbal-Zadeh, and A. Martorell. 2018. On the interrelation between listener characteristics and the perception of emotions in classical orchestra music. IEEE Trans. Affect. Comput. 9, 4, 507–525. DOI: .Google ScholarDigital Library
- H. Scheffe. June. 1953. A method for judging all contrasts in the analysis of variance. Biometrika 40, 1/2, 87–104. DOI: .Google ScholarCross Ref
- E. D. Scheirer. 1998. Tempo and beat analysis of acoustic musical signals. J. Acoust. Soc. Am. 103, 1, 588–601. DOI: .Google ScholarCross Ref
- S. Schenk, O. Görlitz, and S. Staab. 2006. TagFS: Bringing semantic metadata to the filesystem. In Demos and Posters of the 3rd European Semantic Web Conference (ESWC 2006).Google Scholar
- D. Schiffrin. 1985. Conversational coherence: The role of well. Language 61, 3, 640–667. DOI: .Google ScholarCross Ref
- F. Schilder and C. Habel. 2005. From temporal expressions to temporal information: Semantic tagging of news messages. In I. Mani, J. Pustejovsky, and R. J. Gaizauskas (Eds.), The Language of Time: A Reader. Oxford University Press, 533–544. DOI: .Google ScholarCross Ref
- E. M. Schmidt and Y. E. Kim. 2011. Modeling musical emotion dynamics with conditional random fields. In Proceedings of the 12th International Society for Music Information Retrieval Conference. ISMIR, 777–782. DOI: .Google ScholarCross Ref
- T. Schnabel, A. Swaminathan, A. Singh, N. Chandak, and T. Joachims. June. 2016. Recommendations as treatments: Debiasing learning and evaluation. In Proceedings of the 33rd International Conference on Machine Learning (ICML ’16). Proceedings of Machine Learning Research, Sheffield, UK. JMLR.org, 1670–1679.Google Scholar
- A. Z. Scholten and D. Borsboom. April. 2009. A reanalysis of Lord’s statistical treatment of football numbers. J. Math. Psychol. 53, 2, 69–75. DOI: .Google ScholarCross Ref
- P. H. Schönemann. 1966. A generalized solution of the orthogonal procrustes problem. Psychometrika 31, 1, 1–10. DOI: .Google ScholarCross Ref
- H. Schreiber and M. Müller. 2018. A single-step approach to musical tempo estimation using a convolutional neural network. In Proceedings of the 19th International Society for Music Information Retrieval Conference, Paris, France. ISMIR, 98–105. DOI: .Google ScholarCross Ref
- B. Schuller, C. Hage, D. Schuller, and G. Rigoll. 2010. “Mister D.J., Cheer Me Up!”: Musical and textual features for automatic mood classification. J. New Music Res. 39, 13–34. DOI: .Google ScholarCross Ref
- M. Schuster and K. Nakajima. 2012. Japanese and Korean voice search. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 5149–5152. DOI: .Google ScholarCross Ref
- A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke. 2014. Multileaved comparisons for fast online evaluation. In J. Li, X. Sean Wang, M. Garofalakis, I. Soboroff, T. Suel, and M. Wang (Eds.), Proceedings of the 23rd ACM International Conference on Information and Knowledge Management (CIKM ’14). ACM, New York, NY, 71–80. DOI: .Google ScholarDigital Library
- F. Sebastiani. June. 2020. Evaluation measures for quantification: An axiomatic approach. Inf. Retr. J. 23, 3, 255–288. DOI: .Google ScholarDigital Library
- I. Sekulić, A. Soleimani, M. Aliannejadi, and F. Crestani. February. 2021. Longformer for MS MARCO document re-ranking task. In Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC 2020), Special Publication 1266. National Institute of Standards and Technology.Google Scholar
- M. Seltzer and N. Murphy. 2009. Hierarchical file systems are dead. In Proceedings of HotOS ’09: 12th Workshop on Hot Topics in Operating Systems (HotOS ’09). USENIX Association, Berkeley, CA.Google Scholar
- O. Semerci, A. Gruson, C. Edwards, B. Lacker, C. Gibson, and V. Radosavljevic. 2019. Homepage personalization at Spotify. In Proceedings of the 13th ACM Conference on Recommender Systems (RecSys ’19). ACM, New York, NY, 527. DOI: .Google ScholarDigital Library
- V. L. Senders. 1958. Measurement and Statistics: A Basic Text Emphasizing Behavioral Science Applications. Oxford University Press, New York.Google Scholar
- R. Sennrich, B. Haddow, and A. Birch. August. 2016. Neural machine translation of rare words with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany. Association for Computational Linguistics, 1715–1725. DOI: .Google ScholarCross Ref
- P. Senthil Kumar, V. Salaka, T. H. King, and B. Johnson. 2014. Mickey mouse is not a phrase: Improving relevance in e-commerce with multiword expressions. In Proceedings of the 10th Workshop on Multiword Expressions (MWE). Association for Computational Linguistics, 62–66. DOI: .Google ScholarCross Ref
- A. Sepliarskaia, S. Genc, and M. de Rijke. 2021. A deep reinforcement learning-based approach to query-free interactive target item retrieval. In Proceedings of the 2021 SIGIR Workshop on eCommerce (SIGIR eCom ’21). CEUR-WS.org.Google Scholar
- J. Serrà. 2011. Identification of Versions of the Same Musical Composition by Processing Audio Descriptions. Ph.D. thesis. Universitat Pompeu Fabra, Spain.Google Scholar
- J. Serrà, E. Gómez, and P. Herrera. 2008a. Transposing chroma representations to a common key. In Proceedings of the IEEE CS Conference on the Use of Symbols to Represent Music and Multimedia Objects. 45–48.Google Scholar
- J. Serrà, E. Gómez, P. Herrera, and X. Serra. 2008b. Chroma binary similarity and local alignment applied to cover song identification. IEEE Trans. Audio Speech Lang. Process. 16, 6, 1138–1151. DOI: .Google ScholarDigital Library
- J. Serrà, X. Serra, and R. G. Andrzejak. 2009. Cross recurrence quantification for cover song identification. New J. Phys. 11, 093017. DOI: .Google ScholarCross Ref
- J. Serrà, E. Gómez, and P. Herrera. 2010. Audio cover song identification and similarity: Background, approaches, evaluation, and beyond. In Z. W. Ras and A. A. Wieczorkowska (Eds.), Advances in Music Information Retrieval, Studies in Computational Intelligence, Vol. 274. Springer, Berlin, 307–332. DOI: .Google ScholarCross Ref
- B. Settles. 2012. Active Learning. Morgan & Claypool Publishers.Google Scholar
- K. Seyerlehner, G. Widmer, and D. Schnitzer. 2007. From rhythm patterns to perceived tempo. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR ’07). ISMIR, 519–524. DOI: .Google ScholarCross Ref
- G. Sfakianakis, I. Patlakas, N. Ntarmos, and P. Triantafillou. 2013. Interval indexing and querying on key-value cloud stores. In 2013 IEEE 29th International Conference on Data Engineering (ICDE). IEEE, 805–816. DOI: .Google ScholarDigital Library
- C. Shah. 2023. AI Information Retrieval: A Search Engine Researcher Explains the Promise and Peril of Letting ChatGPT and Its Cousins Search the Web for You. Retrieved from https://theconversation.com/ai-information-retrieval-a-search-engine-researcher-explains-the-promise-and-peril-of-letting-chatgpt-and-its-cousins-search-the-web-for-you-200875.Google Scholar
- C. Shah and E. M. Bender. 2022. Situating search. In Proceedings of the 2022 Conference on Human Information Interaction and Retrieval (CHIIR ’22). ACM, New York, NY, 221–232. DOI: .Google ScholarDigital Library
- D. Shakespeare, L. Porcaro, E. Gómez, and C. Castillo. 2020. Exploring artist gender bias in music recommendation. In Proceedings of the 2nd Workshop on the Impact of Recommender Systems (ImpactRS20), Co-located at RecSys ’20. CEUR-WS.org.Google Scholar
- W. Shalaby and W. Zadrozny. 2019. Patent retrieval: A literature review. Knowl. Inf. Syst. 61, 631–660. DOI: .Google ScholarDigital Library
- G. Shani and A. Gunawardana. 2011. Evaluating recommendation systems. In F. Ricci, L. Rokach, B. Shapira, and P. Kantor (Eds.), Recommender Systems Handbook. Springer, Boston, MA, 257–297. DOI: .Google ScholarCross Ref
- T. Shao, H. Chen, and W. Chen. April. 2018. Query auto-completion based on word2vec semantic similarity. J. Phys. Conf. Ser. 1004, 012018. DOI: .Google ScholarCross Ref
- D. Shen, J. D. Ruvini, M. Somaiya, and N. Sundaresan. 2011. Item categorization in the e-commerce domain. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM ’11). ACM, New York, NY, 1921–1924. DOI: .Google ScholarDigital Library
- D. Shen, J.-D. Ruvini, and B. Sarwar. 2012. Large-scale item categorization for e-commerce. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management (CIKM ’12). ACM, New York, NY, 595–604. DOI: .Google ScholarDigital Library
- X. Shen, B. Tan, and C. Zhai. 2005. Context-sensitive information retrieval using implicit feedback. In R. Baeza-Yates, N. Ziviani, G. Marchionini, A. Moffat, and J. Tait (Eds.), Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’05). ACM, New York, NY, 43–50. DOI: .Google ScholarDigital Library
- X. Shen, Z. Chen, M. Backes, and Y. Zhang. 2023. In ChatGPT we trust? Measuring and characterizing the reliability of ChatGPT. arXiv:2304.08979. DOI: .Google ScholarCross Ref
- P. Sheridan and J. P. Ballerini. 1996. Experiments in multilingual information retrieval using the SPIDER system. In Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’96). ACM, New York, NY, 58–65. DOI: .Google ScholarDigital Library
- P. Sheridan, M. Wechsler, and P. Schäuble. July. 1997. Cross-language speech retrieval: Establishing a baseline performance. ACM SIGIR Forum 31, SI, 99–108. DOI: .Google ScholarDigital Library
- P. Shi and J. Lin. 2019. Cross-lingual relevance transfer for document retrieval. arXiv:1911.02989. DOI: .Google ScholarCross Ref
- Y. Shi, A. Karatzoglou, L. Baltrunas, M. A. Larson, N. Oliver, and A. Hanjalic. 2012. CLiMF: Learning to maximize reciprocal rank with collaborative less-is-more filtering. In P. Cunningham, N. J. Hurley, I. Guy, and S. S. Anand (Eds.), Proceedings of the 6th ACM Conference on Recommender Systems (RecSys ’12). ACM, New York, NY, 139–146. DOI: .Google ScholarDigital Library
- H.-S. Shing, J. Barrow, P. Galušcáková, D. W. Oard, and P. Resnik. 2019. Unsupervised system combination for set-based retrieval with expectation maximization. In F. Crestani, M. Braschler, J. Savoy, A. Rauber, H. Müller, D. E. Losada, G. H. Bürki, L. Cappellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF ’19), Vol. 11696: Lecture Notes in Computer Science. Springer, Cham, 191–197. DOI: .Google ScholarDigital Library
- M. Shokouhi. 2013. Learning to personalize query auto-completion. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 103–112. DOI: .Google ScholarDigital Library
- M. Shokouhi and K. Radinsky. 2012. Time-sensitive query auto-completion. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’12). ACM, New York, NY, 601–610. DOI: .Google ScholarDigital Library
- L. Si and H. Yang. 2014. Privacy-preserving IR: When information retrieval meets privacy and security. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’14). ACM, New York, NY, 1295. DOI: .Google ScholarDigital Library
- S. Siegel. 1956. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New York.Google Scholar
- S. Sigtia, E. Benetos, and S. Dixon. 2016. An end-to-end neural network for polyphonic piano music transcription. IEEE/ACM Trans. Audio Speech Lang. Process. 24, 5, 927–939. DOI: .Google ScholarDigital Library
- R. Silberzahn and E. Uhlmann. October. 2015. Crowdsourced research: Many hands make tight work. Nature 526, 189–191. DOI: .Google ScholarCross Ref
- D. F. Silva, V. M. A. de Souza, and G. E. A. P. A. Batista. 2015. Music shapelets for fast cover song recognition. In Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR ’15), Málaga, Spain. ISMIR, 441–447. DOI: .Google ScholarCross Ref
- D. F. Silva, C.-C. M. Yeh, G. E. A. P. A. Batista, and E. J. Keogh. 2016. SiMPle: Assessing music similarity using subsequences joins. In Proceedings of the 17th International Society for Music Information Retrieval Conference (ISMIR ’16), New York, NY, August 7–11, 2016. ISMIR, 23–29. DOI: .Google ScholarCross Ref
- D. F. Silva, F. V. Falcão, and N. Andrade. 2018. Summarizing and comparing music data and its application on cover song identification. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR ’18), Paris, France. ISMIR, 732–739. DOI: .Google ScholarCross Ref
- G. Silvello, G. Bordea, N. Ferro, P. Buitelaar, and T. Bogers. June. 2017. Semantic representation and enrichment of information retrieval experimental data. Int. J. Digit. Libr. 18, 2, 145–172. DOI: .Google ScholarDigital Library
- A. Singh and T. Joachims. 2018. Fairness of exposure in rankings. In Y. Guo and F. Farooq (Eds.), Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’18). ACM, New York, NY, 2219–2228. DOI: .Google ScholarDigital Library
- J. Singh and A. Anand. 2019. EXS: Explainable search using local model agnostic interpretability. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (WSDM ’19). ACM, New York, NY, 770–773. DOI: .Google ScholarDigital Library
- A. Singhal. 2012. Introducing the Knowledge Graph: Things, Not Strings. https://www.blog.google/products/search/introducing-knowledge-graph-things-not/.Google Scholar
- A. Singhal, J. Choi, D. Hindle, and F. C. N. Pereira. February. 1998. AT&T at TREC-6: SDR track. In E. M. Voorhees and D. K. Harman (Eds.), Proceedings of the Sixth Text REtrieval Conference (TREC-6), Special Publication 500-240. National Institute of Standards and Technology, Washington, DC.Google Scholar
- A. Singla, E. Horvitz, E. Kamar, and R. White. 2014. Stochastic privacy. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI ’14), AAAI Press, Cambridge, MA, 152–158. DOI: .Google ScholarCross Ref
- S. Sitter and A. Stein. 1992. Modeling the illocutionary aspects of information-seeking dialogues. Inf. Process. Mange. 28, 2, 165–180. DOI: .Google ScholarDigital Library
- M. Skinner and S. Kallumadi. 2019. E-commerce query classification using product taxonomy mapping: A transfer learning approach. In Proceedings of the SIGIR 2019 Workshop on eCommerce, co-located with the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, eCom@SIGIR 2019. CEUR-WS.org, Aachen.Google Scholar
- A. Slivkins. 2019. Introduction to multi-armed bandits. Found. Trends Mach. Learn. 12, 1–2, 1–286. DOI: .Google ScholarDigital Library
- P. Smaragdis and J. C. Brown. 2003. Non-negative matrix factorization for polyphonic music transcription. In Proceedings of the 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (IEEE Cat. No. 03TH8684), IEEE, 177–180. DOI: .Google ScholarCross Ref
- D. Smiley, E. Pugh, K. Parisa, and M. Mitchell. 2015. Apache Solr Enterprise Search Server. Packt Publishing, Birmingham.Google Scholar
- A. Smirnova. 2020. Word order communicates user intent in search queries. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (CHI EA ’20). ACM, New York, NY, 1–8. DOI: .Google ScholarDigital Library
- B. Smith and G. Linden. 2017. Two decades of recommender systems at Amazon.com. IEEE Internet Comput. 21, 3, 12–18. DOI: .Google ScholarDigital Library
- S. L. Smith, D. H. P. Turban, S. Hamblin, and N. Y. Hammerla. 2017. Offline bilingual word vectors, orthogonal transformations and the inverted softmax. In Proceedings of the 5th International Conference on Learning Representations ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings. Curran Associates, Red Hook, NJ, 2521–2530.Google Scholar
- T. F. Smith and M. S. Waterman. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147, 1, 195–197. DOI: .Google ScholarCross Ref
- M. D. Smucker and C. L. A. Clarke. 2012a. Time-based calibration of effectiveness measures. In W. Hersh, J. Callan, Y. Maarek, and M. Sanderson (Eds.), Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’12). ACM, New York, NY, 95–104. DOI: .Google ScholarDigital Library
- M. D. Smucker and C. L. A. Clarke. 2012b. Stochastic simulation of time-biased gain. In X. Chen, G. Lebanon, H. Wang, and M. J. Zaki (Eds.), Proceedings of the 21st International Conference on Information and Knowledge Management (CIKM 2012). ACM, New York, NY, 2040–2044. DOI: .Google ScholarDigital Library
- M. D. Smucker, J. Allan, and B. Carterette. 2007. A comparison of statistical significance tests for information retrieval evaluation. In Proceedings of the 16th ACM Conference on Information and Knowledge Management. ACM, New York, NY, 623–632. DOI: .Google ScholarDigital Library
- B. Smyth and P. McClave. 2001. Similarity vs. diversity. In Case-Based Reasoning Research and Development, Proceedings of the 4th International Conference on Case-Based Reasoning, ICCBR 2001, Vol. 2080: Lecture Notes in Computer Science. Springer, London, 347–361. DOI: .Google ScholarCross Ref
- I. Soboroff, S. Huang, and D. Harman. February. 2019. TREC 2018 News Track Overview. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Seventh Text REtrieval Conference (TREC 2018), Special Publication 500-331. National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
- I. Soboroff, S. Huang, and D. Harman. February. 2020. TREC 2019 News Track Overview. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Eight Text REtrieval Conference (TREC 2019), Special Publication 500-331. National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
- A. Søgaard, I. Vulić, S. Ruder, and M. Faruqui. 2019. Cross-Lingual Word Embeddings. Synthesis Lectures on Human Language Technologies, Vol. 12. Morgan & Claypool Publishers, Kentfield, CA, 1–132. DOI: .Google ScholarCross Ref
- A. Sokolov, F. Hieber, and S. Riezler. 2014. Learning to translate queries for CLIR. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, New York, NY, 1179–1182. DOI: .Google ScholarDigital Library
- P. Sondhi, M. Sharma, P. Kolari, and C. Zhai. 2018. A taxonomy of queries for e-commerce search. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR ’18. ACM, New York, NY, 1245–1248. DOI: .Google ScholarDigital Library
- B. Song, X. Yang, Y. Cao, and C. Xu. 2018. Neural collaborative ranking. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018. ACM, New York, NY, 1353–1362. DOI: .Google ScholarDigital Library
- Sophox. 2023. Sophox. https://wiki.openstreetmap.org/wiki/Sophox.Google Scholar
- M. Sordo. 2012. Semantic Annotation of Music Collections: A Computational Approach. Ph.D. thesis. Universitat Pompeu Fabra, Barcelona, Spain.Google Scholar
- D. Sorokina and E. Cantú-Paz. 2016. Amazon search: The joy of ranking products. In R. Perego, F. Sebastiani, J. A. Aslam, I. Ruthven, and J. Zobel (Eds.), Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 459–460. DOI: .Google ScholarDigital Library
- C. A. N. Soules and G. R. Ganger. 2005. Connections: Using context to enhance file search. In Proceedings of the 20th ACM Symposium on Operating Systems Principles. ACM, New York, NY, 119–132. DOI: .Google ScholarCross Ref
- K. Spackman. December. 2000. SNOMED RT and SNOMEDCT. Promise of an international clinical terminology. MD Comput. Comput. Med. Pract. 17, 6, 29.Google Scholar
- E. R. Spangenberg, I. Kareklas, B. Devezer, and D. E. Sprott. 2016. A meta-analytic synthesis of the question–behavior effect. J. Consum. Psychol. 26, 3, 441–458. DOI: .Google ScholarCross Ref
- K. Spärck Jones. 1974. Automatic indexing. J. Doc. 30, 4, 393–432. DOI: .Google ScholarCross Ref
- K. Spärck Jones (Ed.). 1981. Information Retrieval Experiments. Butterworths, London.Google Scholar
- K. Spärck Jones and C. J. van Rijsbergen. 1975. Report on the Need for and Provision of an ‘Ideal’ Information Retrieval Test Collection. British Library Research and Development Report 5266. University Computer Laboratory, Cambridge.Google Scholar
- E. Spertus. 1997. Smokey: Automatic recognition of hostile messages. In Proceedings of the 9th Conference on Innovative Applications of Artificial Intelligence. AAAI Press, Washington, DC, 1058–1065.Google Scholar
- D. Spina, J. R. Trippas, P. Thomas, H. Joho, K. Byström, L. Clark, N. Craswell, M. Czerwinski, D. Elsweiler, A. Frummet, S. Ghosh, J. Kiesel, I. Lopatovska, D. McDuff, S. Meyer, A. Mourad, P. Owoicho, S. P. Cherumanal, D. Russell, and L. Sitbon. July. 2021. Report on the future conversations workshop at CHIIR 2021. ACM SIGIR Forum 55, 1, 1–22. DOI: .Google ScholarDigital Library
- R. Srinivasan. 2018. Whose Global Village?: Rethinking How Technology Shapes Our World. NYU Press, New York, NY.Google Scholar
- S. Srinivasan, N. Rao, K. Subbian, and L. Getoor. 2019. Identifying facet mismatches in search via micrographs. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management CIKM’19. ACM, New York, NY, 1663–1672. DOI: .Google ScholarDigital Library
- A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown, A. Santoro, A. Gupta, A. Garriga-Alonso, A. Kluska, A. Lewkowycz, A. Agarwal, A. Power, A. Ray, A. Warstadt, A. W. Kocurek, A. Safaya, A. Tazarv, A. Xiang, A. Parrish, A. Nie, A. Hussain, A. Askell, A. Dsouza, A. Slone, A. Rahane, A. S. Iyer, A. J. Andreassen, A. Madotto, A. Santilli, A. Stuhlmüller, A. M. Dai, A. La, A. Lampinen, A. Zou, A. Jiang, A. Chen, A. Vuong, A. Gupta, A. Gottardi, A. Norelli, A. Venkatesh, A. Gholamidavoodi, A. Tabassum, A. Menezes, A. Kirubarajan, A. Mullokandov, A. Sabharwal, A. Herrick, A. Efrat, A. Erdem, A. Karakas, B. R. Roberts, B. S. Loe, B. Zoph, B. Bojanowski, B. Özyurt, B. Hedayatnia, B. Neyshabur, B. Inden, B. Stein, B. Ekmekci, B. Y. Lin, B. Howald, B. Orinion, C. Diao, C. Dour, C. Stinson, C. Argueta, C. Ferri, C. Singh, C. Rathkopf, C. Meng, C. Baral, C. Wu, C. Callison-Burch, C. Waites, C. Voigt, C. D. Manning, C. Potts, C. Ramirez, C. E. Rivera, C. Siro, C. Raffel, C. Ashcraft, C. Garbacea, D. Sileo, D. Garrette, D. Hendrycks, D. Kilman, D. Roth, C. D. Freeman, D. Khashabi, D. Levy, D. M. González, D. Perszyk, D. Hernandez, D. Chen, D. Ippolito, D. Gilboa, D. Dohan, D. Drakard, D. Jurgens, D. Datta, D. Ganguli, D. Emelin, D. Kleyko, D. Yuret, D. Chen, D. Tam, D. Hupkes, D. Misra, D. Buzan, D. C. Mollo, D. Yang, D.-H. Lee, D. Schrader, E. Shutova, E. D. Cubuk, E. Segal, E. Hagerman, E. Barnes, E. Donoway, E. Pavlick, E. Rodolà, E. Lam, E. Chu, E. Tang, E. Erdem, E. Chang, E. A. Chi, E. Dyer, E. Jerzak, E. Kim, E. E. Manyasi, E. Zheltonozhskii, F. Xia, F. Siar, F. Martnez-Plumed, F. Happé, F. Chollet, F. Rong, G. Mishra, G. I. Winata, G. de Melo, G. Kruszewski, G. Parascandolo, G. Mariani, G. X. Wang, G. Jaimovitch-Lopez, G. Betz, G. Gur-Ari, H. Galijasevic, H. Kim, H. Rashkin, H. Hajishirzi, H. Mehta, H. Bogar, H. F. A. Shevlin, H. Schuetze, H. Yakura, H. Zhang, H. M. Wong, I. Ng, I. Noble, J. Jumelet, J. Geissinger, J. Kernion, J. Hilton, J. Lee, J. F. Fisac, J. B. Simon, J. Koppel, J. Zheng, J. Zou, J. Kocon, J. Thompson, J. Wingfield, J. Kaplan, J. Radom, J. Sohl-Dickstein, J. Phang, J. Wei, J. Yosinski, J. Novikova, J. Bosscher, J. Marsh, J. Kim, J. Taal, J. Engel, J. Alabi, J. Xu, J. Song, J. Tang, J. Waweru, J. Burden, J. Miller, J. U. Balis, J. Batchelder, J. Berant, J. Frohberg, J. Rozen, J. Hernandez-Orallo, J. Boudeman, J. Guerr, J. Jones, J. B. Tenenbaum, J. S. Rule, J. Chua, K. Kanclerz, K. Livescu, K. Krauth, K. Gopalakrishnan, K. Ignatyeva, K. Markert, K. Dhole, K. Gimpel, K. Omondi, K. W. Mathewson, K. Chiafullo, K. Shkaruta, K. Shridhar, K. McDonell, K. Richardson, L. Reynolds, L. Gao, L. Zhang, L. Dugan, L. Qin, L. Contreras-Ochando, L.-P. Morency, L. Moschella, L. Lam, L. Noble, L. Schmidt, L. He, L. Oliveros-Colón, L. Metz, L. K. Senel, M. Bosma, M. Sap, M. T. Hoeve, M. Farooqi, M. Faruqui, M. Mazeika, M. Baturan, M. Marelli, M. Maru, M. J. Ramirez-Quintana, M. Tolkiehn, M. Giulianelli, M. Lewis, M. Potthast, M. L. Leavitt, M. Hagen, M. Schubert, M. O. Baitemirova, M. Arnaud, M. McElrath, M. A. Yee, M. Cohen, M. Gu, M. Ivanitskiy, M. Starritt, M. Strube, M. Swˆedrowski, M. Bevilacqua, M. Yasunaga, M. Kale, M. Cain, M. Xu, M. Suzgun, M. Walker, M. Tiwari, M. Bansal, M. Aminnaseri, M. Geva, M. Gheini, M. V. T, N. Peng, N. A. Chi, N. Lee, N. G.-A. Krakover, N. Cameron, N. Roberts, N. Doiron, N. Martinez, N. Nangia, N. Deckers, N. Muennighoff, N. S. Keskar, N. S. Iyer, N. Constant, N. Fiedel, N. Wen, O. Zhang, O. Agha, O. Elbaghdadi, O. Levy, O. Evans, P. A. M. Casares, P. Doshi, P. Fung, P. P. Liang, P. Vicol, P. Alipoormolabashi, P. Liao, P. Liang, P. W. Chang, P. Eckersley, P. M. Htut, P. Hwang, P. Miłkowski, P. Patil, P. Pezeshkpour, P. Oli, Q. Mei, Q. Lyu, Q. Chen, R. Banjade, R. E. Rudolph, R. Gabriel, R. Habacker, R. Risco, R. Millière, R. Garg, R. Barnes, R. A. Saurous, R. Arakawa, R. Raymaekers, R. Frank, R. Sikand, R. Novak, R. Sitelew, R. L. Bras, R. Liu, R. Jacobs, R. Zhang, R. Salakhutdinov, R. A. Chi, S. R. Lee, R. Stovall, R. Teehan, R. Yang, S. Singh, S. M. Mohammad, S. Anand, S. Dillavou, S. Shleifer, S. Wiseman, S. Gruetter, S. R. Bowman, S. S. Schoenholz, S. Han, S. Kwatra, S. A. Rous, S. Ghazarian, S. Ghosh, S. Casey, S. Bischoff, S. Gehrmann, S. Schuster, S. Sadeghi, S. Hamdan, S. Zhou, S. Srivastava, S. Shi, S. Singh, S. Asaadi, S. S. Gu, S. Pachchigar, S. Toshniwal, S. Upadhyay, S. S. Debnath, S. Shakeri, S. Thormeyer, S. Melzi, S. Reddy, S. P. Makini, S.-H. Lee, S. Torene, S. Hatwar, S. Dehaene, S. Divic, S. Ermon, S. Biderman, S. Lin, S. Prasad, S. Piantadosi, S. Shieber, S. Misherghi, S. Kiritchenko, S. Mishra, T. Linzen, T. Schuster, T. Li, T. Yu, T. Ali, T. Hashimoto, T.-L. Wu, T. Desbordes, T. Rothschild, T. Phan, T. Wang, T. Nkinyili, T. Schick, T. Kornev, T. Tunduny, T. Gerstenberg, T. Chang, T. Neeraj, T. Khot, T. Shultz, U. Shaham, V. Misra, V. Demberg, V. Nyamai, V. Raunak, V. V. Ramasesh, Vinay Uday Prabhu, V. Padmakumar, V. Srikumar, W. Fedus, W. Saunders, W. Zhang, W. Vossen, X. Ren, X. Tong, X. Zhao, X. Wu, X. Shen, Y. Yaghoobzadeh, Y. Lakretz, Y. Song, Y. Bahri, Y. Choi, Y. Yang, Y. Hao, Y. Chen, Y. Belinkov, Y. Hou, Y. Hou, Y. Bai, Z. Seid, Z. Zhao, Z. Wang, Z. J. Wang, Z. Wang, and Z. Wu. 2023. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. Trans. Mach. Learn. Res. 2023, 5, 1–95.Google Scholar
- M. Stamenovic. 2015. Identifying Cover Songs Using Deep Neural Networks. Ph.D. thesis. University of Rochester.Google Scholar
- M. Stamenovic. 2018. Towards cover song detection with Siamese convolutional neural networks. In Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden. PMLR 80.Google Scholar
- Stanford Human-Centered Artificial Intelligence. 2019. Artificial Intelligence Index Annual Report 2019. Stanford University, Stanford, CA.Google Scholar
- Internet World Stats. 2020. Top 10 Languages Used On the Internet for 2020. Retrieved from https://klausnick.livejournal.com/3224754.html.Google Scholar
- H. Steck. 2010. Training and testing of recommender systems on data missing not at random. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’10). ACM, New York, NY, 713–722. DOI: .Google ScholarDigital Library
- H. Steck. 2011. Item popularity and recommendation accuracy. In Proceedings of the 5th ACM Conference on Recommender Systems (RecSys ’11). ACM, New York, NY, 125–132. DOI: .Google ScholarDigital Library
- H. Steck. 2013. Evaluation of recommendations: Rating-prediction and ranking. In Proceedings of the 7th ACM Conference on Recommender Systems (RecSys ’13). ACM, New York, NY, 213–220. DOI: .Google ScholarDigital Library
- H. Steck. 2018. Calibrated recommendations. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY, 154–162. DOI: .Google ScholarDigital Library
- H. Steck. 2019. Embarrassingly shallow autoencoders for sparse data. In Proceedings of the World Wide Web Conference, WWW 2019. ACM, New York, NY, 3251–3257. DOI: .Google ScholarDigital Library
- H. Steck, L. Baltrunas, E. Elahi, D. Liang, Y. Raimond, and J. Basilico. 2021. Deep learning for recommender systems: A Netflix case study. AI Mag. 42, 3, 7–18. DOI: .Google ScholarDigital Library
- A. Stein and E. Maier. 1995. Structuring collaborative information-seeking dialogues. Knowl. Based Syst. 8, 2–3, 82–93. DOI: .Google ScholarDigital Library
- M. Stempfhuber and S. Baerisch. 2007. The domain-specific track at CLEF 2006: Overview of approaches, results and assessment. In C. Peters, P. Clough, F. C. Gey, J. Karlgren, B. Magnini, D. W. Oard, M. de Rijke, and M. Stempfhuber (Eds.), Evaluation of Multilingual and Multi-modal Information Retrieval, CLEF 2006, Vol. 4730: Lecture Notes in Computer Science. Springer, Berlin, 163–169. DOI: .Google ScholarCross Ref
- S. S. Stevens. June. 1946. On the theory of scales of measurement. Science 103, 2684, 677–680. DOI: .Google ScholarCross Ref
- J. Stoyanovich, K. Yang, and H. Jagadish. March 2018. Online set selection with fairness and diversity constraints. In M. Bohlen, R. Pichler, N. May, E. Rahm, S.-H. Wu, and K. Hose (Eds.), Proceedings of the Advances in Database Technology—EDBT 2018: 21st International Conference on Extending Database Technology, (Advances in Database Technology—EDBT, Vol. 2018. OpenProceedings.org, Konstanz, 241–252. DOI: .Google ScholarCross Ref
- S. Strassel, C. Cieri, A. Cole, D. Dipersio, M. Liberman, X. Ma, M. Maamouri, and K. Maeda. May. 2006. Integrated linguistic resources for language exploitation technologies. In Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC ’06), Genoa, Italy. European Language Resources Association.Google Scholar
- J. Stray. 2020. Aligning AI optimization to community well-being. Int. J. Community Well-Being 3, 443–463. DOI: .Google ScholarCross Ref
- E. Strikland. Febuary. 2022. Andrew Ng: Unbiggen AI. IEEE Spectrum. Retrieved from https://spectrum.ieee.org/andrew-ng-data-centric-ai.Google Scholar
- J. Strötgen and M. Gertz. 2010a. TimeTrails: A system for exploring spatio-temporal information in documents. Proc. VLDB Endow. 3, 1–2, 1569–1572.Google ScholarDigital Library
- J. Strötgen and M. Gertz. 2010b. HeidelTime: High quality rule-based extraction and normalization of temporal expressions. In K. Erk and C. Strapparava (Eds.), Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval@ACL 2010, Uppsala University, Uppsala, Sweden, July 15–16, 2010. Association for Computer Linguistics, 321–324.Google Scholar
- Student. March. 1908. The probable error of a mean. Biometrika, 6, 1, 1–25. DOI: .Google ScholarCross Ref
- B. L. T. Sturm. 2013. Evaluating music emotion recognition: Lessons from music genre recognition? In Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). IEEE, San Jose, 1–6. DOI: .Google ScholarCross Ref
- B. L. T. Sturm. 2014. A simple method to determine if a music information retrieval system is a “horse.” IEEE Trans. Multimed. 16, 6, 1636–1644. DOI: .Google ScholarCross Ref
- B. L. T. Sturm, M. Iglesias, O. Ben-Tal, M. Miron, and E. Gómez. September. 2019. Artificial intelligence and music: Open questions of copyright law and engineering praxis. Arts, 8, 3, 115. DOI: .Google ScholarCross Ref
- D. Su and P. Fung. 2012. Personalized music emotion classification via active learning. In Proceedings of the 2nd International ACM Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies. ACM, New York, NY, 57–62. DOI: .Google ScholarDigital Library
- H. Su, H. Zhang, X. Zhang, and G. Gao. 2016. Convolutional neural network for robust pitch determination. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Piscataway, NJ, 579–583. DOI: .Google ScholarDigital Library
- N. Su, J. He, Y. Liu, M. Zhang, and S. Ma. 2018. User intent, behaviour, and perceived satisfaction in product search. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM 2018). ACM, New York, NY, 547–555. DOI: .Google ScholarDigital Library
- F. M. Suchanek, G. Kasneci, and G. Weikum. 2007. YAGO: A core of semantic knowledge unifying WordNet and Wikipedia. In C. Williamson and M. E. Zurko (Eds.), Proceedings of the 16th International Conference on World Wide Web (WWW 2007). ACM, New York, NY, 697–706. DOI: .Google ScholarDigital Library
- M. Suchanek, G. Kasneci, and G. Weikum. 2008. YAGO: A large ontology from Wikipedia and WordNet. J. Web Semant. 6, 3, 203–217. DOI: .Google ScholarDigital Library
- H. Sugiyama, T. Meguro, R. Higashinaka, and Y. Minami. 2013. Open-domain utterance generation for conversational dialogue systems using web-scale dependency structures. In Proceedings of the Special Interest Group on Discourse and Dialogue (SIGDIAL 2013), Metz. Association for Computational Linguistics, 334–338.Google Scholar
- Summa Linguae. July. 2014. Language Diversity on the Web. Retrieved from https://summalinguae.com/language-culture/language-diversity-on-the-web/.Google Scholar
- F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang. 2019a. BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM ’19). ACM, New York, NY, 1441–1450. DOI: .Google ScholarDigital Library
- S. Sun and K. Duh. 2020. CLIRMatrix: A massively large collection of bilingual and multilingual datasets for cross-lingual information retrieval. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 4160–4170. DOI: .Google ScholarCross Ref
- X. Sun, H. Wang, Y. Xiao, and Z. Wang. 2016. Syntactic parsing of web queries. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas. Association for Computational Linguistics, 1787–1796. DOI: .Google ScholarCross Ref
- Y. Sun and C. L. Giles. 2007. Popularity weighted ranking for academic digital libraries. In Advances in Information Retrieval, Proceedings of the European Conference on Information Retrieval, Vol. 4425: Lecture Notes in Computer Science. Springer, Berlin, 605–612. DOI: .Google ScholarCross Ref
- Z. Sun, Q. Guo, J. Yang, H. Fang, G. Guo, J. Zhang, and R. Burke. 2019b. Research commentary on recommendations with side information: A survey and research directions. Electron. Commer. Res. Appl. 37, 100879. DOI: .Google ScholarDigital Library
- H. Suominen, S. Salanterä, S. Velupillai, W. W. Chapman, G. Savova, N. Elhadad, S. Pradhan, B. R. South, D. L. Mowery, G. J. Jones, J. Leveling, L. Kelly, L. Goeuriot, D. Martinez, and G. Zuccon. 2013. Overview of the ShARe/CLEF eHealth evaluation lab 2013. In Information Access Evaluation. Multilinguality, Multimodality, and Visualization, Proceedings of the International Conference of the Cross-Language Evaluation Forum for European Languages, Vol. 8138: Lecture Notes in Computer Science. Springer, Berlin, 212–231. DOI: .Google ScholarCross Ref
- H. Suominen, L. Kelly, L. Goeuriot, A. Névéol, L. Ramadier, A. Robert, E. Kanoulas, R. Spijker, L. Azzopardi, D. Li, Jimmy, J. Palotti, and G. Zuccon. 2018. Overview of the CLEF eHealth evaluation lab 2018. In P. Bellot, C. Trabelsi, J. Mothe, F. Murtagh, J.-Y. Nie, L. Soulier, E. SanJuan, L. Cappellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction, Proceedings of the Ninth International Conference of the CLEF Association (CLEF ’18) , Vol. 11018: Lecture Notes in Computer Science. Springer, Heidelberg, 286–301. DOI: .Google ScholarCross Ref
- P. Suppes, D. H. Krantz, R. D. Luce, and A. Tversky. 1989. Foundations of Measurement: Geometrical, Threshold, and Probabilistic Representations, Vol. 2. Academic Press, New York, NY.Google Scholar
- R. S. Sutton and A. G. Barto. 2021. Reinforcement Learning—An Introduction (2nd. ed.). Adaptive Computation and Machine Learning Series. MIT Press, Cambridge, MA.Google Scholar
- A. Swaminathan, A. Krishnamurthy, A. Agarwal, M. Dudík, J. Langford, D. Jose, and I. Zitouni. 2017. Off-policy evaluation for slate recommendation. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017). Curran Associates, Red Hook, NY, 3635–3645.Google Scholar
- D. R. Swanson. July. 1972. Requirements study for future catalogs. Libr. Q 42, 3, 302–315. DOI: .Google ScholarCross Ref
- D. R. Swanson. 1988. Historical note: Information retrieval and the future of an illusion. J. Am. Soc. Inform. Sci. 39, 2, 92–98. DOI: .Google ScholarCross Ref
- L. Sweeney. October. 2002. k-Anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10, 5, 557–570. DOI: .Google ScholarDigital Library
- Systap. 2013. The Bigdata RDF Database. Retrieved from https://blazegraph.com/docs/bigdata˙architecture˙whitepaper.pdf.Google Scholar
- S. Tadelis. 2016. Two-sided e-commerce marketplaces and the future of retailing. In E. Baskar (Ed.). Handbook on the Economics of Retailing and Distribution. Edward Elgar Publishing, Cheltenham, 455–475. DOI: .Google ScholarCross Ref
- J. Tagliabue. 2017. How I Learned to Stop Worrying and Love the Search Bar: Leveraging A.I. for Online Search and Discovery. Retrieved from https://medium.com/tooso/how-i-learned-to-stop-worrying-and-love-the-search-bar-fde3c3f63880.Google Scholar
- J. Tagliabue, B. Yu, and M. Beaulieu. 2020. How to grow a (product) tree: Personalized category suggestions for e-Commerce type-ahead. In Proceedings of the 3rd Workshop on e-Commerce and NLP. Association for Computational Linguistics, Kerrville, TX, 7–18. DOI: .Google ScholarCross Ref
- J. M. Tague-Sutcliffe and J. Blustein. February. 1995. A statistical analysis of the TREC-3 data. In D. K. Harman (Ed.), Proceedings of the Third Text REtrieval Conference (TREC-3), Special Publication 500-225. National Institute of Standards and Technology/DIANE Publishing, Collingdale, PA, 385–398.Google Scholar
- J. I. Tait. 2014. An introduction to professional search. In Professional Search in the Modern World, Vol. 8830: Lecture Notes in Computer Science. Springer, Berlin, 1–5. DOI: .Google ScholarCross Ref
- G. Takács and D. Tikk. 2012. Alternating least squares for personalized ranking. In Proceedings of the 6th ACM Conference on Recommender Systems (RecSys ’12). ACM, New York, NY, 83–90. DOI: .Google ScholarDigital Library
- A. Talmor, J. Herzig, N. Lourie, and J. Berant. 2019. CommonsenseQA: A question answering challenge targeting commonsense knowledge. In J. Burstein, C. Doran, and T. Solorio (Eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1 (Long and Short Papers). Association for Computational Linguistics, Kerrville, TX, 4149–4158. DOI: .Google ScholarCross Ref
- P. P. Talukdar and K. Crammer. 2009. New regularized algorithms for transductive learning. In Machine Learning and Knowledge Discovery in Databases, Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: Part II, ECML PKDD ’09, Vol. 5782: Lecture Notes in Computer Science. Springer, Berlin, 442–457. DOI: .Google ScholarCross Ref
- R. Tambi, A. Kale, and T. H. King. 2020. Search query language identification using weak labeling. In Proceedings of the 12th Language Resources and Evaluation Conference. European Language Resources Association, Marseille, France, 3520–3527.Google Scholar
- T. Tamine-Lechani, M. Boughanem, and M. Daoud. 2010. Evaluation of contextual information retrieval effectiveness: Overview of issues and research. Knowl. Inf. Syst. 24, 1, 1–34. DOI: .Google ScholarCross Ref
- W. Tan, J. Dwivedi-Yu, Y. Li, L. Mathias, M. Saeidi, J. N. Yan, and A. Y. Halevy. 2023. TimelineQA: A benchmark for question answering over timelines. In Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July 9–14, 2023. Association for Computational Linguistics, Kerrville, TX, 77–91. DOI: .Google ScholarCross Ref
- E. Tang, S. Geva, A. Trotman, Y. Xu, and K. Itakura. 2011. Overview of the NTCIR-9 crosslink task: Cross-lingual link discovery. In N. Kando, D. Ishikawa, and M. Sugimoto (Eds.), Proceedings of the 9th NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-Lingual Information Access. National Institute of Informatics, Japan, 437–463.Google Scholar
- J. Tang and K. Wang. 2018. Personalized top-N sequential recommendation via convolutional sequence embedding. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM 2018). ACM, New York, NY, 565–573. DOI: .Google ScholarDigital Library
- J. C. Tang, E. Wilcox, J. A. Cerruti, H. Badenes, S. Nusser, and J. Schoudt. 2008. Tag-it, snag-it, or bag-it: Combining tags, threads, and folders in e-mail. In Proceedings of the CHI ’08 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’08). ACM, New York, NY, 2179–2194. DOI: .Google ScholarDigital Library
- L.-X. Tang, I.-S. Kang, F. Kimura, Y.-H. Lee, A. Trotman, S. Geva, and Y. Xu. July. 2013. Overview of the NTCIR-10 cross-lingual link discovery task. In N. Kando and K. Kishida (Eds.), Proceedings of the 10th NTCIR Conference on Evaluation of Information Access Technologies. National Institute of Informatics, Tokyo, Japan, 8–38.Google Scholar
- T. P. Tanon, D. Vrandecic, S. Schaffert, T. Steiner, and L. Pintscher. 2016. From Freebase to Wikidata: The great migration. In Proceedings of the 25th International Conference on World Wide Web (WWW ’16). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 1419–1428. DOI: .Google ScholarDigital Library
- T. P. Tanon, G. Weikum, and F. M. Suchanek. 2020. YAGO 4: A reason-able knowledge base. In The Semantic Web, Proceedings of the European Semantic Web Conference, Vol. 12123: Lecture Notes in Computer Science. Springer, Berlin, 583–596. DOI: .Google ScholarDigital Library
- D. Tao, J. Cheng, Z. Yu, K. Yue, and L. Wang. January. 2019. Domain-weighted majority voting for crowdsourcing. IEEE Trans. Neural Netw. Learn. Syst. 30, 1, 163–174. DOI: .Google ScholarCross Ref
- S. Tao, N. Chen, T. Sakai, Z. Chu, H. Arai, I. Soboroff, N. Ferro, and M. Maistro. 2023. Overview of the NTCIR-17 FairWeb-1 task. In M. P. Kato, T. Yamamoto, and Z. Dou (Eds.), Proceedings of the 17th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-17). National Institute of Informatics, Tokyo, Japan. DOI: .Google ScholarCross Ref
- R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto, March. 2023. Alpaca: A Strong, Replicable Instruction-Following Model. Retrieved from https://crfm.stanford.edu/2023/03/13/alpaca.html.Google Scholar
- S. Tata, A. Popescul, M. Najork, M. Colagrosso, J. Gibbons, A. Green, A. Mah, M. Smith, D. Garg, C. Meyer, and R. Kan. 2017. Quick Access: Building a smart experience for Google Drive. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, 1643–1651. DOI: .Google ScholarDigital Library
- S. Tata, V. Panait, S. J. Chen, and M. Colagrosso. 2019. ItemSuggest: A data management platform for machine learned ranking services. In Proceedings of the 9th Biennial Conference on Innovative Data Systems Research (CIDR ’19), Asilomar, CA.Google Scholar
- R. S. Taylor. 1962. The process of asking questions. Am. Doc. 13, 4, 391–396. DOI: .Google ScholarCross Ref
- E. C. Teppan and M. Zanker. 2015. Decision biases in recommender systems. J. Internet Commer. 14, 2, 255–275. DOI: .Google ScholarCross Ref
- The UniProt Consortium. 2017. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D1, D158–D169. DOI: .Google ScholarCross Ref
- J. Thickstun, Z. Harchaoui, and S. Kakade. 2016. Learning features of music from scratch. arXiv:1611.09827. DOI: .Google ScholarCross Ref
- Think with Google. July. 2012. The Doctor’s Digital Path to Treatment. Retrieved from https://www.thinkwithgoogle.com/marketing-strategies/search/the-doctors-digital-path-to-treatment/.Google Scholar
- P. Thomas, F. Scholer, and A. Moffat. 2013. What users do: The eyes have it. In R. E. Banchs, F. Silvestri, T.-Y. Liu, M. Zhang, S. Gao, and J. Lang (Eds.), Information Retrieval Technology, Proceedings of the 9th Asia Information Retrieval Symposium (AIRS 2013) – Information Retrieval Technology, Vol. 8281: Lecture Notes in Computer Science. Springer, 416–427. DOI: .Google ScholarCross Ref
- P. Thomas, D. McDuff, M. Czerwinski, and N. Craswell. 2017. MISC: A data set of information-seeking conversations. In Proceedings of the SIGIR 1st International Workshop on Conversational Approaches to Information Retrieval (CAIR ’17). ACM, New York, NY.Google Scholar
- P. Thomas, M. Czerwinski, D. McDuff, N. Craswell, and G. Mark. 2018. Style and alignment in information-seeking conversation. In Proceedings of the 2018 Conference on Human Information Interaction and Retrieval (CHIIR ’18). ACM, New York, NY, 42–51. DOI: .Google ScholarDigital Library
- P. Thomas, D. McDuff, M. Czerwinski, and N. Craswell. 2020. Expressions of style in information seeking conversation with an agent. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1171–1180. DOI: .Google ScholarDigital Library
- P. Thomas, S. Spielman, N. Craswell, and B. Mitra. 2024. Large language models can accurately predict searcher preferences. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24). ACM, New York, NY, 1930–1940. DOI: .Google ScholarDigital Library
- J. Thorne, M. Yazdani, M. Saeidi, F. Silvestri, S. Riedel, and A. Halevy. 2021. Database reasoning over text. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, Kerrville, TX, 3091–3104. DOI: .Google ScholarCross Ref
- C. V. Thornley, A. C. Johnson, A. F. Smeaton, and H. Lee. April. 2011. The scholarly impact of TRECVid (2003–2009). J. Am. Soc. Inf. Sci. Technol. 62, 4, 613–627. DOI: .Google ScholarDigital Library
- S. Tian, Q. Jin, L. Yeganova, P.-T. Lai, Q. Zhu, X. Chen, Y. Yang, Q. Chen, W. Kim, D. C. Comeau, R. Islamaj, A. Kapoor, X. Gao, and Z. Lu. 2023. Opportunities and challenges for ChatGPT and large language models in biomedicine and health. Brief. Bioinform. 25, 1, bbad493. DOI: .Google ScholarCross Ref
- T. Tian, J. Zhu, and Y. Qiaoben. October. 2019. Max-margin majority voting for learning from crowds. IEEE Trans. Pattern Anal. Mach. Intell. 41, 10, 2480–2494. DOI: .Google ScholarDigital Library
- S. Tolan. 2019. Fair and unbiased algorithmic decision making: Current state and future challenges. arXiv:1901.04730. DOI: .Google ScholarCross Ref
- N. Tonellotto and C. Macdonald. 2021. Query embedding pruning for dense retrieval. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management, Virtual Event Queensland, Australia. ACM, New York, NY, 3453–3457. DOI: .Google ScholarDigital Library
- N. Tonellotto, C. Macdonald, and I. Ounis. 2018. Efficient query processing for scalable web search. Found. Trends Inform. Retr. 12, 4–5, 319–492. DOI: .Google ScholarDigital Library
- H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. February. 2023a. LLaMA: Open and efficient foundation language models. arXiv:2302.13971. DOI: .Google ScholarCross Ref
- H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. Singh Koura, M.-H. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom. July. 2023b. Llama 2: Open foundation and fine-tuned chat models. arXiv:2307.09288. DOI: .Google ScholarCross Ref
- J. T. Townsend and F. G. Ashby. 1984. Measurement scales and statistics: The misconception misconceived. Psychol. Bull. 96, 2, 394–401. DOI: .Google ScholarCross Ref
- C. J. Tralie. 2017. Early MFCC and HPCP fusion for robust cover song identification. In Proceedings of the 18th International Society for Music Information Retrieval Conference, ISMIR ’17, Suzhou, China. ISMIR, 294–301. DOI: .Google ScholarCross Ref
- C. Trattner and D. Jannach. 2019. Learning to recommend similar items from human judgements. User Model. User Adapt. Interact. 30, 1–49. DOI: .Google ScholarCross Ref
- J. R. Trippas. 2015. Spoken conversational search: Information retrieval over a speech-only communication channel. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 1067. DOI: .Google ScholarDigital Library
- J. R. Trippas. 2019. Spoken Conversational Search: Audio-Only Interactive Information Retrieval. Ph.D. thesis. RMIT University, Melbourne, Australia.Google Scholar
- J. R. Trippas and P. Thomas. 2019. Data sets for spoken conversational search. In Proceedings of the CHIIR 2019 Workshop on Barriers to Interactive IR Resources Re-use (BIIRRR 2019), Glasgow, UK. CEUR-WS.org, Aachen, 14–18.Google Scholar
- J. R. Trippas, D. Spina, M. Sanderson, and L. Cavedon. 2015a. Results presentation methods for a spoken conversational search system. In Proceedings of the First International Workshop on Novel Web Search Interfaces and Systems (NWSearch ’15). ACM, New York, NY, 13–15. DOI: .Google ScholarDigital Library
- J. R. Trippas, D. Spina, M. Sanderson, and L. Cavedon. 2015b. Towards understanding the impact of length in web search result summaries over a speech-only communication channel. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 991–994. DOI: .Google ScholarDigital Library
- J. R. Trippas, D. Spina, L. Cavedon, and M. Sanderson. 2017. How do people interact in conversational speech-only search tasks: A preliminary analysis. In Proceedings of Conference on Information Interaction and Retrieval (CHIIR ’17). ACM, New York, NY, 325–328. DOI: .Google ScholarDigital Library
- J. R. Trippas, D. Spina, L. Cavedon, H. Joho, and M. Sanderson. 2018. Informing the design of spoken conversational search: Perspective paper. In Proceedings of the 2018 Conference on Human Information Interaction & Retrieval. ACM, New York, NY, 32–41. DOI: .Google ScholarDigital Library
- J. R. Trippas, D. Spina, P. Thomas, M. Sanderson, H. Joho, and L. Cavedon. 2020a. Towards a model for spoken conversational search. Inf. Process. Manage. 57, 2, 102162. DOI: .Google ScholarDigital Library
- J. R. Trippas, P. Thomas, D. Spina, and H. Joho. 2020b. Third international workshop on conversational approaches to information retrieval (CAIR ’20): Full-day workshop at CHIIR 2020. In Proceedings of the 2020 Conference on Human Information Interaction and Retrieval (CHIIR ’20). ACM, New York, NY, 492–494. DOI: .Google ScholarDigital Library
- J. R. Trippas, D. Spina, M. Sanderson, and L. Cavedon. 2021. Accessing media via an audio-only communication channel: A log analysis. In Proceedings of the ACM International Conference on Conversational User Interfaces (CUI 2021). ACM, New York, NY, 1–6. DOI: .Google ScholarDigital Library
- A. Trotman, J. Degenhardt, and S. Kallumadi. 2017. The architecture of eBay search. In J. Degenhardt, S. Kallumadi, M. de Rijke, L. Si, A. Trotman, and Y. Xu (Eds.), Proceedings of the SIGIR 2017 Workshop on eCommerce co-located with the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, eCOM@SIGIR 2017, Tokyo, Japan, August 11, 2017. CEUR-WS.org.Google Scholar
- M. Tsagkias, T. H. King, S. Kallumadi, V. Murdock, and M. de Rijke. 2020. Challenges and research opportunities in ecommerce search and recommendations. ACM SIGIR Forum, 54, 1–23. DOI: .Google ScholarDigital Library
- T. Tsikrika, A. Garcia Seco de Herrera, and H. Müller. 2011. Assessing the scholarly impact of ImageCLEF. In P. Forner, J. Gonzalo, J. Kekäläinen, M. Lalmas, and M. de Rijke (Eds.), Multilingual and Multimodal Information Access Evaluation, Proceedings of the 2nd International Conference of the Cross-Language Evaluation Forum (CLEF ’11), Vol. 6941: Lecture Notes in Computer Science. Springer, Heidelberg, 95–106. DOI: .Google ScholarCross Ref
- T. Tsikrika, B. Larsen, H. Müller, S. Endrullis, and E. Rahm. 2013. The scholarly impact of CLEF (2000–2009). In P. Forner, H. Müller, R. Paredes, P. Rosso, and B. Stein (Eds.), Information Access Evaluation Meets Multilinguality, Multimodality, and Visualization, Proceedings of the Fourth International Conference of the CLEF Initiative (CLEF ’13), Vol. 8138: Lecture Notes in Computer Science. Springer, Heidelberg, 1–12. DOI: .Google ScholarCross Ref
- T. Tu, A. Palepu, M. Schaekermann, K. Saab, J. Freyberg, R. Tanno, A. Wang, B. Li, M. Amin, N. Tomasev, S. Azizi, K. Singhal, Y. Cheng, L. Hou, A. Webson, K. Kulkarni, S. S. Mahdavi, C. Semturs, J. Gottweis, J. Barral, K. Chou, G. S. Corrado, Y. Matias, A. Karthikesalingam, and V. Natarajan. 2024. Towards conversational diagnostic AI. arXiv:2401.05654. DOI: .Google ScholarCross Ref
- J. W. Tukey. June. 1949. Comparing individual means in the analysis of variance. Biometrics 5, 2, 99–114. DOI: .Google ScholarCross Ref
- J. W. Tukey. February. 1991. The philosophy of multiple comparisons. Stat. Sci. 6, 1, 100–116. DOI: .Google ScholarCross Ref
- D. Tunkelang. 2009. Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, and Services, Vol. 1. Morgan & Claypool Publishers, Kentfield, CA.Google Scholar
- F. Türe and E. Boschee. 2014. Learning to translate: A query-specific combination approach for cross-lingual information retrieval. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, Kerrville, TX, 589–599. DOI: .Google ScholarCross Ref
- F. Türe, J. Lin, and D. Oard. December. 2012. Combining statistical translation techniques for cross-language information retrieval. In Proceedings of COLING 2012, Mumbai, India. The COLING 2012 Organizing Committee, 2685–2702.Google Scholar
- M. Turunen, J. Hakulinen, N. Rajput, and A. A. Nanavati. 2012. Evaluation of mobile and pervasive speech applications. In Speech in Mobile and Pervasive Environments. John Wiley & Sons, Hoboken, NJ, 219–262. DOI: .Google ScholarCross Ref
- A. Tversky and D. Kahneman. 1991. Loss aversion in riskless choice: A reference-dependent model. Q. J. Econ. 106, 4, 1039–1061. DOI: .Google ScholarCross Ref
- J. Urbanek, A. Fan, S. Karamcheti, S. Jain, S. Humeau, E. Dinan, T. Rocktäschel, D. Kiela, A. Szlam, and J. Weston. 2019. Learning to speak and act in a fantasy text adventure game. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China. Association for Computational Linguistics, 673–683. DOI: .Google ScholarCross Ref
- J. Urbano, M. Schedl, and X. Serra. 2013. Evaluation in music information retrieval. J. Intell. Inf. Syst. 41, 3, 345–369. DOI: .Google ScholarDigital Library
- J. Urbano, H. Lima, and A. Hanjalic. 2019. A new perspective on score standardization. In B. Piwowarski, M. Chevalier, E. Gaussier, Y. Maarek, J.-Y. Nie, and F. Scholer (Eds.), Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 1061–1064. DOI: .Google ScholarDigital Library
- U.S. National Library of Medicine. December. 2021. MEDLINE 2022 initiative: Transition to automated indexing. NLM Tech. Bull. 2021, 443, e5.Google Scholar
- S. Vakulenko. 2019. Knowledge-based Conversational Search. Ph.D. thesis. TU Wien, Austria.Google Scholar
- S. Vakulenko, K. Revoredo, C. Di Ciccio, and M. de Rijke. 2019. QRFA: A data-driven model of information-seeking dialogues. In Advances in Information Retrieval, Proceedings of the 41st European Conference on Information Retrieval (ECIR 2019), Vol. 11437: Lecture Notes in Computer Science. Springer, Berlin, 541–557. DOI: .Google ScholarDigital Library
- A. Vallin, B. Magnini, D. Giampiccolo, L. Aunimo, C. Ayache, P. Osenova, A. Peñas, M. de Rijke, B. Sacaleanu, D. Santos, and R. Sutcliffe. 2006. Overview of the CLEF 2005 multilingual question answering track. In C. Peters, F. C. Gey, J. Gonzalo, H. Müller, G. J. F. Jones, M. Kluck, B. Magnini, and M. de Rijke (Eds.), Accessing Multilingual Information Repositories, CLEF 2005, Vol. 4022: Lecture Notes in Computer Science. Springer, Berlin, 307–331. DOI: .Google ScholarCross Ref
- L. van Bulck and P. Moons. 2023. What if your patient switches from Dr. Google to Dr. ChatGPT? A vignette-based survey of the trustworthiness, value, and danger of ChatGPT-generated responses to health questions. Eur. J. Cardiovasc. Nurs. 23, 1, 95–98. DOI: .Google ScholarCross Ref
- B. van den Akker, I. Markov, and M. de Rijke. 2019. ViTOR: Learning to rank webpages based on visual features. In Proceedings of the World Web Conference (WWW ’2019). ACM, New York, NY, 3279–3285. DOI: .Google ScholarDigital Library
- A. van der Vegt, G. Zuccon, and B. Koopman. 2021. Do better search engines really equate to better clinical decisions? If not, why not? J. Assoc. Inform. Sci. Technol. 72, 12, 141–155. DOI: .Google ScholarDigital Library
- D. van Dijk, M. Ferrante, N. Ferro, and E. Kanoulas. 2019. A Markovian approach to evaluate session-based IR systems. In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra (Eds.), Advances in Information Retrieval, Proceedings of the 41st European Conference on IR Research, ECIR 2019, Part I, Cologne, Germany, April 14–18, 2019, Vol. 11437: Lecture Notes in Computer Science. Springer, Cham, 621–635. DOI: .Google ScholarDigital Library
- M. van Opijnen and C. Santos. March. 2017. On the concept of relevance in legal information retrieval. Artif. Intell. Law 25, 1, 65–87. DOI: .Google ScholarDigital Library
- C. J. van Rijsbergen. 1974. Foundations of evaluation. J. Doc. 30, 4, 365–373. DOI: .Google ScholarCross Ref
- C. J. van Rijsbergen. 1979. Information Retrieval (2nd. ed.). Butterworths, London.Google Scholar
- C. J. van Rijsbergen. 1981. Retrieval effectiveness. In K. Spärck Jones (Ed.), Information Retrieval Experiment. Butterworths, London, 32–43.Google Scholar
- V. N. Vapnik. 1998. Statistical Learning Theory. Wiley-Interscience, Hoboken, NJ.Google ScholarCross Ref
- S. Vargas and P. Castells. 2011. Rank and relevance in novelty and diversity metrics for recommender systems. In Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys ’11). ACM, New York, NY, 109–116. DOI: .Google ScholarDigital Library
- S. Vargas and P. Castells. 2014. Improving sales diversity by recommending users to items. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14). ACM, New York, NY, 145–152. DOI: .Google ScholarDigital Library
- S. Vargas, P. Castells, and D. Vallet. 2011. Intent-oriented diversity in recommender systems. In Proceedings of the 34th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 1211–1212. DOI: .Google ScholarDigital Library
- S. Vargas, R. Blanco, and P. Mika. 2016. Term-by-term query auto-completion for mobile search. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining (WSDM ’16). ACM, New York, NY, 143–152. DOI: .Google ScholarDigital Library
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS ’17). Curran Associates, Red Hook, NY, 6000–6010.Google Scholar
- D. K. Vaughan. March 1968. Effectiveness of book-memory data for conventional catalog retrieval. In Requirements Study for Future Catalogs; Progress Report No. 2. Graduate Library School, University of Chicago, Chicago, IL, 53.Google Scholar
- P. F. Velleman and L. Wilkinson. February. 1993. Nominal, ordinal, interval, and ratio typologies are misleading. Am. Stat. 47, 1, 65–72. DOI: .Google ScholarCross Ref
- A. Veloso, M. Ribeiro, A. Lacerda, E. Moura, I. Hata, and N. Ziviani. December. 2014. Multi-objective pareto-efficient approaches for recommender systems. Special issue on novelty and diversity in recommender systems. ACM Trans. Information Syst. Technol. 5, 4, 1–20. DOI: .Google ScholarDigital Library
- S. Verberne, M. Sappelli, and W. Kraaij. 2014. Query term suggestion in academic search. In Advance in Information Retrieval Proceedings of the 36th European Conference on IR Research, Vol. 8416: Lecture Notes in Computer Science. Springer, Berlin, 560–566. DOI: .Google ScholarCross Ref
- S. Verberne, M. Sappelli, K. Järvelin, and W. Kraaij. 2015a. User simulations for interactive search: Evaluating personalized query suggestion. In Advances in Information Retrieval: Proceedings of the 37th European Conference on IR Research, ECIR 2015, Vienna, Austria, March 29–April 2, 2015, Vol. 9022: Lecture Notes in Computer Science. Springer, Cham, 678–690. DOI: .Google ScholarCross Ref
- S. Verberne, T. Wabeke, and R. Kaptein. 2015b. QUINN. Query updates for news monitoring. In Proceedings of the 14th Dutch–Belgian Information Retrieval Workshop. DIR, Amsterdam, 30.Google Scholar
- S. Verberne, L. Boves, and A. van den Bosch. 2016a. Information access in the art history domain: Evaluating a federated search engine for Rembrandt research. Digit. Human. Q. 10, 4, 69–87.Google Scholar
- S. Verberne, M. Sappelli, D. Hiemstra, and W. Kraaij. 2016b. Evaluation and analysis of term scoring methods for term extraction. Inf. Retr. J. 19, 5, 510–545. DOI: .Google ScholarDigital Library
- S. Verberne, T. Wabeke, and R. Kaptein. 2016c. Boolean queries for news monitoring: Suggesting new query terms to expert users. In Proceedings of the 1st International Workshop on Recent Trends in News Information Retrieval, co-Located with 38th European Conference on Information Retrieval (ECIR 2016), Vol. 1568. CEUR-WS.org, Aachen, 3–8.Google Scholar
- S. Verberne, R. van Leeuwen, G. Gerritsen, and L. Boves. 2017. RemBench: A digital workbench for Rembrandt research. In J. Odijk and A. van Hessen (Eds.), CLARIN in the Low Countries. Ubiquity Press, London, 337–350. DOI: .Google ScholarCross Ref
- S. Verberne, A. P. de Vries, and W. Kraaij. 2018a. Author-topic profiles for academic search. arXiv:1804.11131. DOI: .Google ScholarCross Ref
- S. Verberne, J. He, U. Kruschwitz, G. Wiggers, B. Larsen, T. Russell-Rose, and A. P. de Vries. 2018b. First international workshop on professional search. Proc. SIGIR Forum 52, 153–162. DOI: .Google ScholarDigital Library
- S. Verberne, J. He, G. Wiggers, T. Russell-Rose, U. Kruschwitz, and A. P. de Vries. 2019. Information search in a professional context—Exploring a collection of professional search tasks. arXiv:1905.04577. DOI: .Google ScholarCross Ref
- S. Verberne, E. Kanoulas, G. Wiggers, F. Piroi, and A. P. de Vries. 2023. ECIR 2023 Workshop: Legal information retrieval. In J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kruschwitz, and A. Caputo (Eds.), Advances in Information Retrieval, Proceedings of the European Conference on Information Retrieval 2023, Vol. 13982: Lecture Notes in Computer Science. Springer, Berlin, 412–419. DOI: .Google ScholarDigital Library
- P. Verma and R. W. Schafer. 2016. Frequency estimation from waveforms using multi-layered neural networks. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, September 08–12. International Speech Communication Association, San Francisco, CA, 2165–2169. DOI: .Google ScholarCross Ref
- M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. 2004. Identifying similarities, periodicities and bursts for online search queries. In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. ACM, New York, NY, 131–142. DOI: .Google ScholarDigital Library
- E. M. Voorhees. February. 2000. The TREC-8 question answering track report. In Proceedings of the Eighth Text REtrieval Conference (TREC-8), Special Publication 500-246. National Institute of Standards and Technology, Gaithersburg, MD, 77–82.Google ScholarCross Ref
- E. M. Voorhees. 2002. The philosophy of information retrieval evaluation. In Evaluation of Cross-Language Information Retrieval Systems, Proceedings of the 2nd Workshop of the Cross-Language Evaluation Forum, Vol. 2406: Lecture Notes in Computer Science. Springer, Berlin, 355–370. DOI: .Google ScholarCross Ref
- E. M. Voorhees. February. 2005a. Overview of the TREC 2004 robust track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Thirteenth Text REtrieval Conference (TREC 2004), Special Publication 500-261. National Institute of Standards and Technology, Gaithersburg, MD, 70–73. DOI: .Google ScholarCross Ref
- E. M. Voorhees. June. 2005b. The TREC robust retrieval track. ACM SIGIR Forum, 39, 1, 11–20. DOI: .Google ScholarDigital Library
- E. M. Voorhees. February. 2006. Overview of the TREC 2005 robust retrieval track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Fourteenth Text REtrieval Conference (TREC 2005), Special Publication 500-266. National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
- E. M. Voorhees. 2009. Topic set size redux. In J. Allan, J. Aslam, M. Sanderson, C. Zhai, and J. Zobel (Eds.), Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 806–807. DOI: .Google ScholarDigital Library
- E. M. Voorhees. September. 2013. The TREC medical records track. In Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics (BCB ’13). ACM, New York, NY, 239–246. DOI: .Google ScholarDigital Library
- E. M. Voorhees. 2018. On building fair and reusable test collections using bandit techniques. In A. Cuzzocrea, J. Allan, N. Paton, D. Srivastava, R. Agrawal, A. Broder, M. Zaki, S. Candan, A. Labrinidis, A. Schuster, and H. Wang (Eds.), Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, 407–416. DOI: .Google ScholarDigital Library
- E. M. Voorhees. 2019. The evolution of Cranfield. In N. Ferro and C. Peters (Eds.), Information Retrieval Evaluation in a Changing World. The Information Retrieval Series, Vol. 41. Springer, Cham, 45–69. DOI: .Google ScholarCross Ref
- E. M. Voorhees and C. Buckley. 2002. The effect of topic set size on retrieval experiment error. In K. Järvelin, M. Beaulieu, R. Baeza-Yates, and S. Hyon Myaeng (Eds.), Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’02). ACM, New York, NY, 316–323. DOI: .Google ScholarDigital Library
- E. M. Voorhees and D. K. Harman. February. 1999. Overview of the seventh text retrieval conference (TREC-7). In E. M. Voorhees and D. K. Harman (Eds.), The Seventh Text REtrieval Conference (TREC-7), Special Publication 500-242. National Institute of Standards and Technology, Washington, DC, 1–24.Google Scholar
- E. M. Voorhees and D. Harman. January. 2000a. Overview of the Sixth Text REtrieval Conference (TREC-6). Inf. Process. Manag. 36, 1, 3–35. DOI: .Google ScholarDigital Library
- E. M. Voorhees and D. K. Harman. February. 2000b. Overview of the eight text retrieval conference (TREC-8). In E. M. Voorhees and D. K. Harman (Eds.), The Eighth Text REtrieval Conference (TREC-8), Special Publication 500-246. National Institute of Standards and Technology, Washington, DC, 1–24.Google ScholarCross Ref
- E. M. Voorhees and D. K. Harman (Eds.). February. 2000c. In Proceedings of the Eighth Text REtrieval Conference (TREC-8), Gaithersburg, MD, November 17–19, 1999, Special Publication 500-246. National Institute of Standards and Technology, Washington, DC.Google ScholarCross Ref
- E. M. Voorhees and D. K. Harman. 2005. TREC: Experiments and Evaluation in Information REtrieval, Vol. 63. MIT Press, Cambridge, MA.Google ScholarDigital Library
- E. M. Voorhees and W. Hersh. 2012. Overview of the TREC 2012 medical records track. In Proceedings of the Twenty-First Text Retrieval Conference (TREC 2012). National Institute of Standards and Technology, Washington, DC.Google Scholar
- E. M. Voorhees, D. Samarov, and I. Soboroff. September. 2017. Using replicates in information retrieval evaluation. ACM Trans. Inf. Syst. 36, 2, 12:1–12:21. DOI: .Google ScholarDigital Library
- D. Vrandecic and M. Krötzsch. 2014. Wikidata: A free collaborative knowledgebase. ACM Commun. 57, 10, 78–85. DOI: .Google ScholarDigital Library
- A. Vtyurina. 2019. Towards non-visual web search. In Proceedings of the 2019 Conference on Human Information Interaction and Retrieval (CHIIR ’19). ACM, New York, NY, 429–432. DOI: .Google ScholarDigital Library
- A. Vtyurina, C. L. Clarke, E. Law, J. R. Trippas, and H. Bota. 2020. A mixed-method analysis of text and audio search interfaces with varying task complexity. In Proceedings of the 2020 ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR ’20). ACM, New York, NY, 61–68. DOI: .Google ScholarDigital Library
- I. Vulić and M.-F. Moens. 2015. Monolingual and cross-lingual information retrieval models based on (bilingual) word embeddings. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 363–372. DOI: .Google ScholarDigital Library
- I. Vulić, G. Glavaš, R. Reichart, and A. Korhonen. 2019. Do we really need fully unsupervised cross-lingual embeddings? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China. Association for Computational Linguistics, 4407–4418. DOI: .Google ScholarCross Ref
- W3C. March. 2013. SPARQL 1.1 Overview—W3C Recommendation 21 March 2013. Retrieved from https://www.w3.org/TR/sparql11-overview/.Google Scholar
- W3C. February. 2014. RDF 1.1 Concepts and Abstract Syntax—W3C Recommendation 25 February 2014. Retrieved from https://www.w3.org/TR/rdf11-concepts/.Google Scholar
- A. J. Walker. September. 1977. An efficient method for generating discrete random variables with general distributions. ACM Trans. Math. Softw. 3, 3, 253–256. DOI: .Google ScholarDigital Library
- M. A. Walker, D. J. Litman, C. A. Kamm, and A. Abella. 1997. PARADISE: A framework for evaluating spoken dialogue agents. In Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics, Madrid, Spain. Association for Computational Linguistics, 271–280. DOI: .Google ScholarDigital Library
- M. A. Walker, R. Passonneau, and J. E. Boland. 2001. Quantitative and qualitative evaluation of DARPA communicator spoken dialogue systems. In Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics (ACL ’01), Cambridge, MA. Association for Computational Linguistics, 515–522. DOI: .Google ScholarDigital Library
- J. Wallat, A. Jatowt, and A. Anand. 2024. Temporal blind spots in large language models. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining (WSDM ’24). ACM, New York, NY, 683–692. DOI: .Google ScholarDigital Library
- W. H. Walters and E. I. Wilder. 2023. Fabrication and errors in the bibliographic citations generated by ChatGPT. Sci. Rep. 13, 1, 14045. DOI: .Google ScholarCross Ref
- M. Wan, J. Ni, R. Misra, and J. McAuley. 2020. Addressing marketing bias in product recommendations. In Proceedings of the 13th International Conference on Web Search and Data Mining (WSDM ’20). ACM, New York, NY, 618–626. DOI: .Google ScholarDigital Library
- J. Wang, A. Jatowt, and M. Yoshikawa. 2022. TimeBERT: Enhancing pre-trained language representations with temporal information. arXiv:2204.13032. DOI: .Google ScholarCross Ref
- S. Wang, H. Scells, B. Koopman, and G. Zuccon. 2023. Can ChatGPT write a good Boolean query for systematic review literature search? In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval SIGIR ’23. ACM, New York, NY, 1426–1436. DOI: .Google ScholarDigital Library
- T. Wang and D. Wang. 2014. Why Amazon’s ratings might mislead you: The story of herding effects. Big Data 2, 4, 196–204. DOI: .Google ScholarCross Ref
- X. Wang, M. Bendersky, D. Metzler, and M. Najork. 2016. Learning to rank with selection bias in personal search. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 115–124. DOI: .Google ScholarDigital Library
- X. Wang, N. Golbandi, M. Bendersky, D. Metzler, and M. Najork. 2018. Position bias estimation for unbiased learning to rank in personal search. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM ’18). ACM, New York, NY, 610–618. DOI: .Google ScholarDigital Library
- Y. Wang, B. Yang, L. Qu, M. Spaniol, and G. Weikum. 2011. Harvesting acts from textual web sources by constrained label propagation. In Proceedings of the 20th ACM Conference on Information and Knowledge Management (CIKM), Glasgow, Scotland, UK, October 24–28. ACM, New York, NY, 837–846. DOI: .Google ScholarDigital Library
- Y. Wang, M. Dylla, M. Spaniol, and G. Weikum. 2012. Coupling label propagation and constraints for temporal fact extraction. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Jeju, Republic of Korea, July 8–14, 2012. Association for Computational Linguistics, 233–237.Google Scholar
- Y. Wang, H. Ouyang, H. Deng, and Y. Chang. 2017. Learning online trends for interactive query auto-completion. IEEE Trans. Knowl. Data Eng. 29, 11, 2442–2454. DOI: .Google ScholarDigital Library
- Y. Wang, H. Lu, Y. Xu, R. Goutam, Y. Song, and B. Yin. 2021. QUEEN: Neural query rewriting in e-commerce. In Proceedings of the Web Conference 2021 (WWW KMEcommerce’21). ACM, New York, NY.Google Scholar
- Z. Wang, H. Wang, and Z. Hu. 2014. Head, modifier, and constraint detection in short texts. In Proceedings of the IEEE 30th International Conference on Data Engineering. IEEE, Chicago, IL, 280–291. DOI: .Google ScholarCross Ref
- Z. Wang, K. Zhao, H. Wang, X. Meng, and J.-R. Wen. 2015. Query understanding through knowledge-based conceptualization. In Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI ’15). AAAI Press, 3264–3270.Google ScholarDigital Library
- W. B. Ware and J. Benson. October/December. 1975. Appropriate statistics and measurement scales. Sci. Educ. 59, 4, 575–582. DOI: .Google ScholarCross Ref
- J. Wasilewski and N. Hurley. 2016. Intent-aware diversification using a constrained PLSA. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16). ACM, New York, NY, 39–42. DOI: .Google ScholarDigital Library
- J. Wattles, October. 2019. Amazon sues more than 1000 sellers of ‘fake’ product reviews. CNN. https://money.cnn.com/2015/10/18/technology/amazon-lawsuit-fake-reviews/index.html.Google Scholar
- C. L. Wayne. May. 2000. Multilingual topic detection and tracking: Successful research enabled by corpora and evaluation. In Proceedings of the Second International Conference on Language Resources and Evaluation (LREC ’00), Athens, Greece. European Language Resources Association.Google Scholar
- W. Webber and L. A. Park. 2009. Score adjustment for correction of pooling bias. In Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 444–451. DOI: .Google ScholarDigital Library
- W. Webber, A. Moffat, and J. Zobel. 2008. Score standardization for inter-collection comparison of retrieval systems. In T.-S. Chua, M.-K. Leong, S. H. Myaeng, D. W. Oard, and F. Sebastiani (Eds.), Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 51–58. DOI: .Google ScholarDigital Library
- I. Weber and C. Castillo. 2010. The demographics of web search. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 523–530. DOI: .Google ScholarDigital Library
- I. Weber, V. R. K. Garimella, and E. Borra. 2012. Mining web query logs to analyze political issues. In Proceedings of the 4th Annual ACM Web Science Conference (WebSci ’12). ACM, New York, NY, 330–334. DOI: .Google ScholarDigital Library
- J. Wei, B. Tag, J. R. Trippas, T. Dingler, and V. Kostakos. 2022. What could possibly go wrong when interacting with proactive smart speakers? A case study using an ESM application. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI ’22). ACM, New York, NY, 1–5. DOI: .Google ScholarDigital Library
- G. Weikum, N. Ntarmos, M. Spaniol, P. Triantafillou, A. Benczúr, S. Kirkpatrick, P. Rigaux, and M. Williamson. 2011. Longitudinal analytics on web archive data: It’s about time! In Fifth Biennial Conference on Innovative Data Systems Research (CIDR ’11), Asilomar, CA, USA, January 9–12, 2011 (Online Proceeding), Amsterdam, 199–202.Google Scholar
- G. Weikum, J. Hoffart, N. Nakashole, M. Spaniol, F. M. Suchanek, and M. A. Yosef. September. 2012. Big data methods for computational linguistics. IEEE Data Eng. Bull. 35, 3, 46–55.Google Scholar
- J. Weinberg, September. 2016. Cognitive Bias Codex. Retrieved from https://dailynous.com/2016/09/14/cognitive-bias-codex/.Google Scholar
- C. H. Weiss. 1997. Evaluation: Methods for Studying Programs and Policies. Prentice Hall, Hoboken, NJ.Google Scholar
- J. Weizenbaum. 1966. Eliza—A computer program for the study of natural language communication between man and machine. ACM Commun. 9, 1, 36–45. DOI: .Google ScholarDigital Library
- C. Welsh. 2018. Facebook may have knowingly inflated its video metrics for over a year. The Verge. https://tinyurl.com/5n6yn57e.Google Scholar
- M. Wen, D. K. Vasthimal, A. Lu, T. Wang, and A. Guo. 2019. Building large-scale deep learning system for entity recognition in e-commerce search. In Proceedings of the 6th IEEE/ACM International Conference on Big Data Computing, Applications and Technologie (BDCAT ’19). ACM, New York, NY, 149–154. DOI: .Google ScholarDigital Library
- J. B. Wendt, M. Bendersky, L. Garcia-Pueyo, V. Josifovski, B. Miklos, I. Krka, A. Saikia, J. Yang, M.-A. Cartright, and S. Ravi. 2016. Hierarchical label propagation and discovery for machine generated email. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (WSDM ’16). ACM, New York, NY, 317–326. DOI: .Google ScholarDigital Library
- F. Weninger, F. Eyben, B. W. Schuller, M. Mortillaro, and K. R. Scherer. 2013. On the acoustics of emotion in audio: What speech, music, and sound have in common. Front. Psychol. 4, 292, 1–12. DOI: .Google ScholarCross Ref
- J. I. Westbrook, E. W. Coiera, and A. S. Gosling. June. 2005. Do online information retrieval systems help experienced clinicians answer clinical questions? J. Am. Med. Inform. Assoc. 12, 3, 315–321. DOI: .Google ScholarCross Ref
- R. White. 2013. Beliefs and biases in web search. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 3–12. DOI: .Google ScholarDigital Library
- R. W. White. 2016. Interactions with Search Systems. Cambridge University Press, Cambridge, UK.Google Scholar
- R. W. White, I. Ruthven, J. M. Jose, and C. J. van Rijsbergen. July. 2005. Evaluating implicit feedback models using searcher simulations. ACM Trans. Inf. Syst. 23, 3, 325–361. DOI: .Google ScholarDigital Library
- R. W. White, D. W. Oard, G. J. F. Jones, D. Soergel, and X. Huang. 2006. Overview of the CLEF-2005 cross-language speech retrieval track. In C. Peters, F. C. Gey, J. Gonzalo, H. Müller, G. J. F. Jones, M. Kluck, B. Magnini, and M. de Rijke (Eds.), Accessing Multilingual Information Repositories, 6th Workshop of the Cross-Language Evaluation Forum, CLEF 2005, Vienna, Austria, September 21–23, 2005, Revised Selected Papers, Vol. 4022: Lecture Notes in Computer Science. Springer, Berlin, 744–759. DOI: .Google ScholarCross Ref
- S. Whiting and J. M. Jose. 2014. Recent and robust query auto-completion. In Proceedings of the 23rd International Conference on World Wide Web (WWW ’14). ACM, New York, NY, 971–982. DOI: .Google ScholarDigital Library
- J. Whittaker, S. Looney, A. Reed, and F. Votta. 2021. Recommender systems and the amplification of extremist content. Internet Policy Rev. 10, 2, 1–29. DOI: .Google ScholarCross Ref
- S. Whittaker and C. Sidner. 1996. Email overload: Exploring personal information management of email. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New York, NY, 276–283. DOI: .Google ScholarDigital Library
- S. Whittaker, T. Matthews, J. Cerruti, H. Badenes, and J. Tang. 2011. Am I wasting my time organizing email? A study of email refinding. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11). ACM, New York, NY, 3449–3458. DOI: .Google ScholarDigital Library
- G. Wiggers and S. Verberne. 2019. Citation metrics for legal information retrieval systems. In Proceedings of the 8th International Workshop on Bibliometric-Enhanced Information Retrieval (BIR 2019) Co-Located with the 41st European Conference on Information Retrieval (ECIR 2019), Vol. 2345. CEUR-WS.org, Aachen, 39–50.Google Scholar
- G. Wiggers and S. Verberne. 2020. Usage and citation metrics for ranking algorithms in legal information retrieval systems. In Proceedings of the 10th International Workshop on Bibliometric-Enhanced Information Retrieval, Co-Located with 42nd European Conference on Information Retrieval (ECIR 2020), Vol. 2591. CEUR-WS.org, Aachen, 42–52.Google Scholar
- G. Wiggers, S. Verberne, and G.-J. Zwenne. 2018. Exploration of intrinsic relevance judgments by legal professionals in information retrieval systems. In Proceedings of the 17th Dutch–Belgian Information Retrieval Workshop, Leiden University, Leiden, 5–8.Google Scholar
- G. Wiggers, S. Verberne, G.-J. Zwenne, and W. Van Loon. 2022. Exploration of domain relevance by legal professionals in information retrieval systems. Legal Inf. Manage. 22, 1, 49–67. DOI: .Google ScholarCross Ref
- G. Wiggers, S. Verberne, W. van Loon, and G.-J. Zwenne. 2023. Bibliometric-enhanced legal information retrieval: Combining usage and citations as flavors of impact relevance. J. Assoc. Inf. Sci. Technol. 74, 1010–1025. DOI: .Google ScholarDigital Library
- F. Wilcoxon. December. 1945. Individual comparisons by ranking methods. Biometr. Bull. 1, 6, 80–83. DOI: .Google ScholarCross Ref
- B. M. Wildemuth, R. de Bliek, C. P. Friedman, and D. D. File. 1995. Medical students’ personal knowledge, searching proficiency, and database use in problem solving. J. Am. Soc. Inf. Sci. 46, 8, 590–607. DOI: .Google ScholarCross Ref
- C. Wilkie and L. Azzopardi. 2015. Retrievability and retrieval bias: A comparison of inequality measures. In Advances in Information Retrieval, Proceedings of the 37th European Conference on Information Retrieval Research, ECIR 2015, Vol. 9022: Lecture Notes in Computer Science. Springer, Berlin, 209–214. DOI: .Google ScholarCross Ref
- J. Winawer, N. Witthoft, M. Frank, L. Wulund, A. Wade, and L. Boroditsky. June. 2007. The Russian blues reveal effects of language on color discrimination. Proc. Natl. Acad. Sci. U. S. A. 104, 19, 7780–7785. DOI: .Google ScholarCross Ref
- L. Wu and M. Grbovic. 2020. How Airbnb tells you will enjoy sunset sailing in Barcelona? Recommendation in a two-sided travel marketplace. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 2387–2396. DOI: .Google ScholarDigital Library
- Q. Wu, C. J. C. Burges, K. M. Svore, and J. Gao. June. 2010. Adapting boosting for information retrieval measures. Inf. Retr. 13, 3, 254–270. DOI: .Google ScholarDigital Library
- S. Wu, J. M. Hofman, W. A. Mason, and D. J. Watts. 2011. Who says what to whom on Twitter. In Proceedings of the 20th International Conference on World Wide Web (WWW ’11). ACM, New York, NY, 705–714. DOI: .Google ScholarDigital Library
- W. Wu, D. Kelly, A. Edwards, and J. Arguello. 2012. Grannies, tanning beds, tattoos and NASCAR: Evaluation of search tasks with varying levels of cognitive complexity. In Proceedings of the 4th Conference on Information Interaction in Context (IIiX). ACM, New York, NY, 254–257. DOI: .Google ScholarDigital Library
- Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Ł. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean. 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv:1609.08144. DOI: .Google ScholarCross Ref
- C. Wu, F. Wu, J. Liu, S. He, Y. Huang, and X. Xie. 2019. Neural demographic prediction using search query. In Proceedings of the 12th ACM International Conference on Web Search and Data Mining. ACM, New York, NY, 654–662. DOI: .Google ScholarDigital Library
- C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing. 2017a. Recurrent recommender networks. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM ’17). ACM, New York, NY, 495–503. DOI: .Google ScholarDigital Library
- H. Wu, Y. Zhang, C. Ma, F. Lyu, B. He, B. Mitra, and X. Liu. July. 2023. Result diversification in search and recommendation: A survey. arXiv:2212.14464. DOI: .Google ScholarCross Ref
- K. Wu, E. Wu, A. Cassasola, A. Zhang, K. Wei, T. Nguyen, S. Riantawan, P. S. Riantawan, D. E. Ho, and J. Zou. 2024. How well do LLMs cite relevant medical references? An evaluation framework and analyses. arXiv:2402.02008. DOI: .Google ScholarCross Ref
- L. Wu, X. He, X. Wang, K. Zhang, and M. Wang. 2022. A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation. IEEE Trans. Knowl. Data Eng. 35, 5, 4425–4445. DOI: .Google ScholarDigital Library
- Q. Wu, H. Wang, L. Hong, and Y. Shi. 2017b. Returning is believing: Optimizing long-term user engagement in recommender systems. In Proceedings of the 2017 ACM Conference on Information and Knowledge Management. ACM, New York, NY, 1927–1936. DOI: .Google ScholarDigital Library
- S. Wu, S. Liu, Y. Wang, T. Timmons, H. Uppili, S. Bedrick, W. Hersh, and H. Liu. 2017c. Intrainstitutional EHR collections for patient-level information retrieval. J. Assoc. Inf. Sci. Technol. 68, 11, 2636–2648. DOI: .Google ScholarDigital Library
- W. Wu, G. Liu, H. Ye, C. Zhang, T. Wu, D. Xiao, W. Lin, and X. Zhu. 2018. EENMF: An end-to-end neural matching framework for e-commerce sponsored search. arXiv:1812.01190. DOI: .Google ScholarCross Ref
- Y. Xian, T. Zhao, J. Li, J. Chan, A. Kan, J. Ma, X. L. Dong, C. Faloutsos, G. Karypis, S. Muthukrishnan, and Y. Zhang. 2021. EX3: Explainable attribute-aware item-set recommendations. In Proceedings of the 15th ACM Conference on Recommender Systems (RecSys ’21). ACM, New York, NY, 484–494. DOI: .Google ScholarDigital Library
- B. Xiao and I. Benbasat. 2007. E-commerce product recommendation agents: Use, characteristics, and impact. MIS Q. 31, 1, 137–209. DOI: .Google ScholarCross Ref
- C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda, and K. Sadakane. April. 2013. Efficient error-tolerant query autocompletion. Proc. VLDB. Endow. 6, 6, 373–384. DOI: .Google ScholarDigital Library
- X. Xin, A. Karatzoglou, I. Arapakis, and J. M. Jose. 2020. Self-supervised reinforcement learning for recommender systems (SIGIR ’20). In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 931–940. DOI: .Google ScholarDigital Library
- X. Xin, A. Karatzoglou, I. Arapakis, and J. M. Jose. 2022a. Supervised advantage actor-critic for recommender systems. In Proceedings of the 15th ACM International Conference on Web Search and Data Mining (WSDM 2022). ACM, New York, NY, 1186–1196. DOI: .Google ScholarDigital Library
- X. Xin, T. Pimentel, A. Karatzoglou, P. Ren, K. Christakopoulou, and Z. Ren. 2022b. Rethinking reinforcement learning for recommendation: A prompt perspective. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 1347–1357. DOI: .Google ScholarDigital Library
- E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. 2002. Distance metric learning, with application to clustering with side-information. In Proceedings of the 15th International Conference on Neural Information Processing Systems (NIPS 2022). MIT Press, Cambridge, MA, 521–528.Google Scholar
- C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power. 2017. End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 55–64. DOI: .Google ScholarDigital Library
- L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. Bennett, J. Ahmed, and A. Overwijk. 2021. Approximate nearest neighbor negative contrastive learning for dense text retrieval. In Proceedings of the International Conference on Learning Representations (ICLR 2021), Appleton, WI.Google Scholar
- W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke. 2018. The Microsoft 2017 conversational speech recognition system. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Piscataway, NJ, 5934–5938. DOI: .Google ScholarDigital Library
- J. Xu and R. Weischedel. October. 2000. Cross-lingual information retrieval using hidden Markov models. In Proceedings of the 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora held in conjunction with the 38th Annual Meeting of the Association for Computational Linguistics, Vol. 13, Hong Kong, China. Association for Computational Linguistics, 95–103. DOI: .Google ScholarDigital Library
- X. Xu, X. Chen, and D. Yang. 2018. Key-invariant convolutional neural network toward efficient cover song identification. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME ’18). IEEE, San Diego, CA, 1–6. DOI: .Google ScholarCross Ref
- X. Xu, A. H. Awadallah, S. T. Dumais, F. Omar, B. Popp, R. Rounthwaite, and F. Jahanbakhsh. 2020. Understanding user behavior for document recommendation. In Proceedings of the Web Conference 2020. ACM, New York, NY, 3012–3018. DOI: .Google ScholarDigital Library
- H. Yaman, E. Yavuz, A. Er, R. Vural, Y. Albayrak, A. Yardimci, and Ö. Asilkan. April. 2016. The use of mobile smart devices and medical apps in the family practice setting. J. Eval. Clin. Pract. 22, 2, 290–296. DOI: .Google ScholarCross Ref
- M. Yan, C. Li, C. Wu, B. Bi, W. Wang, J. Xia, and L. Si. February. 2020. IDST at TREC 2019 deep learning track: Deep cascade ranking with generation-based document expansion and pre-trained language modeling. In Proceedings of the Twenty-Eighth Text REtrieval Conference (TREC 2019), Special Publication 1250. National Institute of Standards and Technology, Washington, DC.Google Scholar
- Y. Yang. 2018. Towards Practical Active Learning for Classification. Ph.D. thesis. TU Delft University, Netherlands.Google Scholar
- E. Yang, S. Nair, R. Chandradevan, R. Iglesias-Flores, and D. W. Oard. 2022. C3: Continued pretraining with contrastive weak supervision for cross language ad-hoc retrieval. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 2507–2512. DOI: .Google ScholarDigital Library
- F. Yang, A. Kale, Y. Bubnov, L. Stein, Q. Wang, H. Kiapour, and R. Piramuthu. 2017. Visual search at eBay. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, 2101–2110. DOI: .Google ScholarDigital Library
- H. Yang, P. Gupta, R. F. Galán, D. Bu, and D. Jia. 2021. Seasonal relevance in e-commerce search. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM2021). ACM, New York, NY, 4293–4301. DOI: .Google ScholarDigital Library
- K. Yang and J. Stoyanovich. 2017. Measuring fairness in ranked outputs. In A. Choudhary, K. Wu, and B. Dong (Eds.), Proceedings of the 29th International Conference on Scientific and Statistical Database Management (SSDBM 2017). ACM, New York, NY, 1–6. DOI: .Google ScholarDigital Library
- K. Yang, V. Gkatzelis, and J. Stoyanovich. 2019a. Balanced ranking with diversity constraints. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), Macao. IJCAI.org, 6035–6042.Google Scholar
- L. Yang, Y. Cui, Y. Xuan, C. Wang, S. Belongie, and D. Estrin. 2018a. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY, 279–287. DOI: .Google ScholarDigital Library
- L. Yang, M. Qiu, C. Qu, J. Guo, Y. Zhang, W. B. Croft, J. Huang, and H. Chen. 2018b. Response ranking with deep matching networks and external knowledge in information-seeking conversation systems. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 245–254. DOI: .Google ScholarDigital Library
- P. Yang, H. Fang, and J. Lin. October. 2018c. Anserini: Reproducible ranking baselines using Lucene. J. Data Inf. Qual. 10, 4, 1–20. DOI: .Google ScholarDigital Library
- X. Yang, Y. Dong, and J. Li. 2018d. Review of data features-based music emotion recognition methods. Multimed. Syst. 24, 4, 365–389. DOI: .Google ScholarDigital Library
- Y. Yang, N. Bansal, W. Dakka, P. Ipeirotis, N. Koudas, and D. Papadias. 2009. Query by document. In Proceedings of the Second ACM International Conference on Web Search and Data Mining (WSDM ’09). ACM, New York, NY, 34–43. DOI: .Google ScholarDigital Library
- Y. Yang, Y. Gong, and X. Chen. 2018e. Query tracking for e-commerce conversational search: A machine comprehension perspective. In Proceedings of International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, 1755–1758. DOI: .Google ScholarDigital Library
- Y. Yang, D. Cer, A. Ahmad, M. Guo, J. Law, N. Constant, G. Hernandez Abrego, S. Yuan, C. Tar, Y.-h. Sung, B. Strope, and R. Kurzweil. July. 2020. Multilingual universal sentence encoder for semantic retrieval. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Online. Association for Computational Linguistics, 87–94. DOI: .Google ScholarCross Ref
- Y.-H. Yang and H. H. Chen. 2011. Music Emotion Recognition. CRC Press, Boca Raton, FL.Google Scholar
- Y.-H. Yang and H. H. Chen. 2012. Machine recognition of music emotion: A review. In ACM Trans. Intell. Syst. Technol. 3, 3, 1–30. DOI: .Google ScholarDigital Library
- Y.-H. Yang, C.-C. Liu, and H. H. Chen. 2006. Music emotion classification: A fuzzy approach. In Proceedings of the 14th ACM International Conference on Multimedia (MM ’06). ACM, New York, NY, 81–84. DOI: .Google ScholarDigital Library
- Y.-H. Yang, Y.-F. Su, Y.-C. Lin, and H. H. Chen. 2007. Music emotion recognition: The role of individuality. In Proceedings of the International Workshop on Human-centered Multimedia. ACM, New York, NY, 13–22. DOI: .Google ScholarDigital Library
- Y.-H. Yang, Y.-C. Lin, Y.-F. Su, and H. H. Chen. 2008. A regression approach to music emotion recognition. IEEE Trans. Audio, Speech, Lang. Process. 16, 2, 448–457. DOI: .Google ScholarDigital Library
- Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. 2019b. XLNet: Generalized autoregressive pretraining for language understanding. In Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates, Red Hook, NY, 5753–5763.Google Scholar
- N. Yankelovich, G. Levow, and M. Marx. 1995. Designing SpeechActs: Issues in speech user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’95). ACM Press/Addison-Wesley, 369–376. DOI: .Google ScholarDigital Library
- L. Yao, B. Yang, H. Zhang, W. Luo, and B. Chen. 2020. Exploiting neural query translation into cross lingual information retrieval. arXiv:2010.13659. DOI: .Google ScholarCross Ref
- S. Yao and B. Huang. 2017. Beyond parity: Fairness objectives for collaborative filtering. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Proceedings of the 31st International Conference on Neural Information Processing Systems, Vol. 30. Curran Associates, Red Hook, NY, 2925–2934.Google Scholar
- Y. Yao and F. M. Harper. 2018. Judging similarity: A user-centric study of related item recommendations. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY, 288–296. DOI: .Google ScholarDigital Library
- M. Yarmohammadi, X. Ma, S. Hisamoto, M. Rahman, Y. Wang, H. Xu, D. Povey, P. Koehn, and K. Duh. August. 2019. Robust document representations for cross-lingual information retrieval in low-resource settings. In Proceedings of Machine Translation Summit XVII Volume 1: Research Track, Dublin, Ireland. European Association for Machine Translation, 12–20.Google Scholar
- A. Yates, M. Banko, M. Broadhead, M. J. Cafarella, O. Etzioni, and S. Soderland. 2007. TextRunner: Open information extraction on the Web. In Proceedings of the Human Language Technologies: The Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT). Association for Computational Linguistics, 25–26.Google Scholar
- J.-Y. Yeh and A. Harnly. 2006. Email thread reassembly using similarity matching. In Proceedings of the 3rd Conference on Email and Anti-Spam, Stanford, CA.Google Scholar
- F. Yesiler, C. Tralie, A. Correya, D. F. Silva, P. Tovstogan, E. Gómez, and X. Serra. 2019. Da-TACOS: A dataset for cover song identification and understanding. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR). ISMIR, Delft, The Netherlands, 327–334. DOI: .Google ScholarCross Ref
- F. Yesiler, J. Serrà, and E. Gómez. 2020. Accurate and scalable version identification using musically-motivated embeddings. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020). IEEE, Barcelona, Spain, 21–25. DOI: .Google ScholarCross Ref
- J. Yi and F. Maghoul. 2011. Mobile search pattern evolution: The trend and the impact of voice queries. In Proceedings of the 20th International Conference Companion on World Wide Web (WWW ’11). ACM, New York, NY, 165–166. DOI: .Google ScholarDigital Library
- E. Yilmaz and J. A. Aslam. 2006. Estimating average precision with incomplete and imperfect judgments. In P. S. Yu, V. Tsotras, E. Fox, and B. Liu (Eds.), Proceedings of the 15th ACM International Conference on Information and Knowledge Management (CIKM ’06). ACM, New York, NY, 102–111. DOI: .Google ScholarDigital Library
- E. Yilmaz, M. Verma, N. Craswell, F. Radlinski, and P. Bailey. 2014. Relevance and effort: An analysis of document utility. In J. Li, X. Sean Wang, M. Garofalakis, I. Soboroff, T. Suel, and M. Wang (Eds.), Proceedings of the 23rd ACM International Conference on Information and Knowledge Management (CIKM ’14). ACM, New York, NY, 91–100. DOI: .Google ScholarDigital Library
- Z. A. Yilmaz, W. Yang, H. Zhang, and J. Lin. 2019. Cross-domain modeling of sentence-level evidence for document retrieval. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics, 3490–3496. DOI: .Google ScholarCross Ref
- R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. 2018. Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’18). ACM, New York, NY, 974–983. DOI: .Google ScholarDigital Library
- E. Yom-Tov. 2019. Demographic differences in search engine use with implications for cohort selection. Inf. Retr. J. 22, 6, 570–580. DOI: .Google ScholarDigital Library
- M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol, and G. Weikum. 2011. AIDA: An online tool for accurate disambiguation of named entities in text and tables. Proc. VLDB Endow. 4, 12, 1450–1453. DOI: .Google ScholarDigital Library
- B. Yu and J. Tagliabue. 2020. Blending search and discovery: Tag-based query refinement with contextual reinforcement learning. In Proceedings of the Workshop on e-Commerce and NLP 2020, Seattle, WA.Google Scholar
- J. Yu, S. Mohan, D. P. Putthividhya, and W.-K. Wong. 2014. Latent Dirichlet allocation based diversified retrieval for e-commerce search. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining (WSDM ’14). ACM, New York, NY, 463–472. DOI: .Google ScholarDigital Library
- P. Yu and J. Allan. 2020. A study of neural matching models for cross-lingual IR. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1637–1640. DOI: .Google ScholarDigital Library
- P. Yu, H. Fei, and P. Li. 2021. Cross-lingual language model pretraining for retrieval. In Proceedings of the Web Conference 2021. ACM, New York, NY, 1029–1039. DOI: .Google ScholarDigital Library
- Z. Yu, X. Xu, X. Chen, and D. Yang. 2019. Temporal pyramid pooling convolutional neural network for cover song identification. In Proceedings of the Twenty-Eight International Joint Conference on Artificial Intelligence (IJCAI), Main Track. IJCAI, Macao, 4846–4852. DOI: .Google ScholarCross Ref
- F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He. 2019. A simple convolutional generative network for next item recommendation. In Proceedings of the 12th ACM International Conference on Web Search and Data Mining (WSDM 2019). ACM, New York, NY, 582–590. DOI: .Google ScholarDigital Library
- Y. Yue, R. Patel, and H. Roehrig. 2010. Beyond position bias: Examining result attractiveness as a source of presentation bias in clickthrough data. In Proceedings of the 19th International Conference on World Wide Web (WWW ’10). ACM, New York, NY, 1011–1018. DOI: .Google ScholarDigital Library
- N. Zalmout, C. Zhang, X. Li, Y. Liang, and X. L. Dong. 2021. All you need to know to build a product knowledge graph. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’21). ACM, New York, NY, 4090–4091. DOI: .Google ScholarDigital Library
- H. Zamani and N. Craswell. 2020. Macaw: An extensible conversational information seeking platform. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 2193–2196. DOI: .Google ScholarDigital Library
- H. Zamani, M. Dehghani, W. B. Croft, E. Learned-Miller, and J. Kamps. 2018. From neural re-ranking to neural ranking: Learning a sparse representation for inverted indexing. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management. ACM, New York, NY, 497–506. DOI: .Google ScholarDigital Library
- H. Zamani, S. T. Dumais, N. Craswell, P. N. Bennett, and G. Lueck. 2020a. Generating clarifying questions for information retrieval. In Proceedings of the Web Conference 2020 (WWW ’20). ACM, New York, NY, 418–428. DOI: .Google ScholarDigital Library
- H. Zamani, B. Mitra, E. Chen, G. Lueck, F. Diaz, P. N. Bennet, N. Craswell, and S. T. Dumais. 2020b. Analyzing and learning from user interactions for search clarification. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1181–1190. DOI: .Google ScholarDigital Library
- H. Zamani, J. R. Trippas, J. Dalton, and F. Radlinski. 2023. Conversational information seeking. Found. Trends Inf. Retr. 17, 3–4, 244–456. DOI: .Google ScholarDigital Library
- E. Zangerle and C. Bauer. December. 2022. Evaluating recommender systems: Survey and framework. ACM Comput. Surv. 55, 8, 1–38. DOI: .Google ScholarDigital Library
- M. Zanker, L. Rook, and D. Jannach. 2019. Measuring the impact of online personalisation: Past, present and future. Int. J. Hum. Comput. Stud. 131, 160–168. DOI: .Google ScholarDigital Library
- J. R. Zapata, M. E. P. Davies, and E. Gómez. 2014. Multi-feature beat tracking. IEEE/ACM Trans. Audio, Speech Lang. Process. 22, 4, 816–825. DOI: .Google ScholarDigital Library
- H. Zaragoza, B. Cambazoglu, and R. Baeza-Yates. October. 2010. Web search solved?: All result rankings the same? In Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM 2010). ACM, New York, NY, 529–538. DOI: .Google ScholarDigital Library
- D. A. Zarin, K. M. Fain, H. D. Dobbins, T. Tse, and R. J. Williams. November. 2019. 10-Year update on study results submitted to ClinicalTrials.gov. N. Engl. J. Med. 381, 20, 1966–1974. DOI: .Google ScholarCross Ref
- I. Zavorin, A. Bills, C. Corey, M. Morrison, A. Tong, and R. Tong. 2020. Corpora for cross-language information retrieval in six less-resourced languages. In Proceedings of the Workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS2020). European Language Resources Association, Marseille, France, 7–13.Google Scholar
- J. Zawinski. 2002. Message Threading. Retrieved from https://www.jwz.org/doc/threading.html.Google Scholar
- R. Zbib, L. Zhao, D. G. Karakos, W. Hartmann, J. DeYoung, Z. Huang, Z. Jiang, N. Rivkin, L. Zhang, R. M. Schwartz, and J. Makhoul. 2019. Neural-network lexical translation for cross-lingual IR from text and speech. In B. Piwowarski, M. Chevalier, É. Gaussier, Y. Maarek, J. Nie, and F. Scholer (Eds.), Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19), Paris, France, July 21–25, 2019. ACM, New York, NY, 645–654. DOI: .Google ScholarDigital Library
- M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. Baeza-Yates. 2017. FA*IR: A fair top-k ranking algorithm. In Proceedings of the 2017 ACM Conference on Information and Knowledge Management. ACM, New York, NY, 1569–1578. DOI: .Google ScholarDigital Library
- M. Zehlike, K. Yang, and J. Stoyanovich. June. 2023a. Fairness in ranking, Part I: Score-based ranking. ACM Comput. Surv. 55, 6, 118:1–118:36. DOI: .Google ScholarDigital Library
- M. Zehlike, K. Yang, and J. Stoyanovich. June. 2023b. Fairness in ranking, Part II: Learning-to-rank and recommender systems. ACM Comput. Surv. 55, 6, 117:1–117:41. DOI: .Google ScholarDigital Library
- R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. 2019. HellaSwag: Can a machine really finish your sentence? In A. Korhonen, D. Traum, and L. Màrquez (Eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019). Association for Computational Linguistics, 4791–4800.Google Scholar
- M. Zentner, D. Grandjean, and K. R. Scherer. 2008. Emotions evoked by the sound of music: Characterization, classification, and measurement. Emotion 8, 4, 494–521. DOI: .Google ScholarCross Ref
- V. Zenz and A. Rauber. 2007. Automatic chord detection incorporating beat and key detection. In Proceedings of the 2007 IEEE International Conference on Signal Processing and Communications. IEEE, Dubai, UAE, 1175–1178. DOI: .Google ScholarCross Ref
- S. Zerr, S. Siersdorfer, J. Hare, and E. Demidova. 2012. Privacy-aware image classification and search. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 35–44. DOI: .Google ScholarDigital Library
- C. X. Zhai, W. W. Cohen, and J. Lafferty. 2003. Beyond independent relevance: Methods and evaluation metrics for subtopic retrieval. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’03). ACM, New York, NY, 10–17. DOI: .Google ScholarDigital Library
- J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma. 2021a. Jointly optimizing query encoder and product quantization to improve retrieval performance. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM ’21). ACM, New York, NY, 2487–2496. DOI: .Google ScholarDigital Library
- J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma. 2021b. Optimizing dense retrieval model training with hard negatives. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 1503–1512. DOI: .Google ScholarDigital Library
- J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma. 2022. Learning discrete representations via constrained clustering for effective and efficient dense retrieval. In Proceedings of the 15th ACM International Conference on Web Search and Data Mining (WSDM ’22). ACM, New York, NY, 1328–1336. DOI: .Google ScholarDigital Library
- A. Zhang, A. Goyal, W. Kong, H. Deng, A. Dong, Y. Chang, C. A. Gunter, and J. Han. 2015. adaQAC: Adaptive query auto-completion via implicit negative feedback. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 143–152. DOI: .Google ScholarDigital Library
- H. Zhang, H. Shen, Y. Qiu, Y. Jiang, S. Wang, S. Xu, Y. Xiao, B. Long, and W.-Y. Yang. 2021a. Joint learning of deep retrieval model and product quantization based embedding index. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 1718–1722. DOI: .Google ScholarDigital Library
- J. Zhang, G. Adomavicius, A. Gupta, and W. Ketter. 2020a. Consumption and performance: Understanding longitudinal dynamics of recommender systems via an agent-based simulation framework. Inf. Syst. Res. 31, 1, 76–101. DOI: .Google ScholarDigital Library
- L. Zhang and X. Zhao. 2020. An overview of cross-language information retrieval. In X. Sun, J. Wang, and E. Bertino (Eds.), In Artificial Intelligence and Security, Proceedings of the 6th International Conference, ICAIS 2020, Part I, New York, NY, USA, July 26–28, 2019, Vol. 12239: Lecture Notes in Computer Science. Springer, Cham, 26–37. DOI: .Google ScholarDigital Library
- L. Zhang, D. Karakos, W. Hartmann, M. Srivastava, L. Tarlin, D. Akodes, S. K. Gouda, N. Bathool, L. Zhao, R. S. Zhuolin Jiang, and J. Makhoul. 2020b. The 2019 BBN cross-lingual information retrieval system. In Proceedings of the Workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS2020). European Language Resources Association, Paris, 44–51.Google Scholar
- P. Zhang, L. Plettenberg, J. L. Klavans, D. W. Oard, and D. Soergel. 2007. Task-based interaction with an integrated multilingual, multimedia information system: A formative evaluation. In E. M. Rasmussen, R. R. Larson, E. G. Toms, and S. Sugimoto (Eds.), Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL 2007, Vancouver, BC, Canada, June 18–23, 2007. ACM, New York, NY, 117–126. DOI: .Google ScholarDigital Library
- R. Zhang, C. Westerfield, S. Shim, G. Bingham, A. Fabbri, W. Hu, N. Verma, and D. Radev. July. 2019. Improving low-resource cross-lingual document retrieval by reranking with deep bilingual representations. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy. Association for Computational Linguistics, 3173–3179. DOI: .Google ScholarCross Ref
- S. Zhang, H. Yang, and L. Singh. 2016. Anonymizing query logs by differential privacy. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 753–756. DOI: .Google ScholarDigital Library
- S. Zhang, Y. Tay, L. Yao, A. Sun, and C. Zhang. 2022. Deep learning for recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 173–210. DOI: .Google ScholarCross Ref
- Y. Zhang, F. Feng, X. He, T. Wei, C. Song, G. Ling, and Y. Zhang. 2021b. Causal intervention for leveraging popularity bias in recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 11–20. DOI: .Google ScholarDigital Library
- Y. Zhang, M. Lu, S. Indrakanti, M. R. Kannadasan, and A. Bagherjeiran. 2021c. Conditional sequential slate optimization. In Proceedings of the ECOM ’21. CEUR-WS.org, Aachen.Google Scholar
- L. Zhao. 2012. Modeling and Solving Term Mismatch for Full-Text Retrieval. Ph.D. thesis. Carnegie Mellon University.Google Scholar
- W. Zhong, R. Cui, Y. Guo, Y. Liang, S. Lu, Y. Wang, A. Saied, W. Chen, and N. Duan. September. 2023. AGIEval: A human-centric benchmark for evaluating foundation models. arXiv:2304.06364. DOI: .Google ScholarCross Ref
- X. Zhong and E. Cambria. 2023. Time expression recognition and normalization: A survey. Artif. Intell. Rev. 56, 9, 9115–9140. DOI: .Google ScholarDigital Library
- D. Zhou, M. Truran, T. Brailsford, V. Wade, and H. Ashman. December. 2012. Translation techniques in cross-language information retrieval. ACM Comput. Surv. 45, 1, 1–44. DOI: .Google ScholarDigital Library
- S. Zhuang and G. Zuccon. 2021a. TILDE: Term independent likelihood moDEl for passage re-ranking. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 1483–1492. DOI: .Google ScholarDigital Library
- S. Zhuang and G. Zuccon. 2021b. Fast passage re-ranking with contextualized exact term matching and efficient passage expansion. arXiv:2108.08513. DOI: .Google ScholarCross Ref
- C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. 2005. Improving recommendation lists through topic diversification. In Proceedings of the 14th International Conference on World Wide Web (WWW 2005). ACM, New York, NY, 22–32. DOI: .Google ScholarDigital Library
- S. Zimmerman, A. Thorpe, C. Fox, and U. Kruschwitz. 2019a. Investigating the interplay between searchers’ privacy concerns and their search behavior. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 953–956. DOI: .Google ScholarDigital Library
- S. Zimmerman, A. Thorpe, C. Fox, and U. Kruschwitz. 2019b. Privacy nudging in search: Investigating potential impacts. In Proceedings of the 2019 Conference on Human Information Interaction and Retrieval. ACM, New York, NY, 283–287. DOI: .Google ScholarDigital Library
- S. Zimmerman, A. Thorpe, J. Chamberlain, and U. Kruschwitz. 2020. Towards search strategies for better privacy and information. In Proceedings of the 2020 Conference on Human Information Interaction and Retrieval. ACM, New York, NY, 124–134. DOI: .Google ScholarDigital Library
- G. K. Zipf. 1949. Human Behavior and the Principle of Least Effort. Addison-Wesley Press, Boston.Google Scholar
- J. Zobel. 1998. How reliable are the results of large-scale information retrieval experiments. In W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel (Eds.), Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’98). ACM, New York, NY, 307–314. DOI: .Google ScholarDigital Library
- K. Zoubi, A. J. Sharon, E. Nitzany, and A. Baram-Tsabari. 2022. Science, Maddá, and ‘Ilm: The language divide in scientific information available to Internet users. Public Understand. Sci. 31, 1, 2–18. DOI: .Google ScholarCross Ref
- S. Zuboff. 2023. The age of surveillance capitalism. In Social Theory Re-Wired. Routledge, London, UK, 203–213.Google Scholar
- G. Zuccon. 2016. Understandability biased evaluation for information retrieval. In N. Ferro, F. Crestani, M.-F. Moens, J. Mothe, F. Silvestri, G. M. Di Nunzio, C. Hauff, and G. Silvello (Eds.), Advances in Information Retrieval, Proceedings of the 38th European Conference on IR Research (ECIR 2016), Vol. 9626: Lecture Notes in Computer Science. Springer, Heidelberg, 280–292.Google ScholarCross Ref
- M. Zuckerberg. 2021. A blueprint for content governance and enforcement. Retrieved from the Facebook Newsroom website: https://www.facebook.com/notes/751449002072082/.Google Scholar
Index Terms
- Information Retrieval: Advanced Topics and Techniques
Recommendations
Information Retrieval eXperience (IRX): Towards a Human-Centered Personalized Model of Relevance
WI-IAT '10: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 03We approach Information Retrieval (IR) from a User eXperience (UX) perspective. Through introducing a model for Information Retrieval eXperience (IRX), this paper operationalizes a perspective on IR that reaches beyond topicality. Based on a document's ...