Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
Skip header Section
Information Retrieval: Advanced Topics and TechniquesDecember 2024
Publisher:
  • Association for Computing Machinery
  • New York
  • NY
  • United States
ISBN:979-8-4007-1050-6
Published:06 December 2024
Pages:
836
Appears In:
ACMACM Books
Skip Bibliometrics Section
Reflects downloads up to 11 Jan 2025Bibliometrics
Skip Abstract Section
Abstract

In the last decade, deep learning and word embeddings have made significant impacts on information retrieval (IR) by adding techniques based in neural networks and language models. At the same time, certain search modalities such as neural IR and conversational search have become more popular. This book, written by international academic and industry experts, brings the field up to date with detailed discussions of these new approaches and techniques. The book is organized in three sections: Foundations, Adaptations and Concerns, and Verticals.

Under Foundations, we address topics that form the basic structure of any modern IR system, including recommender systems. These new techniques are developed to augment indexing, retrieval, and ranking. Neural IR, recommender systems, evaluation, query-driven functionality, and knowledge graphs are covered in this section.

IR systems need to adapt to specific user characteristics and preferences, and techniques that were considered too niche a few years ago are now a matter of system design consideration. The Adaptations and Concerns section covers the following topics: conversational search, cross-language retrieval, temporal extraction and retrieval, bias in retrieval systems, and privacy in search.

While web search engines are the most popular information access point, there are cases where specific verticals provide a better experience in terms of content and relevance. The Verticals section describes eCommerce, professional search, personal collections, music retrieval, and biomedicine as examples.

Skip Table Of Content Section
prefatory
Preface
chapter
Introduction
chapter
Neural Information Retrieval
chapter
Recommender Systems
chapter
Evaluation of IR Systems
chapter
Query-driven Search Functionality
chapter
Knowledge Graphs and Search
chapter
Conversational Search
chapter
Cross-language Retrieval
chapter
Temporal Extraction and Retrieval
chapter
Bias in Retrieval Systems
chapter
Privacy in Information Retrieval
chapter
eCommerce Search and Discovery
chapter
Professional Search
chapter
Searching Personal Collections
chapter
IR in Biomedicine
bibliography
Bibliography
index
Authors’ Biography/Index

References

  1. M. Abadi, A. Birrell, M. Burrows, and T. Wobber. 2003. Bankable postage for network services. In V. A. Saraswat (Ed.), Proceedings of the 8th Asian Computing Science Conference, Vol. 2896: Lecture Notes in Computer Science. Springer, Berlin, 72–90. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  2. S. AbdelRahman, B. Hassan, and R. Bahgat. October. 2010. A new email retrieval ranking approach. Int. J. Comput. Sci. Inf. Technol. 2, 5, 44–63. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  3. H. Abdollahpouri and M. Mansoury. 2020. Multi-sided exposure bias in recommendation. arXiv:2006.15772. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  4. H. Abdollahpouri, G. Adomavicius, R. Burke, I. Guy, D. Jannach, T. Kamishima, J. Krasnodebski, and L. Pizzato. 2020a. Multistakeholder recommendation: Survey and research directions. User Model. User-Adapt. Interact. 30, 127–158. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  5. H. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher. 2020b. The connection between popularity bias, calibration, and fairness in recommendation. In Proceedings of the 14th ACM Conference on Recommender Systems (RecSys ’20). ACM, New York, NY, 726–731. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Abdou and J. Savoy. 2005. Report on CLIR task for the NTCIR-5 evaluation campaign. In N. Kando (Ed.), Proceedings of the Fifth NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-Lingual Information Access, NTCIR-5, National Center of Sciences, Tokyo, Japan, December 6–9, 2005, National Institute of Informatics (NII), Tokyo, Japan.Google ScholarGoogle Scholar
  7. R. P. Abelson and J. W. Tukey. 1959. Efficient conversion of non-metric information into metric information. In Proceedings of the Social Statistics Section of the American Statistical Association. American Statistical Association, Washington, DC, 226–230.Google ScholarGoogle Scholar
  8. D. Aberdeen, O. Pacovsky, and A. Slater. 2010. The learning behind Gmail priority inbox. In LCCC: NIPS 2010 Workshop on Learning on Cores, Clusters and Clouds.Google ScholarGoogle Scholar
  9. A. Abolghasemi, S. Verberne, and L. Azzopardi. 2022. Improving BERT-based query-by-document retrieval with multi-task optimization. In European Conference on Information Retrieval, Vol. 13186: Lecture Notes in Computer Science. Springer, Cham, 3–12. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. I. Abraham, O. Alonso, V. Kandylas, R. Patel, S. Shelford, and A. Slivkins. 2016. How many workers to ask?: Adaptive exploration for collecting high quality labels. In R. Perego, F. Sebastiani, J. Aslam, I. Ruthven, and J. Zobel (Eds.), Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 473–482. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Abualsaud, C. Lioma, M. Maistro, M. D. Smucker, and G. Zuccon. February. 2020. Overview of the TREC 2019 decision track. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Eighth Text REtrieval Conference (TREC 2019). National Institute of Standards and Technology, Gaithersburg, MD.Google ScholarGoogle Scholar
  12. S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair. 2007. A comparison of machine learning techniques for phishing detection. In Proceedings of the Anti-Phishing Working Groups 2nd Annual eCrime Researchers Summit (eCrime ’07). ACM, New York, NY, 60–69. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. H. Abu-Rasheed, C. Weber, J. Zenkert, M. Dornhöfer, and M. Fathi. 2022. Transferrable framework based on knowledge graphs for generating explainable results in domain-specific, intelligent, information retrieval. Informatics 9, 1, 6. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  14. ACM Technology Policy Council. October. 2022. Statement on Responsible Algorithmic Systems. https://www.acm.org/binaries/content/assets/public-policy/final-joint-ai-statement-update.pdf.Google ScholarGoogle Scholar
  15. P. Adamopoulos and A. Tuzhilin. 2014. On unexpectedness in recommender systems: Or how to expect the unexpected. Special Section on Novelty and Diversity in Recommender Systems, ACM Trans. Intell. Syst. Technol. 5, 4. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. E. W. Adams, R. F. Fagot, and R. E. Robinson. June. 1965. A theory of appropriate statistics. Psychometrika 30, 99–127. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  17. E. Adar. 2007. User 4xxxxx9: Anonymizing query logs. In Proceedings of Query Log Analysis Workshop, International Conference on World Wide Web.Google ScholarGoogle Scholar
  18. Adobe Inc. 2020. Taking Image Search to the Next Level: AI-powered Object-specific Search in Adobe Stock. Technical Report. Adobe Tech Blog.Google ScholarGoogle Scholar
  19. G. Adomavicius and A. Tuzhilin. 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17, 6, 734–749. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. G. Adomavicius and J. Zhang. April. 2012. Impact of data characteristics on recommender systems performance. ACM Trans. Manage. Inf. Syst. 3, 1. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. G. Adomavicius, K. Bauman, A. Tuzhilin, and M. Unger. 2022. Context-aware recommender systems: From foundations to recent developments. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 211–250. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  22. D. Afchar and R. Hennequin. 2020. Making neural networks interpretable with attribution: Application to implicit signals prediction. In Proceedings of the 14th ACM Conference on Recommender Systems (RecSys ’20). ACM, New York, NY, 220–229. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. M. Afsar, T. Crump, and B. Far. June. 2022. Reinforcement learning based recommender systems: A survey. ACM Comput. Surv. 55, 7, 1–38. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. E. Agapie, G. Golovchinsky, and P. Qvarfordt. 2013. Leading people to longer queries. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). ACM, New York, NY, 3019–3022. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Agarwal, I. Zaitsev, X. Wang, C. Li, M. Najork, and T. Joachims. 2019. Estimating position bias without intrusive interventions. In Proceedings of the 12th ACM International Conference on Web Search and Data Mining (WSDM ’19). ACM, New York, NY, 474–482. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. Agarwal, B.-C. Chen, and P. Elango. 2009. Explore/exploit schemes for web content optimization. In Proceedings of the 2009 9th IEEE International Conference on Data Mining (ICDM ’09), Miami, Florida. IEEE, 1–10. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. C. C. Aggarwal, X. Kong, Q. Gu, J. Han, and P. S. Yu. 2014. Active learning: A survey. In Data Classification: Algorithms and Applications. CRC Press, 571–605. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  28. E. Agirre, G. M. Di Nunzio, N. Ferro, T. Mandl, and C. Peters. 2008. CLEF 2008: Ad hoc track overview. In F. Borri, A. Nardi, C. Peters, and N. Ferro (Eds.), CLEF 2008 Working Notes. CEUR Workshop Proceedings, ISSN 1613-0073. CEUR-WS.org. https://ceur-ws.org/Vol-1174/.Google ScholarGoogle Scholar
  29. E. Agirre, G. M. Di Nunzio, N. Ferro, T. Mandl, and C. Peters. 2009. CLEF 2008: Ad hoc track overview. In C. Peters, T. Deselaers, N. Ferro, J. Gonzalo, G. J. F. Jones, M. Kurimo, T. Mandl, and A. Peñas (Eds.), Evaluating Systems for Multilingual and Multimodal Information Access: Ninth Workshop of the Cross-Language Evaluation Forum (CLEF ’08). Revised Selected Papers, Vol. 5706: Lecture Notes in Computer Science. Springer, Heidelberg, 15–37. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  30. R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. 2009. Diversifying search results. In Proceedings of the 2nd ACM Conference on Web Search and Data Mining (WSDM ’09). ACM, New York, NY, 5–14. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Agresti and B. A. Coull. 1998. Approximate is better than “exact” for interval estimation of binomial proportions. Am. Stat. 52, 2, 119–126. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  32. N. Aharony. March. 2007. On Ranking Techniques for Desktop Search. Master’s thesis. Technion–Institute of Technology, Haifa, Israel.Google ScholarGoogle Scholar
  33. A. Ahmadvand, S. Kallumadi, F. Javed, and E. Agichtein. 2020. JointMap: Joint query intent understanding for modeling intent hierarchies in e-commerce search. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 1509–1512. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Q. Ai, S. T. Dumais, N. Craswell, and D. Liebling. 2017. Characterizing email search using large-scale behavioral logs and surveys. In Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 1511–1520. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Q. Ai, K. Bi, C. Luo, J. Guo, and W. B. Croft. 2018. Unbiased learning to rank with unbiased propensity estimation. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 385–394. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. N. Ailon, Z. S. Karnin, E. Liberty, and Y. Maarek. 2013. Threading machine generated email. In Proceedings of the 6th ACM International Conference on Web Search and Data Mining. ACM, New York, NY, 405–414. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Ajmera, A. Joshi, S. Mukherjea, N. Rajput, S. Sahay, M. Shrivastava, and K. Srivastava. 2011. Two-stream indexing for spoken web search. In Proceedings of the 20th International Conference Companion on World Wide Web (WWW ’11). ACM, New York, NY, 503–512. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. Alfano, A. E. Fard, J. A. Carter, P. Clutton, and C. Klein. 2021. Technologically scaffolded atypical cognition: The case of YouTube’s recommender system. Synthese 199, 835–858. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  39. W. Ali, M. Saleem, B. Yao, A. Hogan, and A.-C. N. Ngomo. 2022. A survey of RDF stores & SPARQL engines for querying knowledge graphs. VLDB J. 31, 1–26. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M. Aliannejadi and J. R. Trippas. 2022. Conversational information seeking: Theory and evaluation: CHIIR 2022 half day tutorial. In Proceedings of the 2022 Conference on Human Information Interaction and Retrieval (CHIIR ’22). ACM, New York, NY, 365–366. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Aliannejadi, M. Harvey, L. Costa, M. Pointon, and F. Crestani. 2019a. Understanding mobile search task relevance and user behaviour in context. In Proceedings of the 2019 Conference on Human Information Interaction and Retrieval (CHIIR ’19). ACM, New York, NY, 143–151. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. Aliannejadi, H. Zamani, F. Crestani, and W. B. Croft. 2019b. Asking clarifying questions in open-domain information-seeking conversations. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 475–484. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. A. Aljanaki. 2016. Emotion in Music: Representation and Computational Modeling. Ph.D. thesis. Universiteit Utrecht, Netherlands.Google ScholarGoogle Scholar
  44. A. Aljanaki, Y.-H. Yang, and M. Soleymani. 2017. Developing a benchmark for emotional analysis of music. PLoS One 12, 3, e0173392. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  45. J. Allan, J. Aslam, L. Azzopardi, N. Belkin, P. Borlund, P. Bruza, J. Callan, M. Carman, C. Clarke, N. Craswell, W. B. Croft, J. S. Culpepper, F. Diaz, S. Dumais, N. Ferro, S. Geva, J. Gonzalo, D. Hawking, K. Järvelin, G. Jones, R. Jones, J. Kamps, N. Kando, E. Kanoulas, J. Karlgren, D. Kelly, M. Lease, J. Lin, S. Mizzaro, A. Moffat, V. Murdock, D. W. Oard, M. de Rijke, T. Sakai, M. Sanderson, F. Scholer, L. Si, J. Thom, P. Thomas, A. Trotman, A. Turpin, A. P. de Vries, W. Webber, X. Zhang, and Y. Zhang. June. 2012. Frontiers, challenges, and opportunities for information retrieval: Report from SWIRL 2012 the second strategic workshop on information retrieval in Lorne, February 2012. SIGIR Forum 46, 1, 2–32. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. J. Allan, J. Arguello, L. Azzopardi, P. Bailey, T. Baldwin, K. Balog, H. Bast, N. Belkin, K. Berberich, B. von Billerbeck, J. Callan, R. Capra, M. Carman, B. Carterette, C. L. A. Clarke, K. Collins-Thompson, N. Craswell, W. B. Croft, J. S. Culpepper, J. Dalton, G. Demartini, F. Diaz, L. Dietz, S. Dumais, C. Eickhoff, N. Ferro, N. Fuhr, S. Geva, C. Hauff, D. Hawking, H. Joho, G. J. F. Jones, J. Kamps, N. Kando, D. Kelly, J. Kim, J. Kiseleva, Y. Liu, X. Lu, S. Mizzaro, A. Moffat, J.-Y. Nie, A. Olteanu, I. Ounis, F. Radlinski, M. de Rijke, M. Sanderson, F. Scholer, L. Sitbon, M. D. Smucker, I. Soboroff, D. Spina, T. Suel, J. Thom, P. Thomas, A. Trotman, E. M. Voorhees, A. P. de Vries, E. Yilmaz, and G. Zuccon. June. 2018a. Research frontiers in information retrieval: Report from the third strategic workshop on information retrieval in Lorne (SWIRL 2018). SIGIR Forum 52, 1, 34–90. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. J. Allan, D. K. Harman, E. Kanoulas, D. Li, C. Van Gysel, and E. M. Voorhees. February. 2018b. TREC 2017 common core track overview. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Sixth Text REtrieval Conference Proceedings (TREC 2017), Special Publication 500-324. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  48. J. Allan, D. K. Harman, E. Kanoulas, and E. M. Voorhees. February. 2019. TREC 2018 common core track overview. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Seventh Text REtrieval Conference Proceedings (TREC 2018). National Institute of Standards and Technology, Gaithersburg, MD.Google ScholarGoogle Scholar
  49. B. Allen. July. 1989. Recall cues in known-item retrieval. J. Am. Soc. Inf. Sci. 40, 4, 246–252. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  50. J. F. Allen. November. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11, 832–843. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. M. Alonso, B. David, and G. Richard. 2004. Tempo and beat estimation of musical signals. In Proceedings of the 5th International Conference on Music Information Retrieval (ISMIR), Barcelona, Spain.Google ScholarGoogle Scholar
  52. O. Alonso. April. 2013. Implementing crowdsourcing-based relevance experimentation: An industrial perspective. Inf. Retr. 16, 2, 101–120. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. O. Alonso. May. 2019. The Practice of Crowdsourcing. Morgan & Claypool Publishers.Google ScholarGoogle Scholar
  54. O. Alonso and S. Mizzaro. November. 2012. Using crowdsourcing for TREC relevance assessment. Inf. Process. Manag. 48, 6, 1053–1066. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. O. Alonso, S. Tremblay, and F. Diaz. 2017. Automatic generation of event timelines from social data. In Proceedings of the 2017 ACM on Web Science Conference (WebSci ’17), Troy, NY, June 25–28, 2017. ACM, New York, NY, 207–211. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. O. Alonso, V. Kandylas, and S. Tremblay. 2018. How it happened: Discovering and archiving the evolution of a story using social signals. In Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries (JCDL ’18), Fort Worth, TX, USA, June 03–07, 2018. ACM, New York, NY, 193–202. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. O. Alonso, V. Kandylas, S. Tremblay, and S. Whiting. 2020. Answering recreational web searches with relevant things to do results. Inf. Process. Manag. 57, 2, 102184. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. S. Althammer, S. Hofstätter, M. Sertkan, S. Verberne, and A. Hanbury. 2022a. PARM: A paragraph aggregation retrieval model for dense document-to-document retrieval. In M. Hagen, S. Verberne, C. Macdonald, C. Seifert, K. Balog, K. Nørvåg, and V. Setty (Eds.), Advances in Information Retrieval, Vol. 13185: Lecture Notes in Computer Science. Springer, Cham, 19–34. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. S. Althammer, S. Hofstätter, S. Verberne, and A. Hanbury. 2022b. TripJudge: A relevance judgement test collection for TripClick health retrieval. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (CIKM ’22). ACM, New York, NY, 3801–3805. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. X. Amatriain and J. Basilico. 2015. Recommender systems in industry: A Netflix case study. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (2nd. ed.). Springer, New York, NY, 385–419. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  61. E. Amigó and S. Mizzaro. June. 2020. On the nature of information access evaluation metrics: A unifying framework. Inf. Retr. J. 23, 3, 318–386. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. E. Amigó, J. Gonzalo, J. Artiles, and M. F. Verdejo. August. 2009. A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf. Retr. 12, 4, 461–486. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. E. Amigó, J. Gonzalo, and M. F. Verdejo. 2013. A general evaluation measure for document organization tasks. In G. J. F. Jones, P. Sheridan, D. Kelly, M. de Rijke, and T. Sakai (Eds.), Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 643–652. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. E. Amigó, J. Carrillo de Albornoz, M. Almagro-Cádiz, J. Gonzalo, J. Rodrguez-Vidal, and F. Verdejo. 2017. EvALL: Open access evaluation for information access systems. In N. Kando, T. Sakai, H. Joho, H. Li, A. P. de Vries, and R. W. White (Eds.), Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 1301–1304. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. E. Amigó, D. Spina, and J. Carrillo-de Albornoz. 2018. An axiomatic analysis of diversity evaluation metrics: Introducing the rank-biased utility metric. In K. Collins-Thompson, Q. Mei, B. Davison, Y. Liu, and E. Yilmaz (Eds.), The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 625–634. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. E. Amigó, J. Gonzalo, M. F. Verdejo, and D. Spina. December. 2019. A comparison of filtering evaluation metrics based on formal constraints. Inf. Retr. J. 22, 6, 581–619. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. E. Amigó, J. Gonzalo, S. Mizzaro, and J. Carrillo de Albornoz. 2020. An effectiveness metric for ordinal classification: Formal properties and experimental results. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL ’20). Association for Computational Linguistics, 3938–3949. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  68. E. Amigó, Y. Deldjoo, S. Mizzaro, and A. Bellogín. January. 2023a. A unifying and general account of fairness measurement in recommender systems. Inf. Process. Manag. 60, 1, 103115. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. E. Amigó, J. Gonzalo, and S. Mizzaro. February. 2023b. What is my problem? Identifying formal tasks and metrics in data mining on the basis of measurement theory. IEEE Trans. Knowl. Data Eng. 35, 2, 2147–2157. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  70. W. Ammar, G. Mulcaire, Y. Tsvetkov, G. Lample, C. Dyer, and N. A. Smith. 2016. Massively multilingual word embeddings. arXiv:1602.01925. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  71. A. Anand, L. Cavedon, H. Joho, M. Sanderson, and B. Stein. 2020. Conversational search (Dagstuhl Seminar 19461). Dagstuhl Rep. 9, 11, 34–83. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  72. A. Anand, L. Lyu, M. Idahl, Y. Wang, J. Wallat, and Z. Zhang. 2022. Explainable information retrieval: A survey. arXiv:2211.02405. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  73. A. Anand, P. Sen, S. Saha, M. Verma, and M. Mitra. 2023. Explainable information retrieval. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 3448–3451. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. N. H. Anderson. 1961. Scales and statistics: Parametric and nonparametric. Psychol. Bull. 58, 4, 305–316. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  75. I. Androutsopoulos, J. Koutsias, K. V. Cbandrinos, and C. D. Spyropoulos. 2000. An experimental comparison of naive Bayesian and keyword-based anti-spam filtering with personal e-mail messages. In Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’00). ACM, New York, NY, 160–167. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. V. W. Anelli, A. Bellogín, T. D. Noia, D. Jannach, and C. Pomo. 2022. Top-N recommendation algorithms: A quest for the state-of-the-art. In Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization (UMAP ’22). ACM, New York, NY, 121–131. .Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. M. Angelini, N. Ferro, B. Larsen, H. Müller, G. Santucci, G. Silvello, and T. Tsikrika. 2014. Measuring and analyzing the scholarly impact of experimental evaluation initiatives. In M. Agosti, T. Catarci, and F. Esposito (Eds.), Proceedings of the 10th Italian Research Conference on Digital Libraries (IRCDL ’14). Procedia Computer Science, 38, 133–137. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  78. R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč. September. 2017. Foundations of modern query languages for graph databases. ACM Comput. Surv. 50, 5, 68:1–68:40. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Apple Computer. 2013. OS X Mavericks: What’s New from Mountain Lion. Retrieved from https://help.apple.com/osx-mavericks/whats-new-from-mountain-lion.Google ScholarGoogle Scholar
  80. N. Arabzadeh and C. L. A. Clarke. 2024. A comparison of methods for evaluating generative IR. arXiv:2404.04044. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  81. J. Arguello, L. Cavedon, J. Edlund, M. Hagen, D. Maxwell, M. Potthast, F. Radlinski, M. Sanderson, L. Soulier, B. Stein, J. Teevan, J. Trippas, and H. Zamani. 2020. Defining conversational search. In A. Anand, L. Cavedon, H. Joho, M. Sanderson, and B. Stein (Eds.), Conversational Search (Dagstuhl Seminar 19461). Dagstuhl, 49–55.Google ScholarGoogle Scholar
  82. T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel. 2009a. EvaluatIR: An online tool for evaluating and comparing IR systems. In J. Allan, J. Aslam, M. Sanderson, C. X. Zhai, and J. Zobel (Eds.), Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’09). ACM, New York, NY, 833. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel. 2009b. Improvements that don’t add up: Ad-hoc retrieval results since 1998. In D. W.-L. Cheung, I.-Y. Song, W. W. Chu, X. Hu, and J. J. Lin (Eds.), Proceedings of the 18th Conference on Information and Knowledge Management (CIKM ’09). ACM, New York, NY, 601–610. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. A. Arnold, G. Dupont, C. Kobus, F. Lancelot, and Y.-H. Liu. 2020. Perceived usefulness of conversational agents predicts search performance in aerospace domain. In Proceedings of the 2nd Conference on Conversational User Interfaces (CUI ’20). ACM, New York, NY, 1–3. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. B. Arons. 1993. SpeechSkimmer: Interactively skimming recorded speech. In Proceedings of the 6th Annual ACM symposium on User Interface Software and Technology (UIST ’93). ACM, New York, NY, 187–196. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. M. Artetxe and H. Schwenk. September. 2019. Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond. Trans. Assoc. Comput. Linguist. 7, 597–610. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  87. M. Artetxe, G. Labaka, and E. Agirre. 2018. A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, Association for Computational Linguistics, 789–798. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  88. M. Artetxe, S. Ruder, and D. Yogatama. July. 2020. On the cross-lingual transferability of monolingual representations. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 4623–4637. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  89. K. Aryafar, D. Guillory, and L. Hong. 2017. An ensemble-based approach to click-through rate prediction for promoted listings at Etsy. In Proceedings of the ADKDD ’17 (ADKDD ’17). ACM, New York, NY, 1–6. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. A. Asai, J. Kasai, J. H. Clark, K. Lee, E. Choi, and H. Hajishirzi. 2021. XOR QA: Cross-lingual open-retrieval question answering. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 547–564. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  91. A. Askari and S. Verberne. 2021. Combining lexical and neural retrieval with longformer-based summarization for effective case law retrieval. In Proceedings of the Second International Conference on Design of Experimental Search & Information REtrieval Systems. CEUR, 162–170.Google ScholarGoogle Scholar
  92. A. Askari, M. Aliannejadi, A. Abolghasemi, E. Kanoulas, and S. Verberne. 2023a. CLosER: Conversational legal longformer with expertise-aware passage response ranker for long contexts. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (CIKM ’23). ACM, New York, NY, 25–35. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. A. Askari, S. Verberne, A. Abolghasemi, W. Kraaij, and G. Pasi. 2023b. Retrieval for extremely long queries and documents with RPRS: A highly efficient and effective transformer-based re-ranker. ACM Trans. Inf. Syst. 42, 5, 1–32. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. J. A. Aslam, E. Yilmaz, and V. Pavlu. 2005. The maximum entropy method for analyzing retrieval measures. In R. Baeza-Yates, N. Ziviani, G. Marchionini, A. Moffat, and J. Tait (Eds.), Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’05). ACM, New York, NY, 27–34. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. J. A. Aslam, F. Diaz, M. Ekstrand-Abueg, R. McCreadie, V. Pavlu, and T. Sakai. February. 2016. TREC 2015 temporal summarization track overview. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Fourth Text REtrieval Conference (TREC 2015), Special Publication 500-319. National Institute of Standards and Technology.Google ScholarGoogle Scholar
  96. G. Aslanyan and U. Porwal. 2019. Position bias estimation for unbiased learning-to-rank in ecommerce search. In N. Brisaboa and S. Puglisi (Eds.), String Processing and Information Retrieval (SPIRE ’19), Vol. 11811: Lecture Notes in Computer Science. Springer, Cham, 47–64. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. G. Aslanyan, A. Mandal, P. S. Kumar, A. Jaiswal, and M. R. Kannadasan. 2020. Personalized ranking in ecommerce search. In Companion Proceedings of the Web Conference 2020 (WWW ’20). ACM, New York, NY, 96–97. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Association for Computing Machinery. August. 2020. Artifact Review and Badging. Retrieved from https://www.acm.org/publications/policies/artifact-review-and-badging-current.Google ScholarGoogle Scholar
  99. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. 2007. DBpedia: A nucleus for a web of open data. In Proceedings of the 6th International Semantic Web Conference, Busan, Korea, Vol. 4825: Lecture Notes in Computer Science. Springer, Berlin, 722–735. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. A. Ayanso and R. Yoogalingam. 2009. Profiling retail web site functionalities and conversion rates: A cluster analysis. Int. J. Electron. Commer. 14, 1, 79–114. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. L. Azzopardi and V. Vinay. 2008. Retrievability: An evaluation measure for higher order information access tasks. In Proceedings of the 17th ACM Conference on Information and Knowledge Management (CIKM ’08). ACM, New York, NY, 561–570. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. L. Azzopardi, K. Järvelin, J. Kamps, and M. D. Smucker. January. 2011. Report on the SIGIR 2010 workshop on the simulation of interaction. ACM SIGIR Forum 44, 2, 35–47. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. L. Azzopardi, M. Dubiel, M. Halvey, and J. Dalton. 2018. Conceptualizing agent–human interactions during the conversational search process. In SIGIR 2nd International Workshop on Conversational Approaches to Information Retrieval (CAIR ’18).Google ScholarGoogle Scholar
  104. O. Babko-Malaya. 2008. Annotation of nuggets and relevance in GALE distillation evaluation. In Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC ’08), Marrakech, Morocco. European Language Resources Association. http://lrec-conf.org/proceedings/lrec2008/pdf/909˙paper.pdf.Google ScholarGoogle Scholar
  105. O. Babko-Malaya, D. Hunter, C. Fournelle, and J. White. 2010. Evaluation of document citations in phase 2 GALE distillation. In Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC ’10), Valletta, Malta. European Language Resources Association. http://www.lrec-conf.org/proceedings/lrec2010/pdf/108˙Paper.pdf.Google ScholarGoogle Scholar
  106. C. A. Bachrach and T. Charen. September. 1978. Selection of MEDLINE contents, the development of its thesaurus, and the indexing process. Med. Inform. 3, 3, 237–254. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  107. Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach, L. Katzir, N. Koenigstein, N. Nice, and U. Paquet. 2014. Speeding up the Xbox recommender system using a Euclidean transformation for inner-product spaces. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14). ACM, New York, NY, 257–264. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. R. Baeza-Yates. 2015. Incremental sampling of query logs. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 1093–1096. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. R. Baeza-Yates. 2017. Semantic query understanding. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 1357. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. R. Baeza-Yates. June. 2018a. Bias on the web. Commun. ACM 61, 6, 54–61. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. R. Baeza-Yates. 2018b. Big, small or right data: Which is the proper focus. KD Nuggets. https://www.kdnuggets.com/2018/10/big-small-right-data.html.Google ScholarGoogle Scholar
  112. R. Baeza-Yates. September. 2020a. Bias in search and recommender systems (keynote). In R. L. T. Santos, L. B. Marinho, E. M. Daly, L. Chen, K. Falk, N. Koenigstein, and E. S. de Moura (Eds.), 14th ACM Conference on Recommender Systems, Virtual Event, Brazil (RecSys ’20). ACM, New York, NY, 2. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. R. Baeza-Yates. 2020b. Personalization, bias and privacy. In Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization (UMAP ’20) Adjunct. ACM, New York, NY, 311–312. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. R. Baeza-Yates and C. Castillo. 2006. Relationship between web links and trade. In Proceedings of the 15th International Conference on World Wide Web (WWW ’06 ). ACM, New York, NY, 927–928. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. R. Baeza-Yates and G. Delnevo. December. 2022. Exploration trade-offs in web recommender systems. In 2022 IEEE International Conference on Big Data (Big Data). Osaka, Japan. IEEE, 1–9. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  116. R. Baeza-Yates and Y. Maarek. 2012. Usage data in web search: Benefits and limitations. In A. Ailamaki and S. Bowers (Eds.), Scientific and Statistical Database Management (SSDBM ’12), Vol. 7338: Lecture Notes in Computer Science. Springer, Berlin, 495–506. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  117. R. Baeza-Yates and L. Murgai. December. 2023. Bias and the Web. In Introduction to Digital Humanism. Springer, Cham, 435–462. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  118. R. Baeza-Yates and B. Ribeiro-Neto. 2011. Modern Information Retrieval: The Concepts and Technologies Behind Search (2nd. ed.). Addison Wesley, Cambridge, UK.Google ScholarGoogle Scholar
  119. R. Baeza-Yates and D. Saez-Trumper. 2015. Wisdom of the crowd or wisdom of a few? An analysis of users’ content generation. In Proceedings of the 26th ACM Conference on Hypertext & Social Media (HT ’15). ACM, New York, NY, 69–74. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. R. Baeza-Yates, C. Castillo, and V. López. 2005. Characteristics of the web of Spain. Cybermetrics 9, 1. https://hdl.handle.net/10261/174404.Google ScholarGoogle Scholar
  121. R. Baeza-Yates, A. Gionis, F. P. Junqueira, V. Murdock, V. Plachouras, and F. Silvestri. October. 2008a. Design trade-offs for search engine caching. ACM Trans. Web 2, 4, 1–28. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. R. Baeza-Yates, A. Pereira, and N. Ziviani. 2008b. Genealogical trees on the Web: A search engine user perspective. In Proceedings of the 17th International Conference on World Wide Web (WWW ’08). New York, NY, 367–376. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. R. Baeza-Yates, P. Boldi, and F. Chierichetti. 2015. Essential web pages are easy to find. In Proceedings of the 24th International Conference on World Wide Web (WWW ’15). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 97–107. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. M. Bagdouri, D. W. Oard, and V. Castelli. 2014. CLIR for informal content in Arabic forum posts. In Proceedings of the 23rd ACM International Conference on Information and Knowledge Management (CIKM ’14). ACM, New York, NY, 1811–1814. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  126. Y. Bai, X. Li, G. Wang, C. Zhang, L. Shang, J. Xu, Z. Wang, F. Wang, and Q. Liu. 2020. SparTerm: Learning term-based sparse representation for fast text retrieval. arXiv:2010.00768. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  127. M. Baker. May. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  128. M. Balabanović and Y. Shoham. March. 1997. Fab: Content-based, collaborative recommendation. Commun. ACM 40, 3, 66–72. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. T. Baldwin, P. Cook, M. Lui, A. MacKinlay, and L. Wang. 2013. How noisy social media text, how diffrnt social media sources? In Proceedings of the 6th International Joint Conference on Natural Language Processing, Nagoya, Japan. Asian Federation of Natural Language Processing, 356–364.Google ScholarGoogle Scholar
  130. L. Ballesteros and M. Sanderson. 2003. Addressing the lack of direct translation resources for cross-language retrieval. In Proceedings of the 12th International Conference on Information and Knowledge Management, New Orleans, Louisiana. ACM, New York, NY, 147–152. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. K. Balog. 2021. Conversational AI from an information retrieval perspective: Remaining challenges and a case for user simulation. In Proceedings of the 2nd International Conference on Design of Experimental Search & Information REtrieval Systems (DESIRES ’21). CEUR-WS.org, 80–90.Google ScholarGoogle Scholar
  132. D. Bamber. 1975. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. J. Math. Psychol. 12, 4, 387–415. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  133. R. Bambini, P. Cremonesi, and R. Turrin. 2011. A recommender system for an IPTV service provider: A real large-scale production environment. In Recommender Systems Handbook. Springer, Boston, MA, 299–331. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  134. D. Banks, P. Over, and N.-F. Zhang. May. 1999. Blind men and elephants: Six approaches to TREC data. Inf. Retr. 1, 1–2, 7–34. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. D. Barreau and B. A. Nardi. 1995. Finding and reminding: File organization from the desktop. ACM SIGCHI Bull. 27, 3, 39–43. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. D. K. Barreau. 1995. Context as a factor in personal information management systems. J. Am. Soc. Inf. Sci. 46, 5, 327–339. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  137. C. L. Barry. 1994. User-defined relevance criteria: An exploratory study. J. Am. Soc. Inf. Sci. 45, 3, 149–159. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  138. M. Barthet, G. Fazekas, and M. Sandler. 2013. Music emotion recognition: From content- to context-based models. In From Sounds to Music and Emotions, Vol. 7900: Lecture Notes in Computer Science. Springer, Berlin, 228–252. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  139. Z. Bar-Yossef and N. Kraus. 2011. Context-sensitive query auto-completion. In Proceedings of the 20th International Conference on World wide web. ACM, New York, NY, 107–116. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. J. P. Bascur, S. Verberne, N. J. van Eck, and L. Waltman. 2023. Academic information retrieval using citation clusters: In-depth evaluation based on systematic reviews. Scientometrics 128, 5, 2895–2921. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. M. Bashir, J. Anderton, J. Wu, M. Ekstrand-Abueg, P. B. Golbus, V. Pavlu, and J. A. Aslam. February. 2013. Northeastern University Runs at the TREC12 Crowdsourcing Track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Twenty-First Text REtrieval Conference (TREC 2012). National Institute of Standards and Technology, Gaithersburg, MD. https://trec.nist.gov/pubs/trec21/papers/NEU.crowd.final.pdf.Google ScholarGoogle Scholar
  142. H. Bast and B. Buchhold. 2017. QLever: A query engine for efficient SPARQL+text search. In Proceedings of the 2017 ACM Conference on Information and Knowledge Management (CIKM ’17). ACM, New York, NY, 647–656. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. H. Bast and E. Haussmann. 2013. Open information extraction via contextual sentence decomposition. In Proceedings of the 2013 IEEE Seventh International Conference on Semantic Computing (ICSC ’13). IEEE, 154–159. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. H. Bast and E. Haussmann. 2015. More accurate question answering on Freebase. In Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM ’15). ACM, New York, NY, 1431–1440. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. H. Bast and I. Weber. 2006. Type less, find more: Fast autocompletion search with a succinct index. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 364–371. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann. 2014. Easy access to the freebase dataset. In Proceedings of the 23rd International Conference on World Wide web (Companion Volume) (WWW ’14). ACM, New York, NY, 95–98. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. H. Bast, M. Hertel, and N. Prange. 2022a. ELEVANT: A fully automatic fine-grained entity linking evaluation and analysis tool. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Association for Computational Linguistics, 72–79. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  148. H. Bast, J. Kalmbach, T. Klumpp, F. Kramer, and N. Schnelle. 2022b. Efficient and effective SPARQL autocompletion on very large knowledge graphs. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (CIKM ’22). ACM, New York, NY, 2893–2902. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. H. Bast, J. Kalmbach, T. Klumpp, and C. Korzen. 2024. KG Chapter Supplemental Material. https://qlever.cs.uni-freiburg.de/ir-book.Google ScholarGoogle Scholar
  150. M. T. Bastos, D. Mercea, and A. Charpentier. 2015. Tents, tweets, and events: The interplay between ongoing protests and social media. J. Commun. 65, 2, 320–350. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  151. C. Bauer and E. Zangerle. 2019. Leveraging multi-method evaluation for multi-stakeholder settings. arXiv:2001.04348. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  152. C. Bauer, B. Carterette, N. Ferro, N. Fuhr, J. Beel, T. Breuer, C. L. A. Clarke, A. Crescenzi, G. Demartini, G. M. Di Nunzio, L. Dietz, G. Faggioli, B. Ferwerda, M. Fröbe, M. Hagen, A. Hanbury, C. Hauff, D. Jannach, N. Kando, E. Kanoulas, B. P. Knijnenburg, U. Kruschwitz, M. Li, M. Maistro, L. Michiels, A. Papenmeier, M. Potthast, P. Rosso, A. Said, P. Schaer, C. Seifert, D. Spina, B. Stein, N. Tintarev, J. Urbano, H. Wachsmuth, M. C. Willemsen, and J. Zobel. June. 2023a. Report on the Dagstuhl seminar on frontiers of information access experimentation for research and education. SIGIR Forum 57, 1, 1–28. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. C. Bauer, B. A. Carterette, N. Ferro, N. Fuhr, and G. Faggioli (Eds.). 2023b. Frontiers of Information Access Experimentation for Research and Education (Dagstuhl Seminar 23031). Dagstuhl Rep. 13, 1, 68–154. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Germany. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  154. S. L. Baxter, L. Lander, B. Clay, J. Bell, K. Hansen, A. Walker, and M. Tai-Seale. January. 2022. Comparing the use of DynaMed and UpToDate by physician trainees in clinical decision-making: A randomized crossover trial. Appl. Clin. Inform. 13, 1, 139–147. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  155. J. Beel and S. Langer. 2015. A comparison of offline evaluations, online evaluations, and user studies in the context of research-paper recommender systems. In Research and Advanced Technology for Digital Libraries: Proceedings of the 19th International Conference on Theory and Practice of Digital Libraries (TPDL ’15), Poznañ, Poland, September 14–18, 2015, Vol. 9316: Lecture Notes in Computer Science. Springer, Cham, 153–168. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  156. J. Beel, M. Genzmehr, S. Langer, A. Nürnberger, and B. Gipp. 2013a. A comparative analysis of offline and online evaluations and discussion of research paper recommender system evaluation. In Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation. ACM, New York, NY, 7–14. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. J. Beel, S. Langer, M. Genzmehr, B. Gipp, C. Breitinger, and A. Nürnberger. 2013b. Research paper recommender system evaluation: A quantitative literature survey. In Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation (RepSys ’13). ACM, New York, NY, 15–22. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. J. Beel, B. Gipp, S. Langer, and C. Breitinger. 2016. Paper recommender systems: A literature survey. Int. J. Digit. Libr. 17, 305–338. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. R. Bekkerman. 2004. Automatic Categorization of Email into Folders: Benchmark Experiments on Enron and Sri Corpora. Technical Report 218. Computer Science Department Faculty Publication Series, University of Massachusetts Amherst.Google ScholarGoogle Scholar
  160. N. J. Belkin and W. B. Croft. 1992. Information filtering and information retrieval: Two sides of the same coin? Commun. ACM 35, 12, 29–38. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. N. J. Belkin, H. M. Brooks, and P. J. Daniels. 1987. Knowledge elicitation using discourse analysis. Int. J. Man-Mach. Stud. 27, 2, 127–144. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. N. J. Belkin, C. Cool, A. Stein, and U. Thiel. 1995. Cases, scripts, and information-seeking strategies: On the design of interactive information retrieval systems. Expert Syst. Appl. 9, 3, 379–395. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  163. A. Bell, P. S. Kumar, and D. Miranda. 2018. The title says it all: A title term weighting strategy for ecommerce ranking. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, 2233–2241. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. C. G. Bell. January. 2001. A personal digital store. Commun. ACM 44, 1, 86–91. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. D. E. Bell. 2005. Looking back at the Bell–La Padula model. In Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC ’05). IEEE, 15–351. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. D. E. Bell and L. J. LaPadula. 1973. Secure Computer Systems: Mathematical Foundations. Technical Report. MITRE Corporation.Google ScholarGoogle Scholar
  167. D. E. Bell and L. J. LaPadula. 1976. Secure Computer Systems: Unified Exposition and Multics Interpretation. Technical Report. MITRE Corporation.Google ScholarGoogle Scholar
  168. A. Bellogín and A. Said. 2021. Improving accountability in recommender systems research through reproducibility. User Model. User-Adapt. Interact. 31, 941–977. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  169. A. Bellogín, P. Castells, and I. Cantador. 2011. Precision-oriented evaluation of recommender systems: An algorithmic comparison. In Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys ’11). ACM, New York, NY, 333–336. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  170. A. Bellogín, P. Castells, and I. Cantador. December. 2017. Statistical biases in information retrieval metrics for recommender systems. Inf. Retr. J. 20, 6, 606–634. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  171. I. Beltagy, K. Lo, and A. Cohan. 2019. SciBERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China. Association for Computational Linguistics, 3615–3620. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  172. I. Beltagy, M. E. Peters, and A. Cohan. 2020. Longformer: The long-document transformer. arXiv:2004.05150. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  173. M. Bendersky, W. B. Croft, and Y. Diao. 2011. Quality-biased ranking of web documents. In Proceedings of the Fourth ACM International Conference on Web Search and Data Min (WSDM ’11). ACM, New York, NY, 95–104. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. E. Benetos and S. Dixon. 2013. Multiple-instrument polyphonic music transcription using a temporally constrained shift-invariant model. J. Acoust. Soc. Am. 133, 3, 1727–1741. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  175. E. Benetos and T. Weyde. 2015. An efficient temporally-constrained probabilistic model for multiple-instrument music transcription. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR). International Society for Music Information, 701–707. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  176. E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, and A. P. Klapuri. 2013. Automatic music transcription: Challenges and future directions. J. Intell. Inf. Syst. 41, 3, 407–434. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  177. E. Benetos, S. Dixon, and Z. Duan. 2018. Automatic music transcription: An overview. IEEE Signal Process. Mag. 36, 1, 20–30. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  178. Y. Benjamini and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 1, 289–300. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  179. J. Bennett, C. Elkan, B. Liu, P. Smyth, and D. Tikk. 2007. KDD Cup and workshop 2007. SIGKDD Explor. 9, 2, 51–52. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. K. Berberich, S. J. Bedathur, O. Alonso, and G. Weikum. 2010. A language modeling approach for temporal information needs. In Advances in Information Retrieval, 32nd European Conference on IR Research, ECIR, Vol. 5993: Lecture Notes in Computer Science. Springer, Berlin, 13–25. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  181. E. Berger. 2023. Grounding LLMs.Google ScholarGoogle Scholar
  182. T. Berners-Lee, J. Hendler, and O. Lassila. 2001. The semantic web. A new form of web content that is meaningful to computers will unleash a revolution of new possibilities. Sci. Am. 284, 5, 1–5.Google ScholarGoogle Scholar
  183. E. V. Bernstam, J. R. Herskovic, Y. Aphinyanaphongs, C. F. Aliferis, M. G. Sriram, and W. R. Hersh. 2006. Using citation data to improve retrieval from MEDLINE. J. Am. Med. Inform. Assoc. 13, 1, 96–105. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  184. T. Bertin-Mahieux and D. P. W. Ellis. 2012. Large-scale cover song recognition using the 2D Fourier Transform magnitude. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR ’12). International Society for Music Information Retrieval, 241–246.Google ScholarGoogle Scholar
  185. T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and P. Lamere. 2011. The million song dataset. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR ’11). International Society for Music Information Retrieval, 628–634.Google ScholarGoogle Scholar
  186. E. Bertino, G. Ghinita, and A. Kamra. 2010. Access control for databases: Concepts and systems. Found. Trends Databases 3, 1, 1–148. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. S. Beveridge and D. Knox. 2018. Popular music and the role of vocal melody in perceived emotion. Psychol. Music 46, 3, 411–423. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  188. S. Bhatia, D. Majumdar, and P. Mitra. 2011. Query suggestions in the absence of query logs. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 795–804. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  189. P. Bhattacharya, P. Goyal, and S. Sarkar. 2016a. Query translation for cross-language information retrieval using multilingual word clusters. In Proceedings of the Workshop on South Southeast Asian Natural Language Processing (WSSANLP), Osaka, Japan. The COLING 2016 Organizing Committee, 152–162.Google ScholarGoogle Scholar
  190. P. Bhattacharya, P. Goyal, and S. Sarkar. 2016b. Using word embeddings for query translation for Hindi to English cross language information retrieval. Comput. Sist. 20, 3, 435–447. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  191. G. Bhutada, March. 2021. Visualizing the Most Used Languages on the Internet. Retrieved from https://www.visualcapitalist.com/the-most-used-languages-on-the-internet/.Google ScholarGoogle Scholar
  192. B. Bi, M. Shokouhi, M. Kosinski, and T. Graepel. 2013. Inferring the demographics of search users: Social data meets search queries. In Proceedings of the 22nd International Conference on World Wide Web (WWW ’13). ACM, New York, NY, 131–140. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  193. T. Bi, L. Yao, B. Yang, H. Zhang, W. Luo, and B. Chen. 2020. Constraint translation candidates: A bridge between neural query translation and cross-lingual information retrieval. arXiv:2010.13658. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  194. F. Bianchi, J. Tagliabue, B. Yu, L. Bigon, and C. Greco. 2020. Fantastic embeddings and how to align them: Zero-shot inference in a multi-shop scenario. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  195. F. Bianchi, J. Tagliabue, and B. Yu. 2021. Query2Prod2Vec: Grounded word embeddings for eCommerce. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers. Association for Computational Linguistics, 154–162. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  196. A. J. Biega, R. Saha Roy, and G. Weikum. 2017. Privacy through solidarity: A user-utility-preserving framework to counter profiling. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 675–684. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  197. A. J. Biega, K. P. Gummadi, and G. Weikum. 2018. Equity of attention: Amortizing individual fairness in rankings. In K. Collins-Thompson, Q. Mei, B. Davison, Y. Liu, and E. Yilmaz (Eds.), The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 405–414. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  198. A. J. Biega, F. Diaz, M. D. Ekstrand, and S. Kohlmeier. February. 2020a. Overview of the TREC 2019 fair ranking track. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Eighth Text REtrieval Conference Proceedings (TREC 2019). National Institute of Standards and Technology.Google ScholarGoogle Scholar
  199. A. J. Biega, P. Potash, H. Daumé, F. Diaz, and M. Finck. 2020b. Operationalizing the legal principle of data minimization for personalization. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM. New York, NY, 399–408. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  200. A. J. Biega, F. Diaz, M. D. Ekstrand, S. Feldman, and S. Kohlmeier. February. 2021. Overview of the TREC 2020 fair ranking track. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Ninth Text REtrieval Conference Proceedings (TREC 2020). National Institute of Standards and Technology.Google ScholarGoogle Scholar
  201. J. Biega, I. Mele, and G. Weikum. 2014. Probabilistic prediction of privacy risks in user search histories. In Proceedings of the 1st International Workshop on Privacy and Security of Big Data (PSBD ’14). ACM, New York, NY, 29–36. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  202. D. Billsus and M. J. Pazzani. 1998. Learning collaborative information filters. In Proceedings of the 15th International Conference on Machine Learning (ICML ’98). Morgan Kaufmann Publishers Inc, San Francisco, CA, 46–54.Google ScholarGoogle Scholar
  203. A. Birrell, S. Perl, M. Schroeder, and T. Wobber. 1997. Pachyderm: A Web-Based Application for Email and News. Retrieved from https://birrell.org/andrew/talks/pachyderm.pdf.Google ScholarGoogle Scholar
  204. Y. Bisk, R. Zellers, R. Le Bras, J. Gao, and Y. Choi. 2020. PIQA: Reasoning about physical commonsense in natural language. In P. Stone, F. Rossi, V. Conitzer, and F. Sha (Eds.), Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20), Vol. 34. AAAI Press, Palo Alto, CA, 7432–7439. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  205. R. M. Bittner and J. J. Bosch. 2019. Generalized metrics for single-F0 estimation evaluation. In A. Flexer, G. Peeters, J. Urbano and A. Volk (Eds.), Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands. International Society for Music Information Retrieval, 738–745.Google ScholarGoogle Scholar
  206. R. M. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Cannam, and J. P. Bello. 2014. MedleyDB: A multitrack dataset for annotation-intensive MIR research. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Taipei, Taiwan, International Society for Music Information Retrieval, 155–160.Google ScholarGoogle Scholar
  207. R. M. Bittner, B. McFee, J. Salamon, P. Li, and J. P. Bello. 2017. Deep salience representations for F0 tracking in polyphonic music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Suzhou, China. International Society for Music Information Retrieval, 63–70.Google ScholarGoogle Scholar
  208. R. M. Bittner, B. McFee, and J. P. Bello. 2018. Multitask learning for fundamental frequency estimation in music. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  209. L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. A. Heroux, L. Kaufman, and A. Lumsdaine. 2002. An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw. 28, 2, 135–151. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  210. T. Blake, C. Nosko, and S. Tadelis. 2016. Returns to consumer search: Evidence from eBay. In Proceedings of the 2016 ACM Conference on Economics and Computation (EC ’16). ACM, New York, NY, 531–545. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  211. D. M. Blei, A. Y. Ng, and M. I. Jordan. March. 2003. Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022.Google ScholarGoogle ScholarCross RefCross Ref
  212. S. Bloehdorn, O. Görlitz, S. Schenk, and M. Völkel. 2006. TagFS—Tag semantics for hierarchical file systems. In Proceedings of the 6th International Conference on Knowledge Management.Google ScholarGoogle Scholar
  213. R. Boardman and M. A. Sasse. 2004. “Stuff goes into the computer and doesn’t come out”: A cross-tool study of personal information management. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’04). ACM, New York, NY, 583–590. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  214. S. Böck and M. Schedl. 2011. Enhanced beat tracking with context-aware neural networks. In 14th International Conference on Digital Audio Effects (DAFx), Paris, France, 135–139.Google ScholarGoogle Scholar
  215. S. Böck, F. Krebs, and G. Widmer. 2014. A multi-model approach to beat tracking considering heterogeneous music styles. In 15th International Society for Music Information Retrieval Conference (ISMIR), Taipei, Taiwan. International Society for Music Information Retrieval, 603–608.Google ScholarGoogle Scholar
  216. S. Böck, F. Krebs, and G. Widmer. 2015. Accurate tempo estimation based on recurrent neural networks and resonating comb filters. In International Society for Music Information Retrieval Conference (ISMIR). International Society for Music Information Retrieval, 625–631.Google ScholarGoogle Scholar
  217. S. Böck, F. Krebs, and G. Widmer. 2016. Joint beat and downbeat tracking with recurrent neural networks. In 17th International Society for Music Information Retrieval Conference, New York, NY. International Society for Music Information Retrieval, 255–261.Google ScholarGoogle Scholar
  218. S. Böck, M. E. Davies, and P. Knees. 2019. Multi-task learning of tempo and beat: Learning one to improve the other. In A. Flexer, G. Peeters, J. Urbano, and A. Volk (Eds.), Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR). International Society for Music Information Retrieval, 486–493. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  219. D. Bogdanov, M. Haro, F. Fuhrmann, A. Xambó, E. Gómez, and P. Herrera. 2013. Semantic audio content-based music recommendation and visualization based on user preference examples. Inf. Process. Manag. 49, 1, 13–33. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  220. D. Bogdanov, M. Won, P. Tovstogan, A. Porter, and X. Serra. 2019. The MTG-Jamendo dataset for automatic music tagging. In Machine Learning for Music Discovery Workshop, International Conference on Machine Learning (ICML ’19), Long Beach, CA. https://hdl.handle.net/10230/42015.Google ScholarGoogle Scholar
  221. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. 2008. Freebase: A collaboratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD ’08). ACM, New York, NY, 1247–1250. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  222. P. Bollmann. 1984. Two axioms for evaluation measures in information retrieval. In C. J. van Rijsbergen (Ed.), Proceedings of the Third Joint BCS and ACM Symposium on Research and Development in Information Retrieval. Cambridge University Press, 233–245.Google ScholarGoogle ScholarDigital LibraryDigital Library
  223. P. Bollmann and V. S. Cherniavsky. 1980. Measurement-theoretical investigation of the MZ-metric. In C. J. van Rijsbergen (Ed.), Proceedings of the 3rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’80). Butterworth & Co., UK, 256–267.Google ScholarGoogle Scholar
  224. P. Bollmann and V. S. Cherniavsky. 1981. Restricted evaluation in information retrieval. In C. J. Crouch, W. S. Cooper, and J. Herr (Eds.), Proceedings of the 4th Annual International ACM SIGIR Conference on Information Storage and Retrieval: Theoretical Issues in Information Retrieval (SIGIR ’81). ACM, New York, NY, 15–21. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  225. H. Bonab, S. M. Sarwar, and J. Allan. 2020. Training effective neural CLIR by bridging the translation gap. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20), Xi’an, China. ACM, New York, NY, 9–18. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  226. A. Bondarenko, M. Fröbe, J. Kiesel, F. Schlatt, V. Barriere, B. Ravenet, L. Hemamou, S. Luck, J. H. Reimer, B. Stein, M. Potthast, and M. Hagen. 2023. Overview of Touché 2023: Argument and causal retrieval. In A. Arampatzis, E. Kanoulas, T. Tsikrika, S. Vrochidis, A. Giachanou, D. Li, A. Aliannejadi, M. Vlachos, G. Faggioli, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the Fourteenth International Conference of the CLEF Association (CLEF ’23), Vol. 14163: Lecture Notes in Computer Science. Springer, Heidelberg, 507–530. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  227. C. E. Bonferroni. 1936. Teoria Statistica Delle Classi e Calcolo Delle Probabilità. Number 8 in Pubblicazioni del R. Istituto Superiore di Scienze Economiche e Commerciali di Firenze. Libreria internazionale Seeber, Firenze, Italia.Google ScholarGoogle Scholar
  228. L. H. Bonifacio, I. Campiotti, V. Jeronymo, R. Lotufo, and R. Nogueira. 2021. mMARCO: A multilingual version of the MS MARCO passage ranking dataset. arXiv:2108.13897. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  229. P. Borlund. August. 2003. The concept of relevance in IR. J. Am. Soc. Inf. Sci. Technol. 54, 10, 913–925. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  230. P. Borlund. 2013. Interactive information retrieval: An introduction. J. Inf. Sci. Theory Pract. 1, 3, 12–32. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  231. L. Borodistky. 2017. How language shapes the way we think. https://www.youtube.com/watch?v=RKK7wGAYP6k.Google ScholarGoogle Scholar
  232. L. Boroditsky and A. Gaby. 2010. Remembrances of times east: Absolute spatial representations of time in an Australian Aboriginal community. Psychol. Sci. 21, 11, 1635–1639. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  233. L. Boroditsky, L. A. Schmidt, and W. Phillips. 2003. Sex, syntax, and semantics. In D. Gentner and S. Goldin-Meadow (Eds.), Language in Mind: Advances in the Study of Language and Thought, Vol. 22. MIT Press, 61–79. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  234. C. Bösch, P. Hartel, W. Jonker, and A. Peter. 2015. A survey of provably secure searchable encryption. ACM Comput. Surv. 47, 2, 1–51. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  235. J. J. Bosch and E. Gómez. January. 2014. Melody extraction in symphonic classical music: A comparative study of mutual agreement between humans and algorithms. In Proceedings of the 9th Conference on Interdisciplinary Musicology—CIM14. (December 4, 2014), Berlin.Google ScholarGoogle Scholar
  236. J. J. Bosch, R. Marxer, and E. Gómez. 2016. Evaluation and combination of pitch estimation methods for melody extraction in symphonic classical music. J. New Music Res. 45, 2, 101–117. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  237. E. Boschee, J. Barry, J. Billa, M. Freedman, T. Gowda, C. Lignos, C. Palen-Michel, M. Pust, B. K. Khonglah, S. Madikeri, J. May, and S. Miller. July. 2019. SARAL: A low-resource cross-lingual domain-focused information retrieval system for effective rapid document triage. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Florence, Italy. Association for Computational Linguistics, 19–24. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  238. A. Boteanu, A. Kiezun, and S. Artzi. 2019. Synonym expansion for large shopping taxonomies. In Automated Knowledge Base Construction. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  239. K. K. Bowden, J. Wu, W. Cui, J. Juraska, V. Harrison, B. Schwarzmann, N. Santer, S. Whittaker, and M. Walker. 2019. Entertaining and opinionated but too controlling: A large-scale user study of an open domain Alexa prize system. In Proceedings of the 1st International Conference on Conversational User Interfaces (CUI ’19). ACM, New York, NY, 1–10. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  240. M. Bowman, C. Dharap, M. Baruah, B. Camargo, and S. Potti. 1994. A file system for information management. In Proceedings of the ISMM International Conference on Intelligent Information Management Systems. ISMM/Acta Press, 66–71.Google ScholarGoogle Scholar
  241. G. Bradley-Ridout, E. Nekolaichuk, T. Jamieson, C. Jones, N. Morson, R. Chuang, and E. Springall. July. 2021. UpToDate versus DynaMed: A cross-sectional study comparing the speed and accuracy of two point-of-care information tools. J. Med. Libr. Assoc. 109, 3, 382–387. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  242. A. Brandsen, K. Lambers, S. Verberne, and M. Wansleeben. 2019. User requirement solicitation for an information retrieval system applied to Dutch grey literature in the archaeology domain. J. Comput. Appl. Archaeol. 2, 1, 21–30. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  243. A. Brandsen, S. Verberne, K. Lambers, and M. Wansleeben. 2021a. Usability evaluation for online professional search in the Dutch archaeology domain. arXiv:2103.04437. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  244. A. Brandsen, S. Verberne, K. Lambers, and M. Wansleeben. November. 2021b. Can BERT dig it? Named entity recognition for information retrieval in the archaeology domain. J. Comput. Cult. Herit. 15, 3, 1–18. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  245. M. Braschler. 2001. CLEF 2000—Overview of Results. In C. Peters (Ed.), Cross-Language Information Retrieval and Evaluation (CLEF ’00), Vol. 2069: Lecture Notes in Computer Science. Springer, Berlin, 89–101. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  246. M. Braschler. 2002. CLEF 2001—Overview of results. In C. Peters, M. Braschler, J. Gonzalo, and M. Kluck (Eds.), Evaluation of Cross-Language Information Retrieval Systems (CLEF ’01), Vol. 2406: Lecture Notes in Computer Science. Springer, Berlin, 9–26. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  247. M. Braschler. 2003. CLEF 2002—Overview of results. In C. Peters, M. Braschler, J. Gonzalo, and M. Kluck (Eds.), Advances in Cross-Language Information Retrieval (CLEF ’02), Vol. 2785: Lecture Notes in Computer Science. Springer, Berlin, 9–27. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  248. M. Braschler. 2004a. CLEF 2003—Overview of results. In C. Peters, M. Braschler, J. Gonzalo, and M. Kluck (Eds.), Comparative Evaluation of Multilingual Information Access Systems: Fourth Workshop of the Cross-Language Evaluation Forum (CLEF ’03) Revised Selected Papers, Vol. 3237: Lecture Notes in Computer Science. Springer, Berlin, 44–63. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  249. M. Braschler. January. 2004b. Combination approaches for multilingual text retrieval. Inf. Retr. 7, 183–204. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  250. M. Braschler, G. M. Di Nunzio, N. Ferro, and C. Peters. 2005. CLEF 2004: Ad hoc track overview and results analysis. In C. Peters, P. Clough, J. Gonzalo, G. J. F. Jones, M. Kluck, and B. Magnini (Eds.), Multilingual Information Access for Text, Speech and Images: Fifth Workshop of the Cross-Language Evaluation Forum (CLEF ’04) Revised Selected Papers, Vol. 3491: Lecture Notes in Computer Science. Springer, Berlin, 10–26. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  251. P. Braslavski, D. Savenkov, E. Agichtein, and A. Dubatovka. 2017. What do you mean exactly? Analyzing clarification questions in CQA. In Proceedings of the 2017 Conference on Human Information Interaction and Retrieval (CHIIR ’17). ACM, New York, NY, 345–348. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  252. J. S. Breese, D. Heckerman, and C. Kadie. 1998. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI ’98). Morgan Kaufmann Publishers, San Francisco, CA, 43–52.Google ScholarGoogle Scholar
  253. T. Breuer, N. Ferro, N. Fuhr, M. Maistro, T. Sakai, P. Schaer, and I. Soboroff. 2020. How to measure the reproducibility of system-oriented IR experiments. In Y. Chang, X. Cheng, J. Huang, Y. Lu, J. Kamps, V. Murdock, J.-R. Wen, A. Diriye, J. Guo, and O. Kurland (Eds.), Proceedings of the 43rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 349–358. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  254. T. Breuer, N. Ferro, M. Maistro, and P. Schaer. 2021. repro˙eval: A Python interface to reproducibility measures of system-oriented IR experiments. In D. Hiemstra, M. F. Moens, J. Mothe, R. Perego, M. Potthast, and F. Sebastiani (Eds.), Advances in Information Retrieval (ECIR ’21), Vol. 12657: Lecture Notes in Computer Science. Springer, Cham. 481–486. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  255. T. Breuer, J. Keller, and P. Schaer. 2022. ir˙metadata: An extensible metadata schema for IR experiments. In E. Amigó, P. Castells, J. Gonzalo, B. Carterette, J. Shane Culpepper, and G. Kazai (Eds.), Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 3078–3089. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  256. S. Brin and L. Page. 1998. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 1–7, 107–117. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  257. A. Broder. 2002. A taxonomy of web search. SIGIR Forum 36, 2, 3–10. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  258. A. Z. Broder, N. Eiron, M. Fontoura, M. Herscovici, R. Lempel, J. McPherson, R. Qi, and E. Shekita. 2006. Indexing shared content in information retrieval systems. In Proceedings of the 10th International Conference on Extending Database Technology, Vol. 3896: Lecture Notes in Computer Science. Springer, Berlin, 313–330. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  259. J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. 1993. Signature verification using a “Siamese” time delay neural network. In J. D. Cowan, G. Tesauro, and J. Alspector (Eds.), Advances in Neural Information Processing Systems 6th NIPS Conference, Denver, CO. Morgan-Kaufmann, San Francisco, CA, 737–744.Google ScholarGoogle Scholar
  260. C. Brooke. October. 2012. The Language of Web Content: Creating Global Websites. Retrieved from https://www.business2community.com/online-marketing/the-language-of-web-content-creating-global-websites-0302285.Google ScholarGoogle Scholar
  261. L. D. Brown, T. T. Cai, and A. DasGupta. 2001. Interval estimation for a binomial proportion. Statist. Sci. 16, 2, 101–133. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  262. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. July. 2020. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Advances in Neural Information Processing Systems, Vol. 33. Curran Associates, Red Hook, NY, 1877–1901.Google ScholarGoogle Scholar
  263. M. Buckland and F. Gey. January. 1994. The relationship between Recall and Precision. J. Am. Soc. Inf. Sci. Technol. 45, 1, 12–19. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  264. C. Buckley. 2005. The SMART project at TREC. In E. M. Voorhees and D. K. Harman (Eds.), TREC: Experiment and Evaluation in Information Retrieval. MIT Press, 301–320.Google ScholarGoogle Scholar
  265. C. Buckley and E. M. Voorhees. 2000. Evaluating evaluation measure stability. In E. Yannakoudakis, N. J. Belkin, M.-K. Leong, and P. Ingwersen (Eds.), Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’00). ACM, New York, NY, 33–40. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  266. C. Buckley and E. M. Voorhees. July. 2004. Retrieval evaluation with incomplete information. In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’04). ACM, New York, NY, 25–32. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  267. C. Buckley and E. M. Voorhees. 2005. Retrieval system evaluation. In E. M. Voorhees and D. K. Harman (Eds.), TREC: Experiment and Evaluation in Information Retrieval. MIT Press, 53–78.Google ScholarGoogle Scholar
  268. C. Buckley, M. Mitra, J. Walz, and C. Cardie. 2000. Using clustering and SuperConcepts within SMART: TREC 6. Inf. Process. Manag. 36, 1, 109–131. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  269. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. 2005. Learning to rank using gradient descent. In S. Dzeroski, L. De Raedt, and S. Wrobel (Eds.), Proceedings of the 22nd International Conference on Machine Learning (ICML ’05). ACM, New York, NY, 89–96. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  270. C. J. C. Burges. 2010. From RankNet to LambdaRank to LambdaMART: An Overview. Microsoft Research Technical Report.Google ScholarGoogle Scholar
  271. C. J. C. Burges, K. M. Svore, P. N. Bennett, A. Pastusiak, and Q. Wu. 2010. Learning to rank using an ensemble of lambda-gradient models. In Proceedings of the 2010 International Conference on Yahoo! Learning to Rank Challenge (YLRC ’10), Vol. 14. JMLR.org, 25–35.Google ScholarGoogle Scholar
  272. R. Burke. 2002. Hybrid recommender systems: Survey and experiments. User Model. User-Adapt. Interact. 12, 331–370. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  273. V. Bush. July. 1945. As we may think. Atlantic Monthly 176, 101–108.Google ScholarGoogle Scholar
  274. L. Busin and S. Mizzaro. 2013. Axiometrics: An axiomatic approach to information retrieval effectiveness metrics. In O. Kurland, D. Metzler, C. Lioma, B. Larsen, and P. Ingwersen (Eds.), Proceedings of the 4th International Conference on the Theory of Information Retrieval (ICTIR ’13). ACM, New York, NY, 22–29. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  275. S. Büttcher and C. L. A. Clarke. 2005. A security model for full-text file system search in multi-user environments. In Proceedings of the 4th USENIX Conference on File and Storage Technologies (FAST ’05). USENIX Association, San Francisco, CA, 13.Google ScholarGoogle Scholar
  276. S. Büttcher, C. Clarke, and G. V. Cormack. 2010. Information Retrieval: Implementing and Evaluating Search Engines. MIT Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  277. W. Cai and L. Chen. 2019. Towards a taxonomy of user feedback intents for conversational recommendations. In Proceedings of ACM RecSys 2019 Late-breaking Results co-located with the 13th ACM Conference on Recommender Systems. ACM, New York, NY, 572–573.Google ScholarGoogle Scholar
  278. F. Cai and M. de Rijke. 2016a. A Survey of Query Auto Completion in Information Retrieval. Now Publishers, Hanover, MA.Google ScholarGoogle Scholar
  279. F. Cai and M. de Rijke. July. 2016b. Learning from homologous queries and semantically related terms for query auto completion. Inf. Process. Manag. 52, 4, 628–643. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  280. F. Cai, S. Liang, and M. de Rijke. 2014. Time-sensitive personalized query auto-completion. In Proceedings of the 23rd ACM International Conference on Information and Knowledge Management (CIKM ’14). ACM, New York, NY, 1599–1608. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  281. J. Callan and A. Moffat. December. 2012. Panel on use of proprietary data. SIGIR Forum 46, 2, 10–18. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  282. J. P. Callan, Z. Lu, and W. B. Croft. 1995. Searching distributed collections with inference networks. In E. A. Fox, P. Ingwersen, and R. Fidel (Eds.), Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’95). ACM, New York, NY, 21–28. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  283. A. Camacho and J. G. Harris. 2008. A sawtooth waveform inspired pitch estimator for speech and music. J. Acoust. Soc. Am. 124, 3, 1638–1652. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  284. B. B. Cambazoglu and R. A. Baeza-Yates. 2015. Scalability Challenges in Web Search Engines. Morgan & Claypool Publishers.Google ScholarGoogle Scholar
  285. N. R. Campbell. 1920. Physics: The Elements. Cambridge University Press, UK.Google ScholarGoogle Scholar
  286. N. R. Campbell. 1928. An Account of the Principles of Measurement and Calculation. Longmans, Green, London, UK.Google ScholarGoogle Scholar
  287. P. G. Campos, F. Dez, and I. Cantador. 2014a. Time-aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols. User Model. User-Adapt. Interact. 24, 1, 67–119. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  288. R. Campos, G. Dias, A. M. Jorge, and A. Jatowt. 2014b. Survey of temporal information retrieval and related applications. ACM Comput. Surv. 47, 2, 15:1–15:41. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  289. R. Cañamares and P. Castells. 2017. A probabilistic reformulation of memory-based collaborative filtering: Implications on popularity biases. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 215–224. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  290. R. Cañamares and P. Castells. 2018. Should I follow the crowd? A probabilistic analysis of the effectiveness of popularity in recommender systems. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 415–424. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  291. R. Cañamares and P. Castells. 2020. On target item sampling in offline recommender system evaluation. In 14th ACM Conference on Recommender Systems (RecSys ’20). ACM, New York, NY, 259–268. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  292. R. Cañamares, P. Castells, and A. Moffat. 2020. Offline evaluation options for recommender systems. Inf. Retr. J. 23, 4, 387–411. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  293. P. Cano, E. Gómez, F. Gouyon, P. Herrera, M. Koppenberger, B. Ong, X. Serra, S. Streich, and N. Wack. 2006. ISMIR 2004 audio description contest. In ISMIR 2004.Google ScholarGoogle Scholar
  294. Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. 2006. Adapting ranking SVM to document retrieval. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’06). ACM, New York, NY, 186–193. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  295. L. Cappellato, N. Ferro, L. Goeuriot, and T. Mandl (Eds.). 2017. CLEF 2017 Working Notes. CEUR Workshop Proceedings, ISSN 1613-0073. CEUR-WS.org. https://ceur-ws.org/Vol-1866/.Google ScholarGoogle Scholar
  296. L. Cappellato, N. Ferro, J. Nie, and L. Soulier (Eds.). 2018. Working Notes of CLEF 2018—Conference and Labs of the Evaluation Forum, Avignon, France, September 10–14, 2018. Vol. 2125 of CEUR Workshop Proceedings. CEUR-WS.org.Google ScholarGoogle Scholar
  297. D. Carmel and E. Yom-Tov. 2010. Estimating the Query Difficulty for Information Retrieval. Morgan & Claypool Publishers.Google ScholarGoogle Scholar
  298. D. Carmel, G. Halawi, L. Lewin-Eytan, Y. Maarek, and A. Raviv. 2015. Rank by time or by relevance? Revisiting email search. In Proceedings of the 24th ACM International Conference on Information and Knowledge Management. ACM, New York, NY, 283–292. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  299. D. Carmel, E. Haramaty, A. Lazerson, and L. Lewin-Eytan. 2020a. Multi-objective ranking optimization for product search using stochastic label aggregation. In Proceedings of the Web Conference (WWW ’20). ACM, New York, NY, 373–383. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  300. D. Carmel, E. Haramaty, A. Lazerson, L. Lewin-Eytan, and Y. Maarek. 2020b. Why do people buy seemingly irrelevant items in voice product search? On the relation between product relevance and customer satisfaction in ecommerce. In Proceedings of the 13th International Conference on Web Search and Data Mining (WSDM ’20). ACM, New York, NY, 79–87. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  301. C. Carpineto, S. Osinski, G. Romano, and D. Weiss. 2009. A survey of web clustering engines. ACM Comput. Surv. 41, 3, 1–38. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  302. B. A. Carterette. 2011. System effectiveness, user models, and user utility: A conceptual framework for investigation. In W. Y. Ma, J. Y. Nie, R. Baeza-Yates, T.-S. Chua, and W. B. Croft (Eds.), Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 903–912. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  303. B. A. Carterette. 2012. Multiple testing in statistical analysis of systems-based information retrieval experiments. ACM Trans. Inf. Syst. 30, 1, 4:1–4:34. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  304. Carylsue. 2016. New Guinea natives navigate by valleys and mountains. National Geographic.Google ScholarGoogle Scholar
  305. M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney. 2008. Content-based music information retrieval: Current directions and future challenges. Proc. IEEE 96, 4, 668–696. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  306. S. Castagnos, A. Brun, and A. Boyer. 2013. When diversity is needed... but not expected! In Proceedings of the 3rd International Conference on Advances in Information Mining and Management (IMMM ’13), Lisbon, Portugal. IARIA Press, 44–50.Google ScholarGoogle Scholar
  307. P. Castells and A. Moffat. 2022. Offline recommender system evaluation: Challenges and new directions. AI Mag. 43, 2, 225–238. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  308. P. Castells, N. Hurley, and S. Vargas. 2021. Novelty and diversity in recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook. Springer, New York, NY, 603–646. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  309. C. Castillo, A. Gionis, R. Lempel, and Y. Maarek. 2010. When no clicks are good news. In SIGIR 2010 Industry Track.Google ScholarGoogle Scholar
  310. L. Cavedon, B. Fröhlich, H. Joho, R. Song, J. Teevan, J. Trippas, and E. Yilmaz. 2020. Scenarios that invite conversational search. In A. Anand, L. Cavedon, H. Joho, M. Sanderson, and B. Stein (Eds.), Conversational Search (Dagstuhl Seminar 19461). Dagstuhl, 66–69.Google ScholarGoogle Scholar
  311. C. G. Čech and S. L. Condon. 1998. Message size constraints on discourse planning in synchronous computer-mediated communication. Behav. Res. Meth. Instrum. Comput. 30, 2, 255–263. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  312. I. Celik, I. Torre, F. Koceva, C. Bauer, E. Zangerle, and B. Knijnenburg. 2018. UMAP 2018 intelligent user-adapted interfaces: Design and multi-modal evaluation (IUadaptMe) workshop chairs’ welcome & organization. In Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization (UMAP ’18). ACM, New York, NY, 137–139. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  313. L. E. Celis, D. Straszak, and N. K. Vishnoi. 2018. Ranking with fairness constraints. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), Vol. 107: Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 28:1–28:15. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  314. L. E. Celis, A. Mehrotra, and N. K. Vishnoi. 2020. Interventions for ranking in the presence of implicit bias. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* ’20). ACM, New York, NY, 369–380. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  315. Ò. Celma and P. Herrera. 2008. A new approach to evaluating novel recommendations. In Proceedings of the 2nd ACM Conference on Recommender Systems (RecSys ’08). ACM, New York, NY, 179–186. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  316. Ò. Celma, P. Herrera, and X. Serra. 2005. Bridging the music semantic gap. In Proceedings of the Workshop on Mastering the Gap, From Information Extraction to Semantic Representation, held in conjunction with the European Semantic Web Conference. CEUR-WS.org.Google ScholarGoogle Scholar
  317. A. T. Cemgil, B. Kappen, P. Desain, and H. Honing. 2000. On tempo tracking: Tempogram representation and Kalman filtering. J. New Music Res. 29, 4, 259–273. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  318. Y. Cen, J. Zhang, X. Zou, C. Zhou, H. Yang, and J. Tang. 2020. Controllable multi-interest framework for recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20). ACM, New York, NY, 2942–2951. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  319. I. Chalkidis, M. Fergadiotis, P. Malakasiotis, N. Aletras, and I. Androutsopoulos. 2020. LEGAL-BERT: The Muppets straight out of law school. In Findings of the Association for Computational Linguistics: EMNLP 2020. Association for Computational Linguistics, 2898–2904. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  320. S. R. Chamberlin, S. D. Bedrick, A. M. Cohen, Y. Wang, A. Wen, S. Liu, H. Liu, and W. R. Hersh. October. 2020. Evaluation of patient-level retrieval from electronic health record data for a cohort discovery task. JAMIA Open 3, 3, 395–404. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  321. T.-S. Chan, T.-C. Yeh, Z.-C. Fan, H.-W. Chen, L. Su, Y.-H. Yang, and R. Jang. 2015. Vocal activity informed singing voice separation with the iKala dataset. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 718–722. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  322. A. J. B. Chaney, B. M. Stewart, and B. E. Engelhardt. 2018. How algorithmic confounding in recommendation systems increases homogeneity and decreases utility. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY, 224–232. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  323. A. X. Chang and C. D. Manning. 2012. SUTime: A library for recognizing and normalizing time expressions. In N. Calzolari, K. Choukri, T. Declerck, M. U. Dogan, B. Maegaard, J. Mariani, J. Odijk, and S. Piperidis (Eds.), Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC ’12), Istanbul, Turkey, May 23–25, 2012. European Language Resources Association, 3735–3740.Google ScholarGoogle Scholar
  324. W.-C. Chang, D. Jiang, H.-F. Yu, C. H. Teo, J. Zhong, K. Zhong, K. Kolluri, Q. Hu, N. Shandilya, V. Ievgrafov, J. Singh, and I. S. Dhillon. 2021. Extreme multi-label learning for semantic matching in product search. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD ’21). ACM, New York, NY, 2643–2651. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  325. Y. Chang and H. Deng (Eds.). 2020. Query Understanding for Search Engines. Springer. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  326. O. Chapelle and Y. Zhang. 2009. A dynamic Bayesian network click model for web search ranking. In Proceedings of the 18th International Conference on World Wide Web (WWW ’09). ACM, New York, NY, 1–10. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  327. O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. 2009. Expected reciprocal rank for graded relevance. In Proceedings of the 18th ACM Conference on Information and Knowledge Management. ACM, New York, NY, 621–630. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  328. O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. 2012. Large-scale validation and analysis of interleaved search evaluation. ACM Trans. Inf. Syst. 30, 1, 1–41. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  329. A. Chebotko, S. Lu, and F. Fotouhi. 2009. Semantics preserving SPARQL-to-SQL translation. Data Knowl. Eng. 68, 10, 973–1000. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  330. A. Chen and D. O. Chen. 2023. Accuracy of chatbots in citing journal articles. JAMA Netw. Open 6, 8, e2327647. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  331. J. Chen, H. Guo, W. Wu, and W. Wang. 2009a. iMecho: An associative memory based desktop search system. In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM ’09). ACM, New York, NY, 731–740. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  332. J. Chen, H. Guo, W. Wu, and C. Xie. 2009b. Search your memory!—An associative memory based desktop search system. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data (SIGMOD ’09). ACM, New York, NY, 1099–1102. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  333. J. Chen, H. Dong, Y. Qiu, X. He, X. Xin, L. Chen, G. Lin, and K. Yang. 2021a. AutoDebias: Learning to debias for recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 21–30. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  334. J. Chen, H. Lin, X. Han, and L. Sun. 2024. Benchmarking large language models in Retrieval-Augmented Generation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, 17754–17762. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  335. L. Chen, G. Chen, and F. Wang. 2015. Recommender systems based on user reviews: The state of the art. User Model. User-Adapt. Interact. 25, 99–154. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  336. L. Chen, Y. Yang, N. Wang, K. Yang, and Q. Yuan. 2019. How serendipity improves user satisfaction with recommendations? A large-scale user evaluation. In Proceedings of the World Wide Web Conference (WWW ’19). ACM, New York, NY, 240–250. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  337. M. Chen, J. Tworek, H. Jun, Q. Yuan, H. Pondé de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. Petroski Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. Hebgen Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba. July. 2021b. Evaluating large language models trained on code. arXiv:2107.03374. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  338. N. Chen, R. E. Banchs, M. Zhang, X. Duan, and H. Li. July. 2018a. Report of NEWS 2018 named entity transliteration shared task. In Proceedings of the Seventh Named Entities Workshop, Melbourne, Australia. Association for Computational Linguistics, 55–73. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  339. N. Chen, W. Li, and H. Xiao. 2018b. Fusing similarity functions for cover song identification. Multimed. Tools Appl. 77, 2, 2629–2652. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  340. S. J. Chen, Z. Qin, Z. Wilson, B. Calaci, M. Rose, R. Evans, S. Abraham, D. Metzler, S. Tata, and M. Colagrosso. 2020a. Improving recommendation quality in Google Drive. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20). ACM, New York, NY, 2900–2908. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  341. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. 2020b. A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning. JMLR.org, 1597–1607.Google ScholarGoogle Scholar
  342. W. Chen, F. Cai, H. Chen, and M. de Rijke. 2017a. Personalized query suggestion diversification. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 817–820. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  343. W. Chen, F. Cai, H. Chen, and M. de Rijke. 2018c. Attention-based hierarchical neural query suggestion. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 1093–1096. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  344. X. Chen and C. Cardie. 2018. Unsupervised multilingual word embeddings. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 261–270. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  345. Y. Chen and G. J. F. Jones. 2010. Augmenting human memory using personal lifelogs. In Proceedings of the 1st Augmented Human International Conference (AH ’10). ACM, New York, NY, 1–9. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  346. Y.-A. Chen, J.-C. Wang, Y.-H. Yang, and H. Chen. 2014. Linear regression-based adaptation of music emotion recognition models for personalization. In Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP). IEEE, 2149–2153. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  347. Y.-A. Chen, J.-C. Wang, Y.-H. Yang, and H. H. Chen. 2017b. Component tying for mixture model adaptation in personalization of music emotion recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 25, 7, 1409–1420. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  348. S. Chernov, P. Serdyukov, P.-A. Chirita, G. Demartini, and W. Nejdl. 2007. Building a desktop search test-bed. In Proceedings of the 29th European Conference on IR Research, Vol. 4425: Lecture Notes in Computer Science. Springer, Berlin, 686–690. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  349. S. Chernov, G. Demartini, E. Herder, M. Kopycki, and W. Nejdl. 2008. Evaluating personal information management using an activity logs enriched desktop dataset. In Personal Information Management Workshop at CHI 2008.Google ScholarGoogle Scholar
  350. E. Chew. 2000. Towards a Mathematical Model of Tonality. Ph.D. thesis. Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  351. P. J. Chia, G. Attanasio, F. Bianchi, S. Terragni, A. R. Magalhães, D. Goncalves, C. Greco, and J. Tagliabue. 2022. FashionCLIP: Connecting language and images for product representations. https://arxiv.org/abs/2204.03972. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  352. W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica, and E. P. Xing. March. 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90% ChatGPT Quality. Retrieved from https://lmsys.org/blog/2023-03-30-vicuna/.Google ScholarGoogle Scholar
  353. I. Chios and S. Verberne. 2020. Helping results assessment by adding explainable elements to the deep relevance matching model. In The 3rd International Workshop on ExplainAble Recommendation and Search (EARS ’20). DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  354. P.-A. Chirita, S. Costache, W. Nejdl, and R. Paiu. 2006. Beagle++: Semantically enhanced searching and ranking on the desktop. In Proceedings of the 3rd European Semantic Web Conference, Vol. 4011: Lecture Notes in Computer Science. Springer, 348–362. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  355. E. Choi, H. He, M. Iyyer, M. Yatskar, W.-t. Yih, Y. Choi, P. Liang, and L. Zettlemoyer. 2018. QuAC: Question answering in context. In E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii (Eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP ’18). Association for Computational Linguistics, 2924–2936. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  356. A. Chouldechova. 2017. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big Data 5, 2, 153–163. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  357. G. G. Chowdhury. 2010. Introduction to Modern Information Retrieval. Facet Publishing.Google ScholarGoogle ScholarDigital LibraryDigital Library
  358. S. Chowdhury, A. Vall, V. Haunschmid, and G. Widmer. 2019. Towards explainable music emotion recognition: The route via mid-level features. In A. Flexer, G. Peeters, J. Urbano, and A. Volk (Eds.), Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR). International Society for Music Information Retrieval, 237–243.Google ScholarGoogle Scholar
  359. P. Christmann, R. Saha Roy, A. Abujabal, J. Singh, and G. Weikum. 2019. Look before you hop: Conversational question answering over knowledge graphs using judicious context expansion. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM) (CIKM ’19). ACM, New York, NY, 729–738. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  360. Z. Chu, T. Sakai, Q. Ai, and Y. Liu. 2023. Chuweb21D: A deduped English document collection for web search tasks. In Y. Liu, A. Moffat, Q. Ai, X. Huang, T. Sakai, and J. Zobel (Eds.), Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific (SIGIR-AP ’23). ACM, New York, NY, 63–72. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  361. A. Chuklin, P. Serdyukov, and M. de Rijke. 2013. Click model-based information retrieval metrics. In G. J. F. Jones, P. Sheridan, D. Kelly, M. de Rijke, and T. Sakai (Eds.), Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 493–502. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  362. A. Chuklin, I. Markov, and M. de Rijke. July. 2015. Click Models for Web Search. Morgan & Claypool Publishers.Google ScholarGoogle Scholar
  363. A. Chuklin, A. Severyn, J. Trippas, E. Alfonseca, H. Silen, and D. Spina. 2019. Using audio transformations to improve comprehension in voice question answering. In F. Crestani, M. Braschler, J. Savoy, A. Rauber, H. Müller, D. E. Losada, G. H. Bürki, L. Cappellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF ’19), Vol. 11696: Lecture Notes in Computer Science. Springer, Cham, 164–170. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  364. J. S. Chun and R. P. Larrick. 2022. The power of rank information. J. Pers. Soc. Psychol. 122, 6, 983–1003. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  365. G. L. Ciampaglia, A. Nematzadeh, F. Menczer, and A. Flammini. 2018. How algorithmic popularity bias hinders or promotes quality. Sci. Rep. 8, 15951. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  366. C. Cieri, D. Graff, M. Liberman, N. Martey, and S. Strassel. August. 2000. The TDT-2 text and speech corpus. In Proceedings of DARPA Broadcast News Workshop. Defense Advanced Research Projects Agency, 57–60.Google ScholarGoogle Scholar
  367. J. J. Cimino. June. 1996. Linking patient information systems to bibliographic resources. Methods Inf. Med. 35, 2, 122–126. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  368. J. J. Cimino. 2006. Use, usability, usefulness, and impact of an infobutton manager. AMIA Annu. Symp. Proc. American Medical Informatics Association, 151–155.Google ScholarGoogle Scholar
  369. C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. 2019. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In J. Burstein, C. Doran, and T. Solorio (Eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN. Association for Computational Linguistics, 2924–2936. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  370. H. H. Clark and S. E. Brennan. 1991. Grounding in communication. In Perspectives on Socially Shared Cognition. American Psychological Association, 222–233. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  371. K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. 2020. ELECTRA: Pre-training text encoders as discriminators rather than generators. arXiv:2003.10555. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  372. P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. March. 2018. Think you have solved question answering? Try ARC, the AI2 Reasoning Challenge. arXiv:1803.05457. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  373. C. L. A. Clarke, N. Craswell, and I. Soboroff. February. 2005. Overview of the TREC 2004 Terabyte track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Thirteenth Text REtrieval Conference (TREC 2004), Special Publication 500-261. National Institute of Standards and Technology, Gaithersburg, MD.Google ScholarGoogle Scholar
  374. C. L. A. Clarke, F. Scholer, and I. Soboroff. February. 2006. Overview of the TREC 2005 Terabyte Track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Fourteenth Text REtrieval Conference (TREC 2005), Special Publication 500-266. National Institute of Standards and Technology, Gaithersburg, MD.Google ScholarGoogle Scholar
  375. C. L. A. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, and I. MacKinnon. 2008. Novelty and diversity in information retrieval evaluation. In T. S. Chua, M. K. Leong, S. H. Myaeng, D. W. Oard, F. Sebastiani (Eds.), Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’08). ACM, New York, NY, 659–666. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  376. C. L. A. Clarke, N. Craswell, and I. Soboroff. February. 2010. Overview of the TREC 2009 web track. In E. M. Voorhees and L. P. Buckland (Eds.), The Eighteenth Text REtrieval Conference Proceedings (TREC 2009), Special Publication 500-278. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  377. C. L. A. Clarke, N. Craswell, I. Soboroff, and G. V. Cormack. February. 2011. Overview of the TREC 2010 web track. In E. M. Voorhees and L. P. Buckland (Eds.), The Nineteenth Text REtrieval Conference Proceedings (TREC 2010), Special Publication 500-294. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  378. C. L. A. Clarke, M. D. Smucker, and A. Vtyurina. 2020a. Offline evaluation by maximum similarity to an ideal ranking. In M. d’Aquin, S. Dietze, C. Hauff, E. Curry, and P. Cudré-Mauroux (Eds.), Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20). ACM, New York, NY, 225–234. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  379. C. L. A. Clarke, A. Vtyurina, and M. D. Smucker. 2020b. Offline evaluation without gain. In K. Balog, V. Setty, C. Lioma, Y. Liu, M. Zhang, and K. Berberich (Eds.), Proceedings of the 2020 ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR ’20), Virtual Event, Norway, September 14–17, 2020. ACM, New York, NY, 185–192. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  380. C. L. A. Clarke, S. Rizvi, M. D. Smucker, M. Maistro, and G. Zuccon. February. 2021. Overview of the TREC 2020 health misinformation track. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC 2020). National Institute of Standards and Technology.Google ScholarGoogle Scholar
  381. C. W. Cleverdon. 1962. Report on the Testing and Analysis of an Investigation into the Comparative Efficiency of Indexing Systems. Aslib Cranfield Research Project. College of Aeronautics, Cranfield, UK.Google ScholarGoogle Scholar
  382. C. W. Cleverdon. 1967. The Cranfield tests on index language devices. Aslib Proc. 19, 6, 173–194. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  383. C. W. Cleverdon. 1972. On the inverse relationship of recall and precision. J. Doc. 28, 3, 195–201. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  384. C. W. Cleverdon, J. Mills, and E. M. Keen. 1966. Aslib Cranfield Research ProjectFactors Determining the Performance of Indexing Systems, Vol. 1: Design. College of Aeronautics, Cranfield.Google ScholarGoogle Scholar
  385. P. Clough and M. Sanderson. March. 2006. User experiments with the Eurovision cross-language image retrieval system. J. Am. Soc. Inf. Sci. Technol. 57, 5, 697–708. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  386. Coalition for Health AI. 2023. Blueprint for Trustworthy AI Implementation Guidance and Assurance for Healthcare. Technical Report. The MITRE Corporation.Google ScholarGoogle Scholar
  387. K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano, C. Hesse, and J. Schulman. November. 2021. Training verifiers to solve math word problems. arXiv:2110.14168. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  388. E. F. Codd. June. 1970. A relational model of data for large shared data banks. Commun. ACM 12, 6, 377–387. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  389. A. Cohan, S. Feldman, I. Beltagy, D. Downey, and D. S. Weld. 2020. Specter: Document-level representation learning using citation-informed transformers. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2270–2282. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  390. A. M. Cohen, W. R. Hersh, K. Peterson, and P.-Y. Yen. April. 2006. Reducing workload in systematic review preparation using automated citation classification. J. Am. Med. Inform. Assoc. 13, 2, 206–219. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  391. A. M. Cohen, N. R. Smalheiser, M. S. McDonagh, C. Yu, C. E. Adams, J. M. Davis, and P. S. Yu. May. 2015. Automated confidence ranked classification of randomized controlled trial articles: An aid to evidence-based medicine. J. Am. Med. Inform. Assoc. 22, 3, 707–717. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  392. P. R. Cohen and S. L. Oviatt. 1995. The role of voice input for human–machine communication. Proc. Natl. Acad. Sci. U. S. A. 92, 22, 9921–9927. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  393. S. Cohen, C. Domshlak, and N. Zwerdling. March. 2008. On ranking techniques for desktop search. ACM Trans. Inf. Syst. 26, 2, 1–24. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  394. W. W. Cohen. 1996. Learning rules that classify e-mail. In M. A. Hearst and H. Hirsh (Eds.), Papers from the AAAI Spring Symposium: Machine Learning in Information Access. AAAI Technical Report SS-96-05. Association for the Advancement of Artificial Intelligence.Google ScholarGoogle Scholar
  395. D. Cohn, L. Atlas, R. Ladner, and A. Waibel. 1994. Improving generalization with active learning. Mach. Learn. 15, 2, 201–221. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  396. M. H. Coletti and H. L. Bleich. August. 2001. Medical subject headings used to search the biomedical literature. J. Am. Med. Inform. Assoc. 8, 4, 317–323. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  397. K. Collins-Thompson, F. Diaz, C. L. A. Clarke, and E. M. Voorhees. February. 2014. TREC 2013 web track overview. In E. M. Voorhees (Ed.), Proceedings of the Twenty-Second Text REtrieval Conference (TREC 2013), Special Publication 500-302. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  398. K. Collins-Thompson, P. Bennett, F. Diaz, and E. M. Voorhees. February. 2015. TREC 2014 web track overview. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Third Text REtrieval Conference (TREC 2014), Special Publication 500-308. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  399. W. S. Cooper. 1971. A definition of relevance for information retrieval. Inf. Storage Retr. 7, 1, 19–37. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  400. G. V. Cormack. 2008. Email spam filtering: A systematic review. Found. Trends Inf. Retr. 1, 4, 335–455. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  401. G. V. Cormack and M. R. Grossman. 2014. Evaluation of machine-learning protocols for technology-assisted review in electronic discovery. In Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’14). ACM, New York, NY, 153–162. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  402. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  403. R. Corn, Jr. January. 2019. Native American Culture—Language: The Key to Everything. Retrieved from https://www.ted.com/talks/ron˙muqsahkwat˙corn˙jr˙native˙american˙culture˙language˙the˙key˙to˙everything.Google ScholarGoogle Scholar
  404. J. Cossu, J. Gonzalo, M. Hajjem, O. Hamon, C. Latiri, and E. SanJuan. 2018. CLEF MC2 2018 lab technical overview of cross language microblog search and argumentative mining. In L. Cappellato, N. Ferro, J. Nie, and L. Soulier (Eds.), Working Notes of CLEF 2018—Conference and Labs of the Evaluation Forum, Avignon, France, September 10–14, 2018. CEUR Workshop Proceedings, Vol. 2125. CEUR-WS.org.Google ScholarGoogle Scholar
  405. M. Coury, E. Salesky, and J. Drexler. 2016. Finding Relevant Data in a Sea of Languages. Technical Report. MIT Lincoln Laboratory.Google ScholarGoogle Scholar
  406. E. Coutinho. 2008. Computational and Psycho-Physiological Investigations of Musical Emotions. Ph.D. thesis. University of Plymouth, UK.Google ScholarGoogle Scholar
  407. E. Coutinho, G. Trigeorgis, S. Zafeiriou, and B. Schuller. January. 2015. Automatically estimating emotion in music with deep long-short term memory recurrent neural networks. In Proceedings of the MediaEval 2015 Multimedia Benchmark Workshop, Wurzen, Germany, September 14–15, 2015. CEUR-WS.org, 1–3.Google ScholarGoogle Scholar
  408. P. Covington, J. Adams, and E. Sargin. 2016. Deep neural networks for YouTube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16). ACM, New York, NY, 191–198. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  409. B. Cowgill, F. Dell’Acqua, S. Deng, D. Hsu, N. Verma, and A. Chaintreau. 2020. Biased programmers? Or biased data? A field experiment in operationalizing AI ethics. In Proceedings of the 21st ACM Conference on Economics and Computation (EC ’20). ACM, New York, NY, 679–681. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  410. P. C. Cozby and S. C. Bates. 2018. Methods in Behavioral Research (13th. ed.). McGraw-Hill Education, New York.Google ScholarGoogle Scholar
  411. M. Crane. 2018. Questionable answers in question answering research: Reproducibility and variability of published results. Trans. Assoc. Comput. Linguist. 6, 241–252. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  412. L. F. Cranor and B. A. LaMacchia. August. 1998. Spam! Commun. ACM 41, 8, 74–83. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  413. N. Craswell and D. Hawking. February. 2003. Overview of the TREC-2002 web track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Eleventh Text REtrieval Conference (TREC 2002), Special Publication 500-251. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  414. N. Craswell, D. Hawking, R. Wilkinson, and M. Wu. February. 2004. Overview of the TREC 2003 web track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Twelfth Text REtrieval Conference (TREC 2003), Special Publication 500-255. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  415. N. Craswell, A. P. de Vried, and I. Soboroff. February. 2006. Overview of the TREC-2005 enterprise track. In Proceedings of the Fourteenth Text REtrieval Conference (TREC 2005), Special Publication 500-266. National Institute of Standards and Technology.Google ScholarGoogle Scholar
  416. N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. 2008. An experimental comparison of click position-bias models. In M. Najork, A. Broder, and S. Chakrabarti (Eds.), Proceedings of the 1st ACM International Conference on Web Searching and Data Mining (WSDM ’08). ACM, New York, NY, 87–94. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  417. N. Craswell, R. Jones, G. Dupret, and E. Viegas (Eds.). 2009. Proceedings of the Workshop on Web Search Click Data (WSCD ’09). ACM, New York, NY. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  418. N. Craswell, B. Mitra, D. Campos, E. Yilmaz, and E. M. Voorhees. February. 2020. Overview of the TREC 2019 deep learning track. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Eight Text REtrieval Conference (TREC 2019), Special Publication 1250. National Institute of Standards and Technology.Google ScholarGoogle Scholar
  419. N. Craswell, B. Mitra, E. Yilmaz, and D. Campos. February. 2021. Overview of the TREC 2020 deep learning track. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC 2020), Special Publication 1266. National Institute of Standards and Technology.Google ScholarGoogle Scholar
  420. N. Craswell, M. Bhaskar, E. Yilmaz, D. Campos, and J. Lin. February. 2022. Overview of the TREC 2021 deep learning track. In I. Soboroff and A. Ellis (Eds.), Proceedings of the Thirtieth Text REtrieval Conference (TREC 2021), Special Publication 550-335. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  421. N. Craswell, M. Bhaskar, E. Yilmaz, D. Campos, J. Lin, E. M. Voorhees, and I. Soboroff. February. 2023. Overview of the TREC 2022 deep learning track. In I. Soboroff and A. Ellis (Eds.), Proceedings of the Thirty-First Text REtrieval Conference (TREC 2022), Special Publication 550-338. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  422. M. B. Crawford. 2015. The World Beyond Your Head: On Becoming an Individual in an Age of Distraction. Farrar, Straus and Giroux.Google ScholarGoogle Scholar
  423. M. Crawford, T. M. Khoshgoftaar, J. D. Prusa, A. N. Richter, and H. Al Najada. 2015. Survey of review spam detection using machine learning techniques. J. Big Data 2, 1, 1–24. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  424. P. Cremonesi, R. Turrin, E. Lentini, and M. Matteucci. 2008. An evaluation methodology for collaborative recommender systems. In 2008 International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution (AXMEDIS ’08). IEEE, Washington, DC, 224–231. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  425. P. Cremonesi, Y. Koren, and R. Turrin. 2010. Performance of recommender algorithms on top-N recommendation tasks. In Proceedings of the Fourth ACM Conference on Recommender Systems (RecSys ’10 ). ACM, New York, NY, 39–46. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  426. K. Crenshaw. 1991. Mapping the margins: Intersectionality, identity politics, and violence against women of color. Stanford L. Rev. 43, 1241–1249. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  427. F. Crestani and H. Du. 2006. Written versus spoken queries: A qualitative and quantitative comparative analysis. J. Am. Soc. Inf. Sci. Technol. 57, 7, 881–890. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  428. M. Crispin and K. Murchison. June. 2008. Internet Message Access Protocol—Sort and Thread Extensions. Internet Engineering Task Force, Network Working Group, Request for Comment 5256.Google ScholarGoogle Scholar
  429. W. B. Croft. 2002. Combining approaches to information retrieval. In W. B. Croft (Ed.), Advances in Information Retrieval: Recent Research from the Center for Intelligent Information Retrieval. Springer, Boston, MA, 1–36. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  430. W. B. Croft and R. H. Thompson. 1987. I 3R: A new approach to the design of document retrieval systems. J. Am. Soc. Inf. Sci. 38, 6, 389–404. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  431. L. J. Cronbach. September. 1951. Coefficient alpha and the internal structure of tests. Psychometrika 16, 3, 297–334. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  432. J. S. Culpepper, F. Diaz, and M. D. Smucker. 2018. Research frontiers in information retrieval: Report from the Third Strategic Workshop on Information Retrieval in Lorne (SWIRL 2018). ACM SIGIR Forum 52, 1, 34–90. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  433. E. Cutrell and Z. Guan. 2007. What are you looking for? An eye-tracking study of information usage in web search. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’07). ACM, New York, NY, 407–416. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  434. E. Cutrell, D. C. Robbins, S. T. Dumais, and R. Sarin. 2006. Fast, flexible filtering with Phlat—Personal search and organization made easy. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’06). ACM, New York, NY, 261–270. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  435. B. d’Alessandro, C. O’Neil, and T. LaGatta. June. 2017. Conscientious classification: A data scientist’s guide to discrimination-aware classification. Big Data 5, 2, 120–134. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  436. G. Da San Martino, S. Romeo, A. Barrón-Cedeño, S. Joty, L. Màrquez, A. Moschitti, and P. Nakov. 2017. Cross-language question re-ranking. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 1145–1148. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  437. M. F. Dacrema, P. Cremonesi, and D. Jannach. 2019. Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In Proceedings of the 13th ACM Conference on Recommender Systems (RecSys ’19), Copenhagen, Denmark. ACM, New York, NY, 101–109. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  438. E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O. Adetunmbi, and O. E. Ajibuwa. June. 2019. Machine learning for email spam filtering: Review, approaches and open research problems. Heliyon 5, 6, e01802. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  439. N. Dai, M. Shokouhi, and B. D. Davison. 2011. Learning to rank for freshness and relevance. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 95–104. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  440. Z. Dai and J. Callan. 2019a. Deeper text understanding for IR with contextual neural language modeling. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 985–988. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  441. Z. Dai and J. Callan. 2019b. Context-aware sentence/passage term importance estimation for first stage retrieval. arXiv:1910.10687. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  442. Z. Dai and J. Callan. 2020. Context-aware document term weighting for ad-hoc search. In Proceedings of the Web Conference 2020 (WWW ’20). ACM, New York, NY, 1897–1907. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  443. Z. Dai, C. Xiong, J. Callan, and Z. Liu. 2018. Convolutional neural networks for soft-matching n-grams in ad-hoc search. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM ’18). ACM, New York, NY, 126–134. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  444. J. Dalton, V. Ajayi, and R. Main. 2018a. Vote Goat: Conversational movie recommendation. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 1285–1288. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  445. J. Dalton, C. Xiong, and J. Callan. 2018b. The TREC 2019 Conversational Assistance Track (CAsT). https://treccast.ai/.Google ScholarGoogle Scholar
  446. J. Dalton, C. Xiong, and J. Callan. February. 2021. TREC CAsT 2020: The conversational assistance track overview. In Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC 2020), Virtual Event, November 16–20, 2020. National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.Google ScholarGoogle ScholarCross RefCross Ref
  447. J. Dalton, S. Fischer, P. Owoicho, F. Radlinski, F. Rossetto, J. R. Trippas, and H. Zamani. 2022. Conversational information seeking: Theory and application. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 3455–3458. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  448. J. Danyang, H. Chen, and F. Cai. March. 2017. Exploiting query’s temporal patterns for query autocompletion. Math. Probl. Eng. 2017, 1–8. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  449. K. Darwish and D. W. Oard. 2003. Probabilistic structured query methods. In C. L. A. Clarke, G. V. Cormack, J. Callan, D. Hawking, and A. F. Smeaton (Eds.), Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’03), Toronto, Canada, July 28–August 1, 2003. ACM, New York, NY, 338–344. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  450. S. Das and A. Kramer. 2013. Self-censorship on Facebook. Proc. Int. AAAI Conf. Weblogs Soc. Media 7, 120–127. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  451. A. Dash, A. Chakraborty, S. Ghosh, A. Mukherjee, and K. P. Gummadi. 2022. FaiRIR: Mitigating exposure bias from related item recommendations in two-sided platforms. IEEE Trans. Comput. Soc. Syst. 10, 3, 1301–1313. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  452. M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. 2004. Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the 20th Annual Symposium on Computational Geometry (SCG ’04). ACM, New York, NY, 253–262. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  453. B. A. Davey and H. A. Priestley. 2002. Introduction to Lattices and Order (2nd. ed.). Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  454. M. Davies and S. Böck. 2019. Temporal convolutional networks for musical audio beat tracking. In 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 1–5. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  455. M. E. Davies and M. D. Plumbley. 2007. Context-dependent beat tracking of musical audio. IEEE Trans. Audio Speech Lang. Process. 15, 3, 1009–1020. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  456. M. E. Davies, N. Degara, and M. D. Plumbley. 2009. Evaluation Methods for Musical Audio Beat Tracking Algorithms. Technical Report C4DM-TR-09-06. Centre for Digital Music, Queen Mary University of London.Google ScholarGoogle Scholar
  457. E. Davis. April. 2024. Benchmarks for automated commonsense reasoning: A survey. ACM Comput. Surv. 56, 4, 81:1–81:41. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  458. A. de Cheveigné. 2005. Pitch perception models. In C. J. Plack, R. R. Fay, A. J. Oxenham, and A. N. Popper (Eds.), Pitch. Springer, New York, NY, 169–233. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  459. A. de Cheveigné and H. Kawahara. 2002. YIN, a fundamental frequency estimator for speech and music. J Acoust. Soc. Am. 111, 4, 1917–1930. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  460. M. de Rijke. 23 November. 2018. Retrieval as interaction. Tony Kent Strix Annual Memorial Lecture, London, UK. Video of the lecture available at https://www.youtube.com/watch?v=Zb6YGoiPt8M.Google ScholarGoogle Scholar
  461. H. V. de Sompel, M. L. Nelson, R. Sanderson, L. Balakireva, S. Ainsworth, and H. Shankar. 2009. Memento: Time travel for the web. arXiv:0911.1112. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  462. C. D. DeAngelis and R. A. Musacchio. January. 2004. Access to JAMA. J Am. Med. Assoc. 291, 3, 370–371. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  463. M. E. DeBakey. September. 1991. The National Library of Medicine. Evolution of a premier information center. J. Am. Med. Assoc. 266, 9, 1252–1258. .Google ScholarGoogle ScholarCross RefCross Ref
  464. J. Degenhardt, S. Kallumadi, M. de Rijke, L. Si, A. Trotman, and Y. Xu (Eds.). 2017. Proceedings of the SIGIR 2017 Workshop on eCommerce (eCOM ’17), Vol. 2311. CEUR-WS.org.Google ScholarGoogle Scholar
  465. J. Degenhardt, G. D. Fabbrizio, S. Kallumadi, M. Kumar, A. Trotman, Y.-C. Lin, and H. Zhao (Eds.). 2018. Proceedings of the SIGIR 2018 Workshop On eCommerce, Vol. 2319. CEUR-WS.org.Google ScholarGoogle Scholar
  466. J. Degenhardt, S. Kallumadi, U. Porwal, and A. Trotman (Eds.). 2019. Proceedings of the SIGIR 2019 Workshop on eCommerce, Vol. 2410. CEUR-WS.org.Google ScholarGoogle Scholar
  467. Z. Dehghani Champiri, A. Asemi, and S. Siti Salwah Binti. 2019. Meta-analysis of evaluation methods and metrics used in context-aware scholarly recommender systems. Knowl. Inf. Syst. 61, 1147–1178. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  468. R. Delbouys, R. Hennequin, F. Piccoli, J. Royo-Letelier, and M. Moussallam. 2018. Music mood detection based on audio and lyrics with deep neural net. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 370–375. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  469. Y. Deldjoo, J. R. Trippas, and H. Zamani. 2021. Towards multi-modal conversational information seeking. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 1577–1587. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  470. Y. Deldjoo, D. Jannach, A. Bellogín, A. Difonzo, and D. Zanzonelli. 2024. Fairness in recommender systems: Research landscape and future directions. User Model. User Adapt. Interact. 34, 59–108. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  471. D. Demner-Fushman, S. Antani, M. Simson, and G. R. Thoma. 2012. Design and development of a multimodal biomedical information retrieval system. J. Comput. Sci. Eng. 6, 2, 168–177. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  472. D. E. Denning. May. 1976. A lattice model of secure information flow. Commun. ACM 19, 5, 236–243. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  473. P. J. Denning. March. 1982. ACM president’s letter: Electronic junk. Commun. ACM 25, 3, 163–165. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  474. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. 2018. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  475. S. Dhelim, N. Aung, M. A. Bouras, H. Ning, and E. Cambria. 2022. A survey on personality-aware recommendation systems. Artif. Intell. Rev. 55, 2409–2454. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  476. T. Di Noia, N. Tintarev, P. Fatourou, and M. Schedl. March. 2022. Recommender systems under European AI regulations. Commun. ACM 65, 4, 69–73. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  477. G. M. Di Nunzio and N. Ferro. 2005. DIRECT: A system for evaluating information access components of digital libraries. In A. Rauber, S. Christodoulakis, and A. M. Tjoa (Eds.), Proceedings of the 9th European Conference on Research and Advanced Technology for Digital Libraries (ECDL ’05), Vol. 3652: Lecture Notes in Computer Science. Springer, Berlin, 483–484. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  478. G. M. Di Nunzio, N. Ferro, G. J. F. Jones, and C. Peters. 2006. CLEF 2005: Ad hoc track overview. In C. Peters, F. C. Gey, J. Gonzalo, G. J. F. Jones, M. Kluck, B. Magnini, H. Müller, and M. de Rijke (Eds.), Accessing Multilingual Information Repositories: 6th Workshop of the Cross-Language Evaluation Forum (CLEF ’05). Revised Selected Papers, Vol. 4022: Lecture Notes in Computer Science. Springer, Berlin, 11–36. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  479. G. M. Di Nunzio, N. Ferro, T. Mandl, and C. Peters. 2007. CLEF 2006: Ad hoc track overview. In C. Peters, P. Clough, F. C. Gey, J. Karlgren, B. Magnini, D. W. Oard, M. de Rijke, and M. Stempfhuber (Eds.), Evaluation of Multilingual and Multi-modal Information Retrieval, Vol. 4730: Lecture Notes in Computer Science. Springer, Berlin, 21–34. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  480. G. M. Di Nunzio, N. Ferro, T. Mandl, and C. Peters. 2008. CLEF 2007: Ad hoc track overview. In C. Peters, V. Jijkoun, T. Mandl, H. Müller, D. W. Oard, A. Peñas, V. Petras, and D. Santos (Eds.), Advances in Multilingual and Multimodal Information Retrieval, Vol. 5152: Lecture Notes in Computer Science. Springer, Berlin, 13–32. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  481. F. Diaz. 2018. Indri. https://github.com/diazf/indri.Google ScholarGoogle Scholar
  482. F. Diaz, B. Mitra, M. D. Ekstrand, A. J. Biega, and B. Carterette. 2020. Evaluating stochastic rankings with expected exposure. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management. ACM, New York, NY, 275–284. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  483. D. Diefenbach, V. López, K. D. Singh, and P. Maret. 2018. Core techniques of question answering systems over knowledge bases: A survey. Knowl. Inf. Syst. 55, 3, 529–569. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  484. H. Ding, S. Zhang, D. Garigliotti, and K. Balog. 2018. Generating high-quality query suggestion candidates for task-based search. In G. Pasi, B. Piwowarski, L. Azzopardi, and A. Hanbury (Eds.), Advances in Information Retrieval, Vol. 10772: Lecture Notes in Computer Science. Springer, Cham, 625–631. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  485. G. A. Dingle and N. A. Carter. 2017. Smoke into sound: A pilot randomised controlled trial of a music cravings management program for chronic smokers attempting to quit. Music. Sci. 21, 2, 151–177. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  486. G. A. Dingle, J. Hodges, and A. Kunde. 2016. Tuned In emotion regulation program using music listening: Effectiveness for adolescents in educational settings. Front. Psychol. 7, 859. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  487. K. Dinnissen and C. Bauer. 2022. Fairness in music recommender systems: A stakeholder-centered mini review. Front. Big Data 5, 913608. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  488. S. Dixon. 2001. Automatic extraction of tempo and beat from expressive performances. J. New Music Res. 30, 1, 39–58. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  489. N. J. Dobbins, B. Han, W. Zhou, K. F. Lan, H. N. Kim, R. Harrington, O. Uzuner, and M. Yetisgen. 2023. LeafAI: Query generator for clinical cohort discovery rivaling a human programmer. J. Am. Med. Inform. Assoc. 30, 12, 1954–1964. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  490. M. Dong, F. Yuan, L. Yao, X. Wang, X. Xu, and L. Zhu. 2022. A survey for trust-aware recommender systems: A deep learning perspective. Knowl. Based Syst. 249, 108954. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  491. W. Dong, C. Moses, and K. Li. 2011. Efficient K-nearest neighbor graph construction for generic similarity measures. In Proceedings of the 20th International Conference on World Wide Web (WWW ’11). ACM, New York, NY, 577–586. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  492. X. L. Dong and A. Halevy. 2005. A platform for personal information management and integration. In Proceedings of the 2nd Biennial Conference on Innovative Data Systems Research. VLDB Endow. 26–30.Google ScholarGoogle Scholar
  493. X. L. Dong, X. He, A. Kan, X. Li, Y. Liang, J. Ma, Y. E. Xu, C. Zhang, T. Zhao, G. B. Saldana, S. Deshpande, A. M. Manduca, J. Ren, S. P. Singh, F. Xiao, H.-S. Chang, G. Karamanolakis, Y. Mao, Y. Wang, C. Faloutsos, A. McCallum, and J. Han. 2020. AutoKnow: Self-driving knowledge collection for products of thousands of types. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20). ACM, New York, NY, 2724–2734. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  494. G. Doras and G. Peeters. 2019. Cover detection using dominant melody embeddings. In Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 107–114. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  495. H. Drucker, D. Wang, and V. N. Vapnik. September. 1999. Support vector machines for spam categorization. IEEE Trans. Neural Netw. 10, 5, 1048–1054. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  496. H. Duan and B.-J. P. Hsu. 2011. Online spelling correction for query completion. In Proceedings of the 20th International Conference on World Wide Web (WWW ’11). ACM, New York, NY, 117–126. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  497. Z. Duan, B. Pardo, and C. Zhang. 2010. Multiple fundamental frequency estimation by modeling spectral peaks and non-peak regions. IEEE Trans. Audio Speech Lang. Process. 18, 8, 2121–2133. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  498. M. Dubiel, M. Halvey, L. Azzopardi, D. Anderson, and S. Daronnat. 2020. Conversational strategies: Impact on search performance in a goal-oriented task. In The Third International Workshop on Conversational Approaches to Information Retrieval. ACM, New York, NY, 1–7.Google ScholarGoogle Scholar
  499. S. Dudy and S. Bedrick. 2020. Are some words worth more than others? In Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems. Association for Computational Linguistics, 131–142. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  500. S. Dumais, E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins. 2003. Stuff I’ve seen: A system for personal information retrieval and re-use. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’03). ACM, New York, NY, 72–79. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  501. G. Dupret and M. Lalmas. 2013. Absence time and user engagement: Evaluating ranking functions. In S. Leonardi, A. Panconesi, P. Ferragina, and A. Gionis (Eds.), Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM ’13). ACM, New York, NY, 173–182. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  502. G. Dupret and C. Liao. 2010. A model to estimate intrinsic document relevance from the clickthrough logs of a web search engine. In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM ’10). ACM, New York, NY, 181–190. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  503. G. E. Dupret and B. Piwowarski. 2008. A user browsing model to predict search engine click data from past observations. In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’08). ACM, New York, NY, 331–338. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  504. S. Durand, J. P. Bello, B. David, and G. Richard. 2015. Downbeat tracking with multiple features and deep neural networks. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 409–413. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  505. A. Duran-Nelson, S. Gladding, J. Beattie, and L. J. Nixon. June. 2013. Should we Google it? Resource use by internal medicine residents for point-of-care clinical decision making. Acad. Med. 88, 6, 788–794. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  506. M. Dussin and N. Ferro. 2009. Managing the knowledge creation process of large-scale evaluation campaigns. In M. Agosti, J. Borbinha, S. Kapidakis, C. Papatheodorou, and G. Tsakonas (Eds.), Proceedings of the 13th European Conference on Research and Advanced Technology for Digital Libraries (ECDL ’09), Vol. 5714: Lecture Notes in Computer Science. Springer, Berlin, 63–74. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  507. S. Dwivedi and G. Chandra. February. 2016. A survey on cross language information retrieval. Int. J. Cybern. Inform. 5, 127–142. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  508. C. Dwork and M. Naor. 1993. Pricing via processing or combatting junk mail. In Proceedings of the 12th Annual International Cryptology Conference (CRYPTO ’92), Vol. 740: Lecture Notes in Computer Science. Springer, Berlin, 139–147. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  509. C. Dwork and A. Roth. 2014. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9, 3–4, 211–407. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  510. T. Eerola and J. K. Vuoskoski. 2011. A comparison of the discrete and dimensional models of emotion in music. Psychol. Music 39, 1, 18–49. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  511. T. Eerola and J. K. Vuoskoski. 2013. A review of music and emotion studies: Approaches, emotion models, and stimuli. Music Percept. 30, 3, 307–340. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  512. T. Eerola, O. Lartillot, and P. Toiviainen. January. 2009. Prediction of multidimensional emotional ratings in music from audio using multivariate regression models. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 621–626. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  513. B. Efron and R. J. Tibshirani. 1994. An Introduction to the Bootstrap. Chapman and Hall/CRC, Boca Raton, FL.Google ScholarGoogle Scholar
  514. D. E. Egan, J. R. Remde, L. M. Gomez, T. K. Landauer, J. Eberhardt, and C. C. Lochbaum. January. 1989. Formative design evaluation of SuperBook. ACM Trans. Inf. Syst. 7, 1, 30–57. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  515. L. Egghe. March. 2008. The measures precision, recall, fallout and miss as a function of the number of retrieved documents and their mutual interrelations. Inf. Process. Manag. 44, 2, 856–876. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  516. C. G. Eickhoff, C. Harris, A. P. de Vries, and P. Srinivasan. 2012. Quality through flow and immersion: Gamifying crowdsourced relevance assessments. In W. Hersh, J. Callan, Y. Maarek, and M. Sanderson (Eds.), Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’12). ACM, New York, NY, 871–880. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  517. P. Ekman. 1992. An argument for basic emotions. Cogn. Emot. 6, 3–4, 169–200. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  518. M. D. Ekstrand and D. Kluver. 2021. Exploring author gender in book rating and recommendation. User Model. User Adapt. Interact. 31, 377–420. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  519. M. D. Ekstrand, F. M. Harper, M. C. Willemsen, and J. A. Konstan. 2014. User perception of differences in recommender algorithms. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14). ACM, New York, NY, 161–168. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  520. M. C. Elish, W. Isaac, and R. S. Zemel (Eds.). 2021. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21). ACM, New York, NY. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  521. D. Ellis. 1993. Modeling the information-seeking patterns of academic researchers: A grounded theory approach. Libr. Q. 63, 4, 469–486. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  522. D. P. W. Ellis. 2007. The “Covers80” Cover Song Data Set. Retrieved December 12, 2018 from https://labrosa.ee.columbia.edu/projects/coversongs/covers80/.Google ScholarGoogle Scholar
  523. D. P. W. Ellis and G. E. Poliner. 2007. Identifying ‘cover songs’ with chroma features and dynamic programming beat tracking. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. IV. IEEE, 1429–1432. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  524. A. Elowsson. August. 2016. Beat tracking with a cepstroid invariant neural network. In Proceedings of the 17th International Society for Music Information Retrieval Conference (ISMIR ’16). International Society for Music Information Retrieval, New York, NY, 351–357. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  525. A. Elowsson and A. Friberg. 2013. Modelling perception of speed in music audio. In Proceedings of the 10th Sound and Music Computing Conference (SMC ’13), Stockholm, Sweden. Zenodo, 735–741. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  526. D. Elsweiler and I. Ruthven. 2007. Towards task-based personal information management evaluations. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’07). ACM, New York, NY, 23–30. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  527. D. Elsweiler, I. Ruthven, and C. Jones. May. 2007. Towards memory supporting personal information management tools. J. Am. Soc. Inf. Sci. Technol. 58, 7, 924–946. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  528. D. Elsweiler, M. Baillie, and I. Ruthven. 2008. Exploring memory in email refinding. ACM Trans. Inf. Syst. 26, 4, 21:1–21:36. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  529. D. Elsweiler, M. Baillie, and I. Ruthven. 2011. What makes re-finding information difficult? A study of email re-finding. In Proceedings of the 33rd European Conference on IR Research, Vol. 6611: Lecture Notes in Computer Science. Springer, Berlin, 568–579. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  530. D. C. Engelbart. October. 1962. Augmenting Human Intellect: A Conceptual Framework. Summary Report AFOSR-3223. Stanford Research Institute, Menlo Park, CA.Google ScholarGoogle Scholar
  531. S. Englehardt and A. Narayanan. 2016. Online tracking: A 1-million-site measurement and analysis. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS ’16). ACM, New York, NY, 1388–1401. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  532. S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer, A. Narayanan, and E. W. Felten. 2015. Cookies that give you away: The surveillance implications of web tracking. In Proceedings of the 24th International Conference on World Wide Web (WWW ’15). International World Wide Web Conferences Steering Committee, Geneva, Switzerland, 289–299. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  533. R. Epstein and R. E. Robertson. 2015. The search engine manipulation effect (SEME) and its possible impact on the outcomes of elections. Proc. Natl. Acad. Sci. U. S. A. 112, 33, E4512–E4521. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  534. O. Erling and I. Mikhailov. 2009. Virtuoso: RDF support in a native RDBMS. In R. de Virgilio, F. Giunchiglia, and L. Tanca (Eds.), Semantic Web Information Management. Springer, Berlin, 501–519. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  535. A. J. Eronen and A. P. Klapuri. 2009. Music tempo estimation with k-NN regression. IEEE Trans. Audio Speech Lang. Process. 18, 1, 50–57. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  536. European Commission. July. 2009. Commission Regulation (EC) No 607/2009 of 14 July 2009 laying down certain detailed rules for the implementation of Council Regulation (EC) No 479/2008 as regards protected designations of origin and geographical indications, traditional terms, labelling and presentation of certain wine sector products. Official Journal of the European Union, OJ L 193, 24.7.2009 , 52, 60–139.Google ScholarGoogle Scholar
  537. European Commission. January. 2019. Commission Delegated Regulation (EC) No 2019/33 of 17 October 2018 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards applications for protection of designations of origin, geographical indications and traditional terms in the wine sector, the objection procedure, restrictions of use, amendments to product specifications, cancellation of protection, and labelling and presentation. Official Journal of the European Union, OJ L 9, 11.1.2019, 62, 2–45.Google ScholarGoogle Scholar
  538. F. Fabbri, Y. Wang, F. Bonchi, C. Castillo, and M. Mathioudakis. April. 2022. Rewiring what-to-watch-next recommendations to reduce radicalization pathways. In Proceedings of the ACM Web Conference 2022 (WWW ’22). ACM, New York, NY, 2719–2728. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  539. A. Fabris, A. Esuli, A. Moreo, and F. Sebastiani. April. 2023a. Measuring fairness under unawareness of sensitive attributes: A quantification-based approach. J. Artif. Intell. Res. 76, 1117–1180. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  540. A. Fabris, G. Silvello, G. A. Susto, and A. J. Biega. 2023b. Pairwise fairness in ranking as a dissatisfaction measure. In T.-S. Chua, H. Lauw, L. Si, E. Terzi, and P. Tsaparas (Eds.), Proceedings of the 16th ACM International Conference on Web Search and Data Mining (WSDM ’23). ACM, New York, NY, 931–939. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  541. G. Faggioli and N. Ferro. 2021. System effect estimation by sharding: A comparison between ANOVA approaches to detect significant differences. In D. Hiemstra, M.-F. Moens, J. Mothe, R. Perego, M. Potthast, and F. Sebastiani (Eds.), Proceedings of the Advances in Information Retrieval: 43rd European Conference on IR Research (ECIR ’21)—Part II, Vol. 12657: Lecture Notes in Computer Science. Springer, Cham, 33–46. .Google ScholarGoogle ScholarCross RefCross Ref
  542. G. Faggioli, O. Zendel, J. S. Culpepper, N. Ferro, and F. Scholer. 2021. An enhanced evaluation framework for query performance prediction. In D. Hiemstra, M.-F. Moens, J. Mothe, R. Perego, M. Potthast, and F. Sebastiani (Eds.), Proceedings of the Advances in Information Retrieval: 43rd European Conference on IR Research (ECIR ’21)—Part I, Vol. 12656: Lecture Notes in Computer Science. Springer, Berlin, 115–129. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  543. G. Faggioli, L. Dietz, C. L. A. Clarke, G. Demartini, M. Hagen, C. Hauff, N. Kando, E. Kanoulas, M. Potthast, B. Stein, and H. Wachsmuth. 2023. Perspectives on large language models for relevance judgment. In M. Yoshioka, J. Kiseleva, and M. Aliannejadi (Eds.), Proceedings of the 9th ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR ’23). ACM, New York, NY, 39–50. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  544. G. Faggioli, L. Dietz, C. L. A. Clarke, G. Demartini, M. Hagen, C. Hauff, N. Kando, E. Kanoulas, M. Potthast, B. Stein, and H. Wachsmuth. 2024. Who determines what is relevant? Humans or AI? Why not both!. Commun. ACM 67, 4, 31–34. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  545. R. Fagin. 1978. On an authorization mechanism. ACM Trans. Database Syst. 3, 3, 310–319. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  546. J. C. Falmagne and L. Narens. June. 1983. Scales and meaningfulness of quantitative laws. Synthese 55, 3, 287–325. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  547. A. Fan, M. Lewis, and Y. Dauphin. 2018b. Hierarchical neural story generation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Vol. 1 (Long Papers). Association for Computational Linguistics, 889–898. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  548. Y. Fan, J. Guo, Y. Lan, J. Xu, C. Zhai, and X. Cheng. 2018a. Modeling diverse relevance patterns in ad-hoc retrieval. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 375–384. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  549. M. Faruqui and C. Dyer. 2014. Improving vector space word representations using multilingual correlation. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 462–471. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  550. C. M. Fausey and L. Boroditsky. 2008. English and Spanish speakers remember causal agents differently. In Proceedings of the Annual Meeting of the Cognitive Science Society, Vol. 30. Cognitive Science Society. Retrieved from https://escholarship.org/uc/item/4425600t.Google ScholarGoogle Scholar
  551. M. Federico and G. J. F. Jones. 2004. The CLEF 2003 cross-language spoken document retrieval track. In C. Peters, J. Gonzalo, M. Braschler, and M. Kluck (Eds.), Comparative Evaluation of Multilingual Information Access Systems (CLEF ’03), Vol. 3237: Lecture Notes in Computer Science. Springer, Berlin. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  552. C. Fellbaum (Ed.). 1998. WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  553. F. Feng, Y. Yang, D. Cer, N. Arivazhagan, and W. Wang. 2020a. Language-agnostic BERT sentence embedding. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Vol. 1 (Long Papers). Association for Computational Linguistics, 878–891. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  554. Y. Feng, B. Hu, F. Lv, Q. Liu, Z. Zhang, and W. Ou. 2020b. ATBRG: Adaptive target-behavior relational graph network for effective recommendation. In J. Huang, Y. Chang, X. Cheng, J. Kamps, V. Murdock, J.-R. Wen, and Y. Liu (Eds.), Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 2231–2240. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  555. N. E. Fenton and J. Bieman. 2014. Software Metrics: A Rigorous & Practical Approach (3rd. ed.). Chapman and Hall/CRC, Boca Raton, FL.Google ScholarGoogle ScholarCross RefCross Ref
  556. A. Ferguson, C. S. Myers, R. J. Bartlett, H. Banister, F. C. Bartlett, W. Brown, N. R. Campbell, K. J. W. Craik, J. Drever, J. Guild, R. A. Houstoun, J. O. Irwin, G. W. C. Kaye, S. J. F. Philpott, L. F. Richardson, J. H. Shaxby, T. Smith, R. H. Thouless, and W. S. Tucker. 1940. Quantitative estimates of sensory events: Final report of the committee appointed to consider and report upon the possibility of quantitative estimates of sensory events. Adv. Sci. 2, 331–349.Google ScholarGoogle Scholar
  557. M. Ferrante, N. Ferro, and M. Maistro. 2014. Injecting user models and time into precision via Markov chains. In S. Geva, A. Trotman, P. Bruza, C. L. A. Clarke, and K. Järvelin (Eds.), Proceedings of the 37th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’14). ACM, New York, NY, 597–606. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  558. M. Ferrante, N. Ferro, and M. Maistro. 2015. Towards a formal framework for utility-oriented measurements of retrieval effectiveness. In J. Allan, W. B. Croft, A. P. de Vries, C. Zhai, N. Fuhr, and Y. Zhang (Eds.), Proceedings of the 1st ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR ’15). ACM, New York, NY, 21–30. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  559. M. Ferrante, N. Ferro, and M. Maistro. September. 2017a. AWARE: Exploiting evaluation measures to combine multiple assessors. ACM Trans. Inf. Syst. 36, 2, 20:1–20:38. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  560. M. Ferrante, N. Ferro, and S. Pontarollo. 2017b. Are IR evaluation measures on an interval scale? In J. Kamps, E. Kanoulas, M. de Rijke, H. Fang, and E. Yilmaz (Eds.), Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR ’17). ACM, New York, NY, 67–74. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  561. M. Ferrante, N. Ferro, and S. Pontarollo. 2018. Modelling randomness in relevance judgments and evaluation measures. In G. Pasi, B. Piwowarski, L. Azzopardi, and A. Hanbury (Eds.), Proceedings of the Advances in Information Retrieval: 40th European Conference on IR Research (ECIR ’18), Vol. 10772: Lecture Notes in Computer Science. Springer, Berlin, 197–209. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  562. M. Ferrante, N. Ferro, and E. Losiouk. 2019a. Stochastic relevance for crowdsourcing. In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra (Eds.), Proceedings of the Advances in Information Retrieval: 41st European Conference on IR Research (ECIR ’19) – Part I, Vol. 11437: Lecture Notes in Computer Science. Springer, Berlin, 755–762. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  563. M. Ferrante, N. Ferro, and S. Pontarollo. March. 2019b. A general theory of IR evaluation measures. IEEE Trans. Knowl. Data Eng. 31, 3, 409–422. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  564. M. Ferrante, N. Ferro, and E. Losiouk. June. 2020. How do interval scales help us with better understanding IR evaluation measures? Inf. Retr. J. 23, 3, 289–317. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  565. M. Ferrante, N. Ferro, and N. Fuhr. 2021. Towards meaningful statements in IR evaluation: Mapping evaluation measures to interval scales. IEEE Access 9, 136182–136216. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  566. M. Ferrante, N. Ferro, and N. Fuhr. December. 2022. Response to Moffat’s comment on “Towards meaningful statements in IR evaluation: Mapping evaluation measures to interval scales.” arXiv:2212.11735. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  567. M. Ferrari Dacrema, S. Boglio, P. Cremonesi, and D. Jannach. 2021. A troubling analysis of reproducibility and progress in recommender systems research. ACM Trans. Inf. Syst. 39, 2, 1–49. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  568. A. Ferraro. 2021. Music Recommender Systems: Taking into Account the Artists’ Perspective. Ph.D. thesis. Universitat Pompeu Fabra, Spain, Barcelona.Google ScholarGoogle Scholar
  569. A. Ferraro, X. Serra, and C. Bauer. 2021. Break the loop: Gender imbalance in music recommenders. In Proceedings of the 2021 Conference on Human Information Interaction and Retrieval (CHIIR ’21). ACM, New York, NY, 249–254. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  570. N. Ferro. February. 2017. Reproducibility challenges in information retrieval evaluation. ACM J Data Inf. Qual. 8, 2, 8:1–8:4. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  571. N. Ferro and D. Kelly. June. 2018. SIGIR initiative to implement ACM artifact review and badging. SIGIR Forum 52, 1, 4–10. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  572. N. Ferro and C. Peters. 2010. CLEF 2009 ad hoc track overview: TEL and Persian tasks. In C. Peters, G. M. Di Nunzio, M. Kurimo, T. Mandl, D. Mostefa, A. Peñas, and G. Roda (Eds.), Multilingual Information Access Evaluation Vol. I Text Retrieval Experiments—Tenth Workshop of the Cross-Language Evaluation Forum (CLEF ’09). Revised Selected Papers, Vol. 6241: Lecture Notes in Computer Science. Springer, Berlin, 13–35. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  573. N. Ferro and C. Peters (Eds.). 2019. Information Retrieval Evaluation in a Changing World—Lessons Learned from 20 Years of CLEF. Information Retrieval Series, Vol. 41. Springer, Berlin. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  574. N. Ferro and M. Sanderson. 2017. Sub-corpora impact on system effectiveness. In N. Kando, T. Sakai, H. Joho, H. Li, A. P. de Vries, and R. W. White (Eds.), Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 901–904. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  575. N. Ferro and M. Sanderson. 2019. Improving the accuracy of system performance estimation by using shards. In B. Piwowarski, M. Chevalier, E. Gaussier, Y. Maarek, J.-Y. Nie, and F. Scholer (Eds.), Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 805–814. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  576. N. Ferro and M. Sanderson. 2022. How do you test a test? A multifaceted examination of significance tests. In K. S. Candan, H. Liu, L. Akoglu, X. L. Dong, and J. Tang (Eds.), Proceedings of the 15th ACM International Conference on Web Search and Data Mining (WSDM ’22). ACM, New York, NY, 280–288. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  577. N. Ferro and G. Silvello. January. 2017. 3.5K runs, 5K topics, 3M assessments and 70M measures: What trends in 10 years of Adhoc-ish CLEF? Inf. Process. Manag. 53, 1, 175–202. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  578. N. Ferro, N. Fuhr, and A. Rauber. October. 2018a. Introduction to the special issue on reproducibility in information retrieval: Evaluation campaigns, collections, and analyses. ACM J. Data Inf. Qual. 10, 3, 9:1–9:4. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  579. N. Ferro, N. Fuhr, and A. Rauber. November. 2018b. Introduction to the special issue on reproducibility in information retrieval: Tools and infrastructures. ACM J. Data Inf. Qual. 10, 4, 14:1–14:4. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  580. N. Ferro, Y. Kim, and M. Sanderson. May. 2019. Using collection shards to study retrieval performance effect sizes. ACM Trans. Inf. Syst. 37, 3, 30:1–30:40. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  581. N. Ferro, J. Gonzalo, J. Karlgren, and H. Müller. 2024. The CLEF 2024 monster track: One lab to rule them all. In N. Goharian, N. Tonellotto, Y. He, A. Lipani, G. McDonald, C. Macdonald, and I. Ounis (Eds.), Advances in Information Retrieval (ECIR ’24), Vol. 14613: Lecture Notes in Computer Science. Springer, Cham. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  582. I. Fette, N. Sadeh, and A. Tomasic. 2007. Learning to detect phishing emails. In Proceedings of the 16th International Conference on World Wide Web (WWW ’07). ACM, New York, NY, 649–656. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  583. A. S. Fiksdal, A. Kumbamu, A. S. Jadhav, C. Cocos, L. A. Nelsen, J. Pathak, and J. B. McCormick. October. 2014. Evaluating the process of online health information searching: A qualitative approach to exploring consumer perspectives. J. Med. Internet Res. 16, 10, e224. https://www.jmir.org/2014/10/e224/.Google ScholarGoogle ScholarCross RefCross Ref
  584. A. Filipkowski. 2019. Redefining Visual Search in Adobe Stock by Creating Innovative Image Similarity Technology. Technical Report. Adobe Tech Blog.Google ScholarGoogle Scholar
  585. J. A. Fine and M. F. Hunt. 2023. Negativity and elite message diffusion on social media. Polit. Behav. 45, 3, 955–973. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  586. V. Fionda, O. Hartig, R. Abdolazimi, S. Amer-Yahia, H. Chen, X. Chen, P. Cui, J. Dalton, X. L. Dong, L. Espin-Noboa, W. Fan, M. Fritz, Q. Gan, J. Gao, X. Guo, T. Hahmann, J. Han, S. Han, E. Hruschka, L. Hu, J. Huang, U. Jaimini, O. Jeunen, Y. Jiang, F. Karimi, G. Karypis, K. Kenthapadi, H. Lakkaraju, H. W. Lauw, T. Le, T.-H. Le, D. Lee, G. Lee, L. Levontin, C.-T. Li, H. Li, Y. Li, J. C. Liao, Q. Liu, U. Lokala, B. London, S. Long, H. K. Mcginty, Y. Meng, S. Moon, U. Naseem, P. Natarajan, B. Omidvar-Tehrani, Z. Pan, D. Parekh, J. Pei, T. Peixoto, S. Pemberton, J. Poon, F. Radlinski, F. Rossetto, K. Roy, A. Salah, M. Sameki, A. Sheth, C. Shimizu, K. Shin, D. Song, J. Stoyanovich, D. Tao, J. Trippas, Q. Truong, Y.-C. Tsai, A. Uchendu, B. Van Den Akker, L. Wang, M. Wang, S. Wang, X. Wang, I. Weber, H. Weld, L. Wu, D. Xu, E. Y. Xu, S. Xu, B. Yang, K. Yang, E. Yom-Tov, J. Yoo, Z. Yu, R. Zafarani, H. Zamani, M. Zehlike, Q. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, L. Zhao, X. Zhao, and W. Zhu. 2023. Tutorials at the Web Conference 2023. In Companion Proceedings of the ACM Web Conference 2023 (WWW ’23 Companion). ACM, New York, NY, 648–658. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  587. N. Fiorini and Z. Lu, April. 2018. Personalized neural language models for real-world query auto completion. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 3 (Industry Papers). Association for Computational Linguistics, 208–215. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  588. N. Fiorini, K. Canese, G. Starchenko, E. Kireev, W. Kim, V. Miller, M. Osipov, M. Kholodov, R. Ismagilov, S. Mohan, J. Ostell, and Z. Lu. August. 2018. Best match: New relevance search for PubMed. PLoS Biol. 16, 8, e2005343. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  589. R. A. Fisher. 1925. Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh, UK.Google ScholarGoogle Scholar
  590. R. A. Fisher. 1935. The Design of Experiments. Oliver & Boyd, Edinburgh, UK.Google ScholarGoogle Scholar
  591. S. Flaxman, S. Goel, and J. M. Rao. 2016. Filter bubbles, echo chambers, and online news consumption. Public Opin. Q. 80, S1, 298–320. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  592. D. Fleder and K. Hosanagar. 2009. Blockbuster culture’s next rise or fall: The impact of recommender systems on sales diversity. Manage. Sci. 55, 5, 697–712. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  593. A. Flexer and T. Grill. 2016. The problem of limited inter-rater agreement in modelling music similarity. J. New Music Res. 45, 3, 239–251. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  594. A. Flexer and T. Lallai. 2019. Can we increase inter- and intra-rater agreement in modeling general music similarity? In Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands. ISMIR, 494–500. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  595. A. Flexer, T. Lallai, and K. Rašl. 2021. On evaluation of inter- and intra-rater agreement in music recommendation. Trans. Int. Soc. Music Inf. Retr. 4, 1, 182–194. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  596. K. Flynn. 2018. The Big Con: How Tech Companies Made a Killing by Fudging Their Numbers. Retrieved from https://mashable.com/article/silicon-valley-companies-misleading-metrics.Google ScholarGoogle Scholar
  597. P. W. Foltz and S. T. Dumais. 1992. Personalized information delivery: An analysis of information filtering methods. Commun. ACM 35, 12, 51–60. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  598. T. Formal, B. Piwowarski, and S. Clinchant. 2021. SPLADE: Sparse lexical and expansion model for first stage ranking. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 2288–2292. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  599. P. Forner, A. Peñas, E. Agirre, I. Alegria, C. Forascu, N. Moreau, P. Osenova, P. Prokopidis, P. Rocha, B. Sacaleanu, R. Sutcliffe, and E. Sang. January. 2008. Overview of the CLEF 2008 multilingual question answering track. In Proceedings of the 9th Cross-language Evaluation Forum Conference on Evaluating Systems for Multilingual and Multimodal Information Access (CLEF ’08), Vol. 5706: Lecture Notes in Computer Science. Springer-Verlag, Berlin, 262–295. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  600. S. Fox. February. 2011. Health Topics. Pew Research Center: Internet, Science & Tech. Retrieved April 25, 2021 from https://www.pewresearch.org/internet/2011/02/01/health-topics-2/.Google ScholarGoogle Scholar
  601. S. Fox and M. Duggan. January. 2013. Health Online 2013. Pew Research Center: Internet, Science & Tech. Retrieved September 22, 2020 from https://www.pewresearch.org/internet/2013/01/15/health-online-2013/.Google ScholarGoogle Scholar
  602. S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White. 2005. Evaluating implicit measures to improve web search. ACM Trans. Inf. Syst. 23, 2, 147–168. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  603. R. Francesco, R. Lior, and S. Bracha. 2022. Recommender systems: Techniques, applications, and challenges. In F. Ricci, L. Rokach, and Shapira, B. (Eds.), Recommender Systems Handbook. Springer, New York, NY, 1–35. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  604. E. Freeman and S. Fertig. 1995. Lifestreams: Organizing your electronic life. In R. Burke (Ed.), Papers from the AAAI Fall Symposium on AI Applications in Knowledge Navigation and Retrieval. AAAI Technical Report FS-95-03. Association for the Advancement of Artificial Intelligence, 38–44.Google ScholarGoogle Scholar
  605. E. Freeman and D. Gelernter. March. 1996. Lifestreams: A storage model for personal data. ACM SIGMOD Rec. 25, 80–86. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  606. J. Freire, N. Fuhr, and A. Rauber. 2016. Report from Dagstuhl Seminar 16041: Reproducibility of data-oriented experiments in e-science. Dagstuhl Reports 6, 1, 108–159. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Germany. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  607. Y. Freund, R. Iyer, R. E. Shapire, and Y. Singer. 1998. An efficient boosting algorithm for combining preferences. In Proceedings of the 15th International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco, CA, 170–178.Google ScholarGoogle Scholar
  608. M. Fricke. 2009. The knowledge pyramid: A critique of the DIKW hierarchy. J. Inf. Sci. 35, 2, 131–142. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  609. S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian. 2021. The (im)possibility of fairness: Different value systems require different mechanisms for fair decision making. Commun. ACM 64, 4, 136–143. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  610. B. Friedman and H. Nissenbaum. July. 1996. Bias in computer systems. ACM Trans. Inf. Syst. 14, 3, 330–347. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  611. M. Friedman. December. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 200, 675–701. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  612. M. Friedman. March. 1939. A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 34, 205, 109. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  613. M. Fröbe, J. H. Reimer, S. MacAvaney, N. Deckers, S. Reich, J. Bevendorff, B. Stein, M. Hagen, and M. Potthast. 2023. The information retrieval experiment platform. In H.-H. Chen, W.-J. (Edward) Duh, H.-H. Huang, M. P. Kato, J. Mothe, and B. Poblete (Eds.), Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’23). ACM, New York, NY, 2826–2836. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  614. A. Frummet, D. Elsweiler, and B. Ludwig. 2019. Detecting domain-specific information needs in conversational search dialogues. In Proceedings of the 3rd Workshop on Natural Language for Artificial Intelligence, Vol. 2521. CEUR-WS.org.Google ScholarGoogle Scholar
  615. G. Fu, C. Batchelor, M. Dumontier, J. Hastings, E. Willighagen, and E. Bolton. 2015. PubChemRDF: Towards the semantic annotation of PubChem compound and substance databases. J. Cheminform. 7, 34. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  616. N. Fuhr. December. 2012. Salton award lecture information retrieval as engineering science. SIGIR Forum 46, 2, 19–28. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  617. N. Fuhr. December. 2017. Some common mistakes in IR evaluation, and how they can be avoided. SIGIR Forum 51, 3, 32–41. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  618. G. W. Furnas, S. C. Deerwester, S. T. Dumais, T. K. Landauer, R. A. Harshman, L. A. Streeter, and K. E. Lochbaum. 1988. Information retrieval using a singular value decomposition model of latent semantic structure. In Y. Chiaramella (Ed.), Proceedings of the 11th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’88). ACM, New York, NY, 465–480. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  619. E. Gabber, M. Jakobsson, Y. Matias, and A. Mayer. 1998. Curbing junk e-mail via secure classification. In Proceedings of the 2nd International Conference on Financial Cryptography, Vol. 1465: Lecture Notes in Computer Science. Springer, Berlin, 198–213. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  620. A. Gabrielsson. 2001. Emotion perceived and emotion felt: Same or different? Music Sci. 5(1˙suppl), 123–147. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  621. J. Gaito. March. 1959. Non-parametric methods in psychological research. Psychol. Rep. 5, 1, 115–125. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  622. J. Gaito. 1980. Measurement scales and statistics: Resurgence of an old misconception. Psychol. Bull. 87, 3, 564–567. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  623. P. Galuščáková, D. W. Oard, J. Barrow, S. Nair, H.-C. Shing, E. Zotkina, R. Eskander, and R. Zhang. 2020. MATERIALizing cross-language information retrieval: A snapshot. In Proceedings of the Workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS ’20). European Language Resources Association, 14–21.Google ScholarGoogle Scholar
  624. C. A. Gao, F. M. Howard, N. S. Markov, E. C. Dyer, S. Ramesh, Y. Luo, and A. T. Pearson. 2023a. Comparing scientific abstracts generated by ChatGPT to real abstracts with detectors and blinded human reviewers. NPJ Digit. Med. 6, 1, 75. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  625. J. Gao, C. Xiong, P. Bennet, and N. Craswell. 2022. Neural Approaches to Conversational Information Retrieval. Springer, Cham. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  626. L. Gao, Z. Dai, and J. Callan. 2021. COIL: Revisit exact lexical match in information retrieval with contextualized inverted list. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 3030–3042. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  627. N. Gao, D. W. Oard, and M. Dredze. 2017. Support for interactive identification of mentioned entities in conversational speech. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 953–956. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  628. T. Gao, H. Yen, J. Yu, and D. Chen. May. 2023b. Enabling large language models to generate text with citations. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 6465–6488. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  629. Y. Gao, B. Zhu, W. Li, K. Li, Y. Wu, and F. Huang. 2019. Vocal melody extraction via DNN-based pitch estimation and salience-based pitch refinement. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019). IEEE, 1000–1004. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  630. F. Garcin, B. Faltings, O. Donatsch, A. Alazzawi, C. Bruttin, and A. Huber. 2014. Offline and online evaluation of news recommender systems at swissinfo.ch. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14). ACM, New York, NY, 169–176. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  631. P. L. Gardner. Winter. 1975. Scales and statistics. Rev. Educ. Res. 45, 1, 43–57. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  632. D. Gardner-Bonneau and H. E. Blanchard. 2007. Human Factors and Voice Interactive Systems. Springer, New York, NY. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  633. D. Garg, P. Gupta, P. Malhotra, L. Vig, and G. Shroff. 2019. Sequence and time aware neighborhood for session-based recommendations: STAN. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, (SIGIR ’19). ACM, New York, NY, 1069–1072. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  634. M. Ge, C. Delgado-Battenfeld, and D. Jannach. 2010. Beyond accuracy: Evaluating recommender systems by coverage and serendipity. In Proceedings of the 4th ACM Conference on Recommender Systems (RecSys ’10). ACM, New York, NY, 257–260. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  635. M. Ge, D. Jannach, F. Gedikli, and M. Hepp. 2012. Effects of the placement of diverse items in recommendation lists. In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS ’12). SciTePress, 201–208. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  636. Z. Ge, W. Zhou, J. Lute, and A. Ilardi. 2021. Relevance constrained re-ranking in sponsored listing recommendations. In Proceedings of ADKDD (ADKDD ’21). ACM, New York, NY. DOI: .Google ScholarGoogle Scholar
  637. J. Gemmell, G. Bell, and R. Lueder. January. 2006. MyLifeBits: A personal database for everything. Commun. ACM 49, 1, 88–95. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  638. A. Gersho and R. M. Gray. 1992. Vector Quantization and Signal Compression. Kluwer.Google ScholarGoogle Scholar
  639. F. Gey, R. Larson, N. Kando, J. Machado, and T. Sakai. July. 2010. NTCIR8-GeoTime overview: Evaluating geographic and temporal search. In Proceedings of NTCIR-8 Workshop. NTCIR, 147–153.Google ScholarGoogle Scholar
  640. F. Gey, R. Larson, J. Machado, and M. Yoshio. January. 2011. NTCIR9-GeoTime overview: Evaluating geographic and temporal search: Round 2. In Proceedings of NTCIR-9 Workshop. NTCIR, 9–17.Google ScholarGoogle Scholar
  641. F. C. Gey. 1994. Inferring probability of relevance using the method of logistic regression. In Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’94). Springer, London, UK, 222–231. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  642. F. C. Gey and A. Chen. February. 2001. TREC-9 cross-language information retrieval (English-Chinese) overview. In E. M. Voorhees and D. K. Harman (Eds.), Proceedings of the Ninth Text REtrieval Conference (TREC-9), Special Publication 500-249. National Institute of Standards and Technology, Gaithersburg, MD.Google ScholarGoogle Scholar
  643. F. C. Gey and D. W. Oard. February. 2002. The TREC-2001 cross-language information retrieval track: Searching Arabic using English, French or Arabic queries. In E. M. Voorhees and D. K. Harman (Eds.), Proceedings of the Tenth Text REtrieval Conference (TREC 2001), Special Publication 500-250. National Institute of Standards and Technology, Gaithersburg, MD.Google ScholarGoogle Scholar
  644. B. Gfeller, C. Frank, D. Roblek, M. Sharifi, M. Tagliasacchi, and M. Velimirović. 2020a. Pitch estimation via self-supervision. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3527–3531. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  645. B. Gfeller, C. Frank, D. Roblek, M. Sharifi, M. Tagliasacchi, and M. Velimirović. 2020b. SPICE: Self-supervised pitch estimation. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 1118–1128. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  646. D. G. Ghalandari and G. Ifrim. 2020. Examining the state-of-the-art in news timeline summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL ’20), July 5–10, 2020. Association for Computational Linguistics, 1322–1334. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  647. N. Ghanem, S. Leitner, and D. Jannach. 2022. Balancing consumer and business value of recommender systems: A simulation-based analysis. Electron. Commer. Res. Appl. 55, 101195. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  648. S. N. Ghasemtabar, M. Hosseini, I. Fayyaz, S. Arab, H. Naghashian, and Z. Poudineh. 2015. Music therapy: An effective approach in improving social skills of children with autism. Adv. Biomed. Res. 4, 157. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  649. D. Giampiccolo, P. Forner, J. Herrera, A. Peñas, C. Ayache, C. Forascu, V. Jijkoun, P. Osenova, P. Rocha, B. Sacaleanu, and R. Sutcliffe. 2008. Overview of the CLEF 2007 multilingual question answering track. In C. Peters, V. Jijkoun, T. Mandl, H. Müller, D. W. Oard, A. Peñas, V. Petras, and D. Santos (Eds.), Advances in Multilingual and Multimodal Information Retrieval, Vol. 5152: Lecture Notes in Computer Science. Springer, Berlin, 200–236. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  650. D. Gibbon, R. Moore, and R. Winski. 1997. Handbook of Standards and Resources for Spoken Language Systems. Walter de Gruyter.Google ScholarGoogle Scholar
  651. J. D. Gibbons and S. Chakraborti. 2011. Nonparametric Statistical Inference (5th. ed.). Chapman & Hall/CRC, Taylor and Francis Group, Boca Raton, FL.Google ScholarGoogle Scholar
  652. E. Gibney. January. 2020. This AI researcher is trying to ward off a reproducibility crisis. Nature 577, 14. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  653. L. Gienapp, H. Scells, N. Deckers, J. Bevendorff, S. Wang, J. Kiesel, S. Syed, M. Fröbe, G. Zucoon, B. Stein, M. Hagen, and M. Potthast. November. 2023. Evaluating generative ad hoc information retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24). ACM, New York, NY, 1916–1929. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  654. D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole. 1991. Semantic file systems. In Proceedings of the 13th ACM Symposium on Operating Systems Principles (SOSP ’91). ACM, New York, NY, 16–25. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  655. R. Gilabert, J. Barón, and À. Llanes. 2009. Manipulating cognitive complexity across task types and its impact on learners’ interaction during oral performance. Int. Rev. Appl. Linguist. Lang. Teach. 47, 3–4, 367–395. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  656. D. Gillick, S. Kulkarni, L. Lansing, A. Presta, J. Baldridge, E. Ie, and D. Garcia-Olano. 2019. Learning dense representations for entity retrieval. In Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL ). Association for Computational Linguistics, 528–537. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  657. A. Gilotte, C. Calauzènes, T. Nedelec, A. Abraham, and S. Dollé. 2018. Offline A/B testing for recommender systems. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM ’18). ACM, New York, NY, 198–206. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  658. A. Ginart, M. Guan, G. Valiant, and J. Y. Zou. 2019. Making AI forget you: Data deletion in machine learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.), Advances in Neural Information Processing Systems, Vol. 32. Curran Associates, Red Hook, NY.Google ScholarGoogle Scholar
  659. F. Giner. 2023. Information retrieval evaluation measures defined on some axiomatic models of preferences. ACM Trans. Inf. Syst. 42, 3, 1–35. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  660. C. Gini. 1936. On the measure of concentration with special reference to income and statistics. Colorado Coll. Publ. Gen. Ser. 208, 1, 73–79.Google ScholarGoogle Scholar
  661. A. Gkiokas and V. Katsouros. 2017. Convolutional neural networks for real-time beat tracking: A dancing robot application. In Proceedings of the 18th ISMIR Conference. ISMIR, 286–293. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  662. A. Gkiokas, V. Katsouros, and G. Carayannis. 2012a. Reducing tempo octave errors by periodicity vector coding and SVM learning. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), Porto, Portugal. ISMIR, 301–306. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  663. A. Gkiokas, V. Katsouros, G. Carayannis, and T. Stajylakis. 2012b. Music tempo estimation and beat tracking by applying source separation and metrical relations. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 421–424. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  664. A. Gkiokas, V. Katsouros, and G. Carayannis. 2016. Towards multi-purpose spectral rhythm features: An application to dance style, meter and tempo estimation. IEEE/ACM Trans. Audio Speech Lang. Process. 24, 11, 1885–1896. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  665. S. Goel, A. Broder, E. Gabrilovich, and B. Pang. 2010. Anatomy of the long tail: Ordinary people with extraordinary tastes. In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM ’10). ACM, New York, NY, 201–210. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  666. L. Goeuriot, L. Kelly, H. Suominen, L. Hanlen, A. Névéol, C. Grouin, J. Palotti, and G. Zuccon. 2015. Overview of the CLEF eHealth evaluation lab 2015. In J. Mothe, J. Savoy, J. Kamps, K. Pinel-Sauvagnat, G. Jones, E. San Juan, L. Capellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction, Vol. 9283: Lecture Notes in Computer Science. Springer, Cham, 429–443. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  667. L. Goeuriot, L. Kelly, H. Suominen, A. Névéol, A. Robert, E. Kanoulas, R. Spijker, J. Palotti, and G. Zuccon. August. 2017. CLEF 2017 eHealth evaluation lab overview. In Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF ’17), Vol. 10456: Lecture Notes in Computer Science. Springer, Cham, 291–303. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  668. L. Goeuriot, H. Suominen, L. Kelly, A. Miranda-Escalada, M. Krallinger, Z. Liu, G. Pasi, G. González Sáez, M. Viviani, and C. Xu. 2020. Overview of the CLEF eHealth evaluation lab 2020. In A. Arampatzis, E. Kanoulas, T. Tsikrika, S. Vrochidis, H. Joho, C. Lioma, C. Eickhoff, A. Névéol, L. Cappellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the 11th International Conference of the CLEF Association (CLEF ’20), Vol. 12260: Lecture Notes in Computer Science. Springer, Heidelberg, 255–271. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  669. A. Goker and J. Davies. 2009. Information Retrieval: Searching in the 21st Century. John Wiley & Sons.Google ScholarGoogle ScholarDigital LibraryDigital Library
  670. D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. 1992. Using collaborative filtering to weave an information tapestry. Commun. ACM 35, 12, 61–70. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  671. M. Golebiewski and D. Boyd. 2019. Data Voids: Where Missing Data Can Easily Be Exploited. Technical Report. Data & Society Research Institute.Google ScholarGoogle Scholar
  672. E. Gómez and P. Herrera. 2006. The song remains the same: Identifying versions of the same piece using tonal descriptors. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 180–185. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  673. E. Gómez, B. Ong, and P. Herrera. 2006. Automatic tonal analysis from music summaries for version identification. In Audio Engineering Society (AES) 121st Convention, Paper no. 6902. Audio Engineering Society.Google ScholarGoogle Scholar
  674. E. Gómez, M. Blaauw, J. Bonada, P. Chandna, and H. Cuesta. 2018. Deep learning for singing processing: Achievements, challenges and impact on singers and listeners. arXiv:1807.03046. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  675. E. Gómez, A. Holzapfel, M. Miron, and B. L. T. Sturm, November. 2019. Fairness, accountability and transparency in music information research (FAT-MIR). In Tutorial at the International Society for Music Information Retrieval Conference. International Society for Music Information Retrieval, 20–21.Google ScholarGoogle Scholar
  676. E. Gómez, C. S. Zhang, L. Boratto, M. Salamó, and G. Ramos. 2022. Enabling cross-continent provider fairness in educational recommender systems. Future Gener. Comput. Syst. 127, 435–447. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  677. J. S. Gómez-Cañón, E. Cano, P. Herrera, and E. Gómez. 2020. Joyful for you and tender for us: The influence of individual characteristics and language on emotion labeling and classification. In Proceedings of the 21st International Society for Music Information Retrieval Conference, Montréal, Canada. ISMIR, 853–860. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  678. J. S. Gómez-Cañón, E. Cano, T. Eerola, P. Herrera, X. Hu, Y.-H. Yang, and E. Gómez. 2021a. Music emotion recognition: Toward new, robust standards in personalized and context-sensitive applications. IEEE Signal Process. Mag. 38, 6, 106–114. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  679. J. S. Gómez-Cañón, E. Cano, A. G. Pandrea, P. Herrera, and E. Gómez. 2021b. Language-sensitive music emotion recognition models: Are we really there yet? In Proceedings of the 46th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 576–580. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  680. J. S. Gómez-Cañón, E. Cano, Y.-H. Yang, P. Herrera, and E. Gómez. 2021c. Let’s agree to disagree: Consensus entropy active learning for personalized music emotion recognition. In Proceedings of the 22nd International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 237–245. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  681. J. S. Gómez-Cañón, N. Gutiérrez-Páez, L. Porcaro, E. Cano, P. Herrera-Boyer, A. Gkiokas, P. Santos, D. Hernández-Leo, C. Karreman, and E. Gómez. 2022. TROMPA-MER: An open dataset for personalized music emotion recognition. J. Intell. Inf. Syst. 60, 2, 549–577. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  682. C. A. Gomez-Uribe and N. Hunt. 2015. The Netflix recommender system: Algorithms, business value, and innovation. ACM Trans. Manag. Inf. Syst. 6, 4, 13:1–13:19. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  683. W. Gong, E.-P. Lim, and F. Zhu. August. 2021. Characterizing silent users in social media communities. Proc. Int. AAAI Conf. Web Soc. Media 9, 1, 140–149. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  684. J. Gonzalo and D. W. Oard. 2004. iCLEF 2004 track overview: Interactive cross-language question answering. In F. Borri, C. Peters, and N. Ferro (Eds.), Working Notes for CLEF 2004 Workshop Co-located with the 8th European Conference on Digital Libraries (ECDL 2004), Bath, UK, September 15–17, 2004. CEUR Workshop Proceedings, Vol. 1170. CEUR-WS.org.Google ScholarGoogle Scholar
  685. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative adversarial networks. Commun. ACM 63, 11, 139–144. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  686. R. S. Goodman, J. R. Patrinely, C. A. Stone, E. Zimmerman, R. R. Donald, S. S. Chang, S. T. Berkowitz, A. P. Finn, E. Jahangir, E. A. Scoville, T. S. Reese, D. L. Friedman, J. A. Bastarache, Y. F. van der Heijden, J. J. Wright, F. Ye, N. Carter, M. R. Alexander, J. H. Choe, C. A. Chastain, J. A. Zic, S. N. Horst, I. Turker, R. Agarwal, E. Osmundson, K. Idrees, C. M. Kiernan, C. Padmanabhan, C. E. Bailey, C. E. Schlegel, L. B. Chambless, M. K. Gibson, T. J. Osterman, L. E. Wheless, and D. B. Johnson. 2023. Accuracy and reliability of chatbot responses to physician questions. JAMA Netw. Open 6, 10, e2336483. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  687. S. N. Goodman, D. Fanelli, and J. P. Ioannidis. 2016. What does research reproducibility mean? Sci. Transl. Med. 8, 341, 341ps12. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  688. C. Gormley and Z. Tong. 2015. Elasticsearch: The Definitive Guide: A Distributed Real-Time Search and Analytics Engine. O’Reilly Media.Google ScholarGoogle Scholar
  689. S. Gosper, J. R. Trippas, H. Richards, F. Allison, C. Sear, S. Khorasani, and F. Mattioli. 2021. Understanding the utility of digital flight assistants: A preliminary analysis. In Proceedings of the 3rd Conference on Conversational User Interfaces (CUI ’21). ACM, New York, NY, 32:1–32:5. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  690. A. Goswami, N. Chittar, and C. H. Sung. 2011. A study on the impact of product images on user clicks for online shopping. In Proceedings of the 20th International Conference Companion on World Wide Web (WWW ’11). ACM, New York, NY, 45–46. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  691. M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka. 2002. RWC music database: Popular, classical and jazz music databases. In Proceedings of the 3rd International Conference on Music Information Retrieval (ISMIR ’02), Vol. 2. ISMIR, 287–288. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  692. F. Gouyon and S. Dixon. 2005. A review of automatic rhythm description systems. Comput. Music J. 29, 1, 34–54. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  693. F. Gouyon, A. P. Klapuri, S. Dixon, M. Alonso, G. Tzanetakis, C. Uhle, and P. Cano. 2006. An experimental comparison of audio tempo induction algorithms. IEEE Trans. Audio Speech Lang. Process. 14, 5, 1832–1844. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  694. Govind and M. Spaniol. 2017. ELEVATE: A framework for entity-level event diffusion prediction into foreign language communities. In Proceedings of the 9th International ACM Web Science Conference (WebSci ’17). ACM, New York, NY, 111–120. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  695. C. Grady and M. Lease. 2010. Crowdsourcing document relevance assessment with Mechanical Turk. In C. Callison-Burch and M. Dredze (Eds.), Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk (CSLDAMT ’10). Association for Computational Linguistics, 172–179.Google ScholarGoogle Scholar
  696. D. Graff, C. Cieri, S. Strassel, and N. Martey. 1999. The TDT-3 text and speech corpus. In Proceedings of the DARPA Broadcast News Workshop. Morgan Kaufmann, 57–60.Google ScholarGoogle Scholar
  697. N. Gramunt, A. Desiré Morera, E. Gómez, P. Herrera, E. Nebot, K. Fauria, D. Piromalli, and J. L. Molinuevo. 2019. Lifesoundtrack: An intergenerational musical experience to promote wellbeing in people with dementia while increasing community awareness. In Proceedings of the 14th International Conference on Alzheimer’s and Parkinson’s Diseases, Lisbon, Portugal.Google ScholarGoogle Scholar
  698. G. Grätzer. 2003. General Lattice Theory (2nd. ed.). Birkhäuser, Basel.Google ScholarGoogle Scholar
  699. P. P. Griffiths and B. W. Wade. 1976. An authorization mechanism for a relational database system. ACM Trans. Database Syst. 1, 3, 242–255. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  700. P. Grosche, M. Müller, and J. Serrà. 2012. Audio content-based music retrieval. In M. Müller, M. Goto, and M. Schedl (Eds.), Multimodal Music Processing, Vol. 3. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 157–174. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  701. M. R. Grossman, G. V. Cormack, and A. Roegiest. 2016. TREC 2016 total recall track overview. In Proceedings of the TREC. National Institute of Standards and Technology. https://trec.nist.gov/pubs/trec25/papers/Overview-TR.pdf.Google ScholarGoogle Scholar
  702. A. Gruson, P. Chandar, C. Charbuillet, J. McInerney, S. Hansen, D. Tardieu, and B. Carterette. 2019. Offline evaluation to make decisions about playlist recommendation algorithms. In Proceedings of the 12th ACM International Conference on Web Search and Data Mining (WSDM ’19). ACM, New York, NY, 420–428. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  703. Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann, J. Gao, and H. Poon. 2021. Domain-specific language model pretraining for biomedical natural language processing. ACM Trans. Comput. Healthc. 3, 1, 1–23. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  704. Z. Guan and E. Cutrell. 2007. An eye tracking study of the effect of target rank on web search. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’07). ACM, New York, NY, 417–420. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  705. A. Gunawardana and G. Shani. 2015. Evaluating recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (2nd. ed.). Springer, Boston, MA, 265–308. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  706. A. Gunawardana, G. Shani, and S. Yogev. 2022. Evaluating recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 547–601. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  707. F. Guo, C. Liu, and Y. M. Wang. 2009. Efficient multiple-click models in web search. In R. Baeza-Yates, P. Boldi, B. A. Ribeiro-Neto, and B. B. Cambazoglu (Eds.), Proceedings of the 2nd ACM International Conference on Web Search and Data Mining (WSDM ’09). ACM, New York, NY, 124–131. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  708. J. Guo, Y. Fan, Q. Ai, and W. B. Croft. 2016. A deep relevance matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM ’16). ACM, New York, NY, 55–64. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  709. J. Guo, Y. Fan, L. Pang, L. Yang, Q. Ai, H. Zamani, C. Wu, W. B. Croft, and X. Cheng. 2020. A deep look into neural ranking models for information retrieval. Inf. Process. Manag. 57, 6, 1–20. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  710. D. Gupta, S. Kumari, A. Ekbal, and P. Bhattacharyya. 2018. MMQA: A multi-domain multi-lingual question-answering framework for English and Hindi. In N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, and T. Tokunaga (Eds.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC ’18), Miyazaki, Japan. European Language Resources Association (ELRA).Google ScholarGoogle Scholar
  711. M. Gupta and M. Bendersky. 2015. Information retrieval with verbose queries. Found. Trends Inf. Retr. 9, 3–4, 209–354. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  712. P. Gupta, R. E. Banchs, and P. Rosso. 2017. Continuous space models for CLIR. Inf. Process. Manag. 53, 2, 359–370. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  713. P. Gupta, T. Dreossi, J. Bakus, Y.-H. Lin, and V. Salaka. 2020. Treating cold start in product search by priors. In Companion Proceedings of the Web Conference 2020 (WWW ’20). ACM, New York, NY, 77–78. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  714. I. Guy. 2016. Searching by talking: Analysis of voice queries on mobile web search. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 35–44. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  715. I. Guy. 2018. The characteristics of voice search: Comparing spoken with typed-in mobile web search queries. ACM Trans. Information Syst. 36, 3, 30:1–30:28. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  716. I. Guy. 2022. Social recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 835–870. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  717. K. Haan, February. 2023. Top Website Statistics for 2023. Retrieved from https://www.forbes.com/advisor/business/software/website-statistics/.Google ScholarGoogle Scholar
  718. S. W. Hainsworth and M. D. Macleod. 2004. Particle filtering applied to musical tempo tracking. EURASIP J. Adv. Signal Process. 2004, 15, 927847. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  719. A. Halevy, P. Norvig, and F. Pereira. 2009. The unreasonable effectiveness of data. IEEE Intell. Syst. 24, 8–12. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  720. A. Halfaker, O. Keyes, D. Kluver, J. Thebault-Spieker, T. T. Nguyen, K. Shores, A. Uduwage, and M. Warncke-Wang. 2015. User session identification based on strong regularities in inter-activity time. In A. Gangemi, S. Leonardi, A. Panconesi, K. Gummadi, and C. Zhai (Eds.), Proceedings of the 24th International Conference on World Wide Web (WWW ’15). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 410–418. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  721. L. Han, E. Maddalena, A. Checco, C. Sarasua, U. Gadiraju, K. Roitero, and G. Demartini. 2020. Crowd worker strategies in relevance judgment tasks. In J. Caverlee, X. Hu, M. Lalmas, and W. Wang (Eds.), Proceedings of the 13th ACM International Conference on Web Search and Data Mining (WSDM ’20). ACM, New York, NY, 241–249. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  722. L. Han, K. Roitero, U. Gadiraju, C. Sarasua, A. Checco, E. Maddalena, and G. Demartini. May. 2021. The impact of task abandonment in crowdsourcing. IEEE Trans. Knowl. Data Eng. 33, 5, 2266–2279. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  723. D. J. Hand. 1996. Statistics and the theory of measurement. J. R. Stat. Soc. Ser. A Stat. Soc. 159, 3, 445–492. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  724. D. K. Harman. February. 1995. Overview of the Third Text REtrieval Conference (TREC-3). In Proceedings of the Third Text REtrieval Conference (TREC-3), Special Publication 500-225. National Institute of Standards and Technology, Washington, DC, 1–19.Google ScholarGoogle ScholarCross RefCross Ref
  725. D. K. Harman. 2011. Information Retrieval Evaluation. Morgan & Claypool Publishers.Google ScholarGoogle Scholar
  726. F. M. Harper and J. A. Konstan. 2015. The MovieLens datasets: History and context. ACM Trans. Interact. Intell. Syst. 5, 4, 19:1–19:19. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  727. Z. S. Harris. 1954. Distributional structure. Word 10, 2–3, 146–162. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  728. C. Harris and P. Srinivasan. February. 2013. Using hybrid methods for relevance assessment in TREC Crowd’12. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Twenty-First Text REtrieval Conference Proceedings (TREC 2012), Special Publication 500-298. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  729. J. Harrison and V. Beraquet. 2010. Clinical librarians, a new tribe in the UK: Roles and responsibilities. Health Info. Libr. J. 27, 2, 123–132. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  730. S. P. Harter. 1992. Psychological relevance and information science. J. Am. Soc. Inf. Sci. 43, 9, 602–615. .Google ScholarGoogle ScholarCross RefCross Ref
  731. W. M. Hartmann. 1996. Pitch, periodicity, and auditory organization. J. Acoust. Soc. Am. 100, 6, 3491–3502. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  732. D. Hawking. February. 2001. Overview of the TREC-9 web track. In E. M. Voorhees and D. K. Harman (Eds.), Proceedings of the Ninth Text REtrieval Conference (TREC-9), Special Publication 500-249. National Institute of Standards and Technology, Washington, DC, 87–103.Google ScholarGoogle Scholar
  733. D. Hawking. 2011. Enterprise search. In R. Baeza-Yates and B. Ribeiro-Neto (Eds.), Modern Information Retrieval: The Concepts and Technology Behind Search (2nd. ed.). Addison-Wesley, 645–686.Google ScholarGoogle Scholar
  734. D. Hawking and N. Craswell. February. 2002. Overview of the TREC-2001 web track. In E. M. Voorhees and D. K. Harman (Eds.), Proceedings of the Tenth Text REtrieval Conference (TREC 2001), Special Publication 500-250. National Institute of Standards and Technology, Washington, DC, 61–67.Google ScholarGoogle Scholar
  735. C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-Z. A. Huang, S. Dieleman, E. Elsen, J. Engel, and D. Eck. 2019. Enabling factorized piano music modeling and generation with the MAESTRO dataset. In International Conference on Learning Representations.Google ScholarGoogle Scholar
  736. R. B. Haynes, K. A. McKibbon, C. J. Walker, N. Ryan, D. Fitzgerald, and M. F. Ramsden. January. 1990. Online access to MEDLINE in clinical settings. A study of use and usefulness. Ann. Intern. Med. 112, 1, 78–84. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  737. R. B. Haynes, N. Wilczynski, K. A. McKibbon, C. J. Walker, and J. C. Sinclair. December. 1994. Developing optimal search strategies for detecting clinically sound studies in MEDLINE. J. Am. Med. Inform. Assoc. 1, 6, 447–458. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  738. J. He and W. W. Chu. 2010. A social network-based recommender system (SNRS). In N. Memon, J. J. Xu, D. L. Hicks, and H. Chen (Eds.), Data Mining for Social Network Data. Springer, Boston, MA, 47–74. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  739. J. He, M. Bron, and A. P. de Vries. 2013. Characterizing stages of a multi-session complex search task through direct and indirect query modifications. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 897–900. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  740. R. He. 2018. PinSage: A New Graph Convolutional Neural Network for Web-Scale Recommender Systems. Technical Report. Pinterest.Google ScholarGoogle Scholar
  741. R. He and J. McAuley. 2016. Fusing similarity models with Markov chains for sparse sequential recommendation. In Proceedings of the 16th IEEE International Conference on Data Mining (ICDM ’16). IEEE, 191–200. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  742. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web (WWW ’17). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 173–182. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  743. M. Hearst. 2009. Search User Interfaces. Cambridge University Press.Google ScholarGoogle Scholar
  744. M. H. Heine. March. 1973. Distance between sets as an objective measure of retrieval effectiveness. Inf. Storage Retr. 9, 3, 181–198. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  745. B. M. Hemminger, D. Lu, K. Vaughan, and S. J. Adams. 2007. Information seeking behavior of academic scientists. J. Am. Soc. Inf. Sci. Technol. 58, 14, 2205–2225. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  746. D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. 2021. Measuring massive multitask language understanding. In S. Mohamed, K. Hofmann, A. Oh, N. Murray, and I. Titov (Eds.), Proceedings of the 9th International Conference on Learning Representations (ICLR ’21). OpenReview.net, https://openreview.net/group?id=ICLR.cc/2021/Conference.Google ScholarGoogle Scholar
  747. J. Henrich, S. J. Heine, and A. Norenzayan. 2010. The weirdest people in the world? Behav. Brain Sci. 33, 2–3, 61–83. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  748. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. 2004. Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22, 1, 5–53. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  749. J. M. Hernández-Lobato, N. Houlsby, and Z. Ghahramani. 2014. Probabilistic matrix factorization with non-random missing data. In Proceedings of the 31st International Conference on Machine Learning (ICML ’14). JMLR.org, Sheffield, UK, 1512–1520.Google ScholarGoogle Scholar
  750. P. Herrera. 2018. MIRages: An Account of Music Audio Extractors, Semantic Description and Context-Awareness, in the Three Ages of MIR. Ph.D. thesis. Universitat Pompeu Fabra, Spain.Google ScholarGoogle Scholar
  751. W. Hersh. 1994. Relevance and retrieval evaluation: Perspectives from medicine. J. Am. Soc. Inf. Sci. 45, 3, 201–206. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  752. W. Hersh. 2024. Search still matters: Information retrieval in the era of generative AI. J. Am. Med. Inform. Assoc. ocae014. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  753. W. Hersh and E. Voorhees. February. 2009. TREC genomics special issue overview. Inf. Retr. 12, 1, 1–15. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  754. W. Hersh, J. Pentecost, and D. Hickam. 1996. A task-oriented approach to information retrieval evaluation. J. Am. Soc. Inf. Sci. 47, 1, 50–56. .Google ScholarGoogle ScholarCross RefCross Ref
  755. W. Hersh, A. Turpin, S. Price, D. Kraemer, D. Olson, B. Chan, and L. Sacherek. May. 2001. Challenging conventional assumptions of automated information retrieval with real users: Boolean searching and batch retrieval evaluations. Inf. Process. Manag. 37, 3, 383–402. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  756. W. R. Hersh and R. A. Greenes. October. 1990. SAPHIRE—An information retrieval system featuring concept matching, automatic indexing, probabilistic retrieval, and hierarchical relationships. Comput. Biomed. Res. 23, 5, 410–425. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  757. W. R. Hersh and D. Hickam. 1995a. Information retrieval in medicine: The SAPHIRE experience. J. Am. Soc. Inf. Sci. 46, 10, 743–747. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  758. W. R. Hersh and D. H. Hickam. 1995b. An evaluation of interactive Boolean and natural language searching with an online medical textbook. J. Am. Soc. Inf. Sci. 46, 7, 478–489. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  759. W. R. Hersh and D. H. Hickam. October. 1998. How well do physicians use electronic information retrieval systems? A framework for investigation and systematic review. J. Am. Med. Assoc. 280, 15, 1347–1352. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  760. W. R. Hersh, M. K. Crabtree, D. H. Hickam, L. Sacherek, C. P. Friedman, P. Tidmarsh, C. Mosbaek, and D. Kraemer. June. 2002. Factors associated with success in searching MEDLINE and applying evidence to answer clinical questions. J. Am. Med. Inform. Assoc. 9, 3, 283–293. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  761. K. Hevner. 1936. Experimental studies of the elements of expression in music. Am. J. Psychol. 48, 2, 246–268. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  762. T. Hey, S. Tansley, and K. Tolle (Eds.). 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research.Google ScholarGoogle Scholar
  763. B. Hidasi and A. Karatzoglou. 2018. Recurrent neural networks with top-k gains for session-based recommendations. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, 843–852. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  764. D. Hiemstra, C. Hauff, and L. Azzopardi. 2017. Exploring the query halo effect in site search: Leading people to longer queries. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 981–984. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  765. R. Higashinaka, K. Imamura, T. Meguro, C. Miyazaki, N. Kobayashi, H. Sugiyama, T. Hirano, T. Makino, and Y. Matsuo. 2014. Towards an open-domain conversational system fully based on natural language processing. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland. Dublin City University and Association for Computational Linguistics, 928–939.Google ScholarGoogle Scholar
  766. D. N. Hill, H. Nassif, Y. Liu, A. Iyer, and S. V. N. Vishwanathan. 2017. An efficient bandit algorithm for realtime multivariate optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’17). ACM, New York, NY, 1813–1821. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  767. Y. Hochberg and A. C. Tamhane. 1987. Multiple Comparison Procedures. John Wiley & Sons. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  768. J. Hockman, M. E. Davies, and I. Fujinaga. 2012. One in the jungle: Downbeat detection in hardcore, jungle, and drum and bass. In Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR ’12). ISMIR, 169–174. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  769. J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo, and G. Weikum. 2011a. Yago2: Exploring and querying world knowledge in time, space, context, and many languages. In Proceedings of the 20th International Conference Companion on World Wide Web (WWW ’11). ACM, New York, NY, 229–232. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  770. J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol, S. Thater, and G. Weikum. 2011b. Robust disambiguation of named entities in text. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP ’11). Association for Computational Linguistics, 782–792.Google ScholarGoogle Scholar
  771. J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. 2013. YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  772. K. Hofmann, S. Whiteson, and M. de Rijke. 2011. Balancing exploration and exploitation in learning to rank online. In P. Clough, C. Foley, C. Gurrin, G. J. F. Jones, W. Kraaij, H. Lee, and V. Mudoch (Eds.), Advances in Information Retrieval (ECIR ’11), Vol. 6611: Lecture Notes in Computer Science. Springer, Berlin, 251–263. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  773. K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. 2013. Reusing historical interaction data for faster online learning to rank for IR. In S. Leonardi, A. Panconesi, P. Ferragina, and A. Gionis (Eds.), Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (WSDM ’13). ACM, New York, NY, 183–192. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  774. K. Hofmann, B. Mitra, F. Radlinski, and M. Shokouhi. 2014a. An eye-tracking study of user interactions with query auto completion. In Proceedings of the 23rd ACM International Conference on Information and Knowledge Management (CIKM ’14). ACM, New York, NY, 549–558. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  775. K. Hofmann, S. Whiteson, A. Schuth, and M. de Rijke. April. 2014b. Learning to rank for information retrieval from user interactions. ACM SIGWEB Newsl. 2014, Spring, 1–7. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  776. K. Hofmann, L. Li, and F. Radlinski. June. 2016. Online evaluation for information retrieval. Found Trends Inf. Retr. 10, 1, 1–117. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  777. T. Hofmann. 2004. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22, 1, 89–115. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  778. A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, J. E. L. Gayo, S. Kirrane, S. Neumaier, A. Polleres, R. Navigli, A.-C. N. Ngomo, S. M. Rashid, A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab, and A. Zimmermann. 2021. Knowledge graphs. ACM Comput. Surv. 54, 4, 1–37. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  779. C. Holland. April. 2005. Breakthrough Business Results with MVT: A Fast, Cost-Free, “Secret Weapon” for Boosting Sales, Cutting Expenses, and Improving Any Business Process. John Wiley & Sons, New York, NY.Google ScholarGoogle Scholar
  780. C. C. Holt. 2004. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 20, 1, 5–10. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  781. A. Holzapfel and Y. Stylianou. 2010. Scale transform in rhythmic similarity of music. IEEE Trans. Audio Speech Lang. Process. 19, 1, 176–185. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  782. A. Holzapfel, M. E. Davies, J. R. Zapata, J. L. Oliveira, and F. Gouyon. 2012. Selective sampling for beat tracking evaluation. IEEE Trans. Audio Speech Lang. Process. 20, 9, 2539–2548. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  783. A. Holzapfel, B. L. T. Sturm, and M. Coeckelbergh. 2018. Ethical dimensions of music information retrieval technology. Trans. Int. Soc. Music Inf. Retr. 1, 1, 44–55. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  784. J. Hong. January. 2012. The state of phishing attacks. Commun. ACM 55, 1, 74–81. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  785. L. Hong and M. Lalmas. 2019. Tutorial on. online user engagement: Metrics and optimization. In Companion Proceedings of the 2019 World Wide Web Conference (WWW ’19). ACM, New York, NY, 1303–1305. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  786. F. Hopfgartner, A. Hanbury, H. Müller, I. Eggel, K. Balog, T. Brodt, G. V. Cormack, J. Lin, J. Kalpathy-Cramer, N. Kando, M. P. Kato, A. Krithara, T. Gollub, M. Potthast, E. Viegas, and S. Mercer. November. 2018. Evaluation-as-a-service for the computational sciences: Overview and outlook. J. Data Inf. Qual. 10, 4, 1–32. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  787. A. M. Hopkins, J. M. Logan, G. Kichenadasse, and M. J. Sorich. 2023. Artificial intelligence chatbots will revolutionize how cancer patients access information: ChatGPT represents a paradigm-shift. JNCI Cancer Spectr. 7, 2, pkad010. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  788. Y. Hoshen and L. Wolf. 2018. Non-adversarial unsupervised word translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, 469–478. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  789. M. Hosseini, I. J. Cox, N. Milić-Frayling, G. Kazai, and V. Vinay. 2012. On aggregating labels from multiple crowd workers to infer relevance of documents. In R. Baeza-Yates, A. P. De Vries, H. Zaragoza, B. B. Cambazoglu, V. Murdock, R. Lempel, and F. Silvestri (Eds.), Advances in Information Retrieval, Vol. 7224: Lecture Notes in Computer Science. Springer, Berlin, 182–194. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  790. B.-J. Hsu and G. Ottaviano. 2013. Space-efficient data structures for top-k completion. In Proceedings of the 22nd International Conference on World Wide Web (WWW ’13). ACM, New York, NY, 583–594. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  791. C.-L. Hsu and J.-S. R. Jang. February. 2010. On the improvement of singing voice separation for monaural recordings using the MIR-1K dataset. IEEE Trans. Audio Speech Lang. Process. 18, 2, 310–319. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  792. J. C. Hsu. 1996. Multiple Comparisons. Theory and Methods. Chapman and Hall/CRC, New York. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  793. B. Hu, Z. Lu, H. Li, and Q. Chen. 2014. Convolutional neural network architectures for matching natural language sentences. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.), Proceedings of the 27th International Conference on Neural Information Processing Systems—Volume 2 (NIPS ’14). MIT Press, Cambridge, MA, 2042–2050.Google ScholarGoogle Scholar
  794. J. Hu, S. Ruder, A. Siddhant, G. Neubig, O. Firat, and M. Johnson. 2020a. Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalization. In Proceedings of the 37th International Conference on Machine Learning (ICML ’20). JMLR.org, 4411–4442.Google ScholarGoogle Scholar
  795. Q. Hu, H.-F. Yu, V. Narayanan, I. Davchev, R. Bhagat, and I. Dhillon. 2020b. Query transformation for multi-lingual product search. In The 2020 SIGIR Workshop on eCommerce, San Diego. ACM, New York, NY.Google ScholarGoogle Scholar
  796. R. Hu and P. Pu. 2011. Enhancing recommendation diversity with organization interfaces. In Proceedings of the 16th International Conference on Intelligent User Interfaces (IUI ’11). ACM, New York, NY, 347–350. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  797. S. Hu, C. Xiao, and Y. Ishikawa. January. 2018a. An efficient algorithm for location-aware query autocompletion. IEICE Trans. Inf. Syst. E101.D, 1, 181–192. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  798. X. Hu. 2010. Improving Music Mood Classification Using Lyrics, Audio and Social Tags. Ph.D. thesis. University of Illinois, Urbana, Illinois.Google ScholarGoogle Scholar
  799. X. Hu and Y.-H. Yang. 2017. Cross-dataset and cross-cultural music mood prediction: A case on Western and Chinese Pop Songs. IEEE Trans. Affect. Comput. 8, 2, 228–240. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  800. X. Hu, J. Downie, C. Laurier, M. Bay, and A. Ehmann. January. 2008a. The 2007 MIREX audio mood classification task: Lessons learned. In Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR ’08), Drexel University, Philadelphia, PA. ISMIR, 462–467. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  801. Y. Hu, Y. Koren, and C. Volinsky. 2008b. Collaborative filtering for implicit feedback datasets. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM ’08). IEEE, Washington, DC, 228–240. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  802. Y. Hu, C. Xiao, and Y. Ishikawa. 2018b. Context-sensitive query auto-completion with knowledge base. In Proceedings of the 10th Forum on Data Engineering and Information Management (the 16th Annual Meeting of Database Society of Japan), Awara, Japan.Google ScholarGoogle Scholar
  803. P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. 2013. Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM International Conference on Information & Knowledge Management (CIKM ’13). ACM, New York, NY, 2333–2338. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  804. Z. Huang and N. Mamoulis. July. 2017. Location-aware query recommendation for search engines at scale. In 15th International Symposium in Advances in Spatial and Temporal Databases, Vol. 10411: Lecture Notes in Computer Science. Springer, Cham, 203–220. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  805. Z. Huang, B. Cautis, R. Cheng, Y. Zheng, N. Mamoulis, and J. Yan. August. 2018. Entity-based query recommendation for long-tail queries. ACM Trans. Knowl. Discov. Data 12, 6, 1–24. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  806. Z. Huang, H. Bonab, S. M. Sarwar, R. Rahimi, and J. Allan. 2021. Mixed attention transformer for leveraging word-level knowledge to neural cross-lingual information retrieval. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM ’21). ACM, New York, NY, 760–770. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  807. K. Hui, A. Yates, K. Berberich, and G. de Melo. 2017. PACRR: A position-aware neural IR model for relevance matching. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark. Association for Computational Linguistics, 1049–1058. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  808. K. Hui, A. Yates, K. Berberich, and G. de Melo. 2018. Co-PACRR: A context-aware neural IR model for ad-hoc retrieval. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM ’18). ACM, New York, NY, 279–287. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  809. D. A. Hull. 1993. Using statistical testing in the evaluation of retrieval experiments. In R. Korfhage, E. Rasmussen, and P. Willett (Eds.), Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’93). ACM, New York, NY, 329–338. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  810. S. Humeau, K. Shuster, M.-A. Lachaux, and J. Weston. 2019. Real-Time Inference in Multi-Sentence Tasks with Deep Pretrained Transformers. DeepAI Technical Report.Google ScholarGoogle Scholar
  811. E. J. Humphrey, O. Nieto, and J. P. Bello. 2013. Data driven and discriminative projections for large-scale cover song identification. In Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR ’13), Curitiba, Brazil. ISMIR, 149–154. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  812. B. L. Humphreys, D. A. Lindberg, H. M. Schoolman, and G. O. Barnett. February. 1998. The unified medical language system: An informatics research collaboration. J. Am. Med. Inform. Assoc. 5, 1, 1–11. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  813. B. L. Humphreys, G. Del Fiol, and H. Xu. October. 2020. The UMLS knowledge sources at 30: Indispensable to current research and applications in biomedical informatics. J. Am. Med. Inform. Assoc. 27, 10, 1499–1501. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  814. P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. 2010. Zookeeper: Wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference (USENIXATC ’10). USENIX Association, 11.Google ScholarGoogle Scholar
  815. S. Huo, N. Arabzadeh, and C. L. A. Clarke. 2023. Retrieving supporting evidence for generative question answering. In Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region (SIGIR-AP ’23). ACM, New York, NY, 11–20. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  816. N. Hurley and M. Zhang. 2011. Novelty and diversity in top-N recommendation—Analysis and evaluation. ACM Trans. Internet Technol. 10, 4, 1–30 pages. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  817. F. Huszár, S. I. Ktena, C. O’Brien, L. Belli, A. Schlaikjer, and M. Hardt. December. 2021. Algorithmic amplification of politics on Twitter. Proc. Natl. Acad. Sci. U. S. A. 119, 1, e2025334119. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  818. P. Indyk and R. Motwani. 1998. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (STOC ’98). ACM, New York, NY, 604–613. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  819. P. Ingwersen and K. Järvelin. 2005. The Turn: Integration of Information Seeking and Retrieval in Context. Springer, Dordrecht. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  820. P. G. Ipeirotis and E. Gabrilovich. 2014. Quizz: Targeted crowdsourcing with a billion (potential) users. In C.-W. Chung, A. Broder, K. Shim, and T. Suel (Eds.), Proceedings of the 23rd International Conference on World Wide Web (WWW ’14). ACM, New York, NY, 143–154. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  821. A. Ismayilov, D. Kontokostas, S. Auer, J. Lehmann, and S. Hellmann. 2018. Wikidata through the eyes of DBpedia. Semant. Web. 9, 4, 493–503. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  822. P. K. Ito. 1980. 7 Robustness of ANOVA and MANOVA test procedures. Handb. Stat. 1, 199–236. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  823. M. Izawa. 2010. What Makes Viral Videos Viral?: Roles of Emotion, Impression, Utility, and Social Ties in Online Sharing Behavior. Master’s thesis. Johns Hopkins University.Google ScholarGoogle Scholar
  824. A. Jadhav, D. Andrews, A. Fiksdal, A. Kumbamu, J. B. McCormick, A. Misitano, L. Nelsen, E. Ryu, A. Sheth, S. Wu, and J. Pathak. July. 2014. Comparative analysis of online health queries originating from personal computers and smart devices on a consumer health information portal. J. Med. Internet Res. 16, 7, e160. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  825. A. H. Jadidinejad, C. Macdonald, and I. Ounis. September. 2021. The Simpson’s paradox in the offline evaluation of recommendation systems. ACM Trans. Inf. Syst. 40, 1, 1–22. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  826. A. Jaech and M. Ostendorf. July. 2018. Personalized language model for query auto-completion. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia. Association for Computational Linguistics, 700–705. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  827. F. Jahanbakhsh, A. H. Awadallah, S. T. Dumais, and X. Xu. 2020. Effects of past interactions on user experience with recommended documents. In Proceedings of the 2020 Conference on Human Information Interaction and Retrieval (CHIIR20). ACM, New York, NY, 153–162. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  828. D. Jannach and G. Adomavicius. 2016. Recommendations with a purpose. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16). ACM, New York, NY, 7–10. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  829. D. Jannach and G. Adomavicius. 2017. Price and profit awareness in recommender systems. In Proceedings of the ACM RecSys 2017 Workshop on Value-Aware and Multi-Stakeholder Recommendation.Google ScholarGoogle Scholar
  830. D. Jannach and C. Bauer. 2020. Escaping the McNamara fallacy: Towards more impactful recommender systems research. AI Mag. 41, 4, 79–95. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  831. D. Jannach and K. Hegelich. 2009. A case study on the effectiveness of recommendations in the mobile internet. In Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys ’09). ACM, New York, NY, 205–208. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  832. D. Jannach and M. Jugovac. 2019. Measuring the business value of recommender systems. ACM Trans. Manage. Inf. Syst. 10, 4, 1–23. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  833. D. Jannach and M. Ludewig. 2017. When recurrent neural networks meet the neighborhood for session-based recommendation. In Proceedings of the 11th Recommender Systems Conference (RecSys ’17). ACM, New York, NY, 306–310. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  834. D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. 2010. Recommender Systems—An Introduction. Cambridge University Press. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  835. D. Jannach, M. Zanker, M. Ge, and M. Gröning. 2012. Recommender systems in computer science and information systems—A landscape of research. In E-Commerce and Web Technologies: EC-Web 2012. Springer, Berlin, 76–87. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  836. D. Jannach, L. Lerche, and I. Kamehkhosh. 2015a. Beyond “hitting the hits”: Generating coherent music playlist continuations with the right tracks. In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys ’15). ACM, New York, NY, 187–194. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  837. D. Jannach, L. Lerche, I. Kamehkhosh, and M. Jugovac. 2015b. What recommenders recommend: An analysis of recommendation biases and possible countermeasures. User Model. User-Adapt. Interact. 25, 5, 427–491. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  838. D. Jannach, S. Naveed, and M. Jugovac. 2016a. User control in recommender systems: Overview and interaction challenges. In Proceedings of the 17th International Conference on Electronic Commerce and Web Technologies (EC-Web ’16). Springer, Cham, 21–33. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  839. D. Jannach, P. Resnick, A. Tuzhilin, and M. Zanker. 2016b. Recommender systems—Beyond matrix completion. Commun. ACM 59, 11, 94–102. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  840. D. Jannach, M. Ludewig, and L. Lerche. 2017. Session-based item recommendation in e-commerce: On short-term intents, reminders, trends, and discounts. User Model. User-Adapt. Interact. 27, 3–5, 351–392. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  841. D. Jannach, L. Lerche, and M. Zanker. 2018. Recommending based on implicit feedback. In P. Brusilovsky and D. He (Eds.), Social Information Access, Vol. 10100: Lecture Notes in Computer Science. Springer, Cham, 510–569. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  842. D. Jannach, S. Kallumadi, T. H. King, W. Luo, and S. Malmasi (Eds.). 2020. Proceedings of the SIGIR 2020 Workshop On eCommerce. CEUR-WS.org.Google ScholarGoogle Scholar
  843. D. Jannach, A. Manzoor, W. Cai, and L. Chen. 2021. A survey on conversational recommender systems. ACM Comput. Surv. 54, 5, 1–36. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  844. D. Jannach, P. Cremonesi, and M. Quadrana. 2022. Session-based recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd ed.). Springer, New York, NY, 301–224. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  845. B. J. Jansen, A. Spink, and V. Kathuria. 2006. How to define searching sessions on web search engines. In O. Nasraoui, M. Spiliopoulou, J. Srivastava, B. Mobasher, and B. M. Masand (Eds.), Advances in Web Mining and Web Usage Analysis, 8th International Workshop on Knowledge Discovery on the Web, WebKDD 2006, Philadelphia, PA, USA, August 20, 2006, Revised Papers, Vol. 4811: Lecture Notes in Computer Science. Springer, Berlin, 92–109. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  846. B. J. Jansen, A. Spink, C. Blakely, and S. Koshman. 2007. Defining a session on web search engines. J. Am. Soc. Inf. Sci. Technol. 58, 6, 862–871. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  847. K. Järvelin and J. Kekäläinen. October. 2002. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20, 4, 422–446. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  848. H. Jégou, M. Douze, and C. Schmid. 2011. Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1, 117–128. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  849. L. Jehl, F. Hieber, and S. Riezler. 2012. Twitter translation using translation-based cross-lingual retrieval. In Proceedings of the Seventh Workshop on Statistical Machine Translation (WMT ’12), Association for Computational Linguistics, 410–421.Google ScholarGoogle Scholar
  850. Z. Jia, S. Pramanik, R. S. Roy, and G. Weikum. 2021a. Complex temporal question answering on knowledge graphs. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM ’21), Virtual Event, Queensland, Australia, November 1–5, 2021. ACM, New York, NY, 792–802. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  851. C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le, Y. Sung, Z. Li, and T. Duerig. 2021b. Scaling up visual and vision-language representation learning with noisy text supervision. In Proceedings of the 38th International Conference on Machine Learning. JMLR.org, 4904–4916.Google ScholarGoogle Scholar
  852. C. Jiang, D. Yang, and X. Chen. 2020a. Learn a robust representation for cover song identification via aggregating local and global music temporal context. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), London, UK. IEEE, 1–6. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  853. J. Jiang and N. Ahuja. 2020. Response quality in human–chatbot collaborative systems. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1545–1548. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  854. J.-Y. Jiang, Y.-Y. Ke, P.-Y. Chien, and P.-J. Cheng. 2014. Learning user reformulation behavior for query auto-completion. In Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’14). ACM, New York, NY, 445–454. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  855. R. Jiang, S. Chiappa, T. Lattimore, A. György, and P. Kohli. 2019. Degenerate feedback loops in recommender systems. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’19). ACM, New York, NY, 383–390. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  856. Z. Jiang, A. El-Jaroudi, W. Hartmann, D. Karakos, and L. Zhao. May. 2020b. Cross-lingual information retrieval with BERT. In Proceedings of the Workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS2020), Marseille, France. European Language Resources Association, 26–31.Google ScholarGoogle Scholar
  857. Jimmy, G. Zuccon, J. Palotti, L. Goeuriot, and L. Kelly. 2018. Overview of the CLEF 2018 consumer health search task. In Working Notes of CLEF 2018—Conference and Labs of the Evaluation Forum, Avignon, France, September 10-14, 2018. CEUR-WS.org.Google ScholarGoogle Scholar
  858. Q. Jin, W. Kim, Q. Chen, D. C. Comeau, L. Yeganova, W. J. Wilbur, and Z. Lu. 2023a. MedCPT: Contrastive pre-trained transformers with large-scale PubMed search logs for zero-shot biomedical information retrieval. Bioinformatics 39, 11, btad651. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  859. Q. Jin, Z. Wang, C. S. Floudas, F. Chen, C. Gong, D. Bracken-Clarke, E. Xue, Y. Yang, J. Sun, and Z. Lu. 2023b. Matching patients to clinical trials with large language models. arXiv:2307.15051. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  860. T. Joachims. 2002. Optimizing search engines using clickthrough data. In O. Zaane, R. Goebel, D. Hand, D. Keim, and R. Ng (Eds.), Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’02). ACM, New York, NY, 133–142. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  861. T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. 2005. Accurately interpreting clickthrough data as implicit feedback. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’05). ACM, New York, NY, 154–161. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  862. T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. 2007. Evaluating the accuracy of implicit feedback from clicks and query reformulations in web search. ACM Trans. Inf. Syst. 25, 2, 7. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  863. T. Joachims, A. Swaminathan, and T. Schnabel. 2017. Unbiased learning-to-rank with biased feedback. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (WSDM ’17). ACM, New York, NY, 781–789. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  864. J. Johansen, T. Pedersen, and C. Johansen. 2021. Studying human-to-computer bias transference. AI Soc. 38, 1659–1683. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  865. J. Johnson, M. Douze, and H. Jégou. 2021. Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7, 3, 535–547. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  866. T. B. Johnson and C. Guestrin. 2018. Training deep models faster with robust, approximate importance sampling. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS ’18). Curran Associates, Red Hook, NY, 7276–7286.Google ScholarGoogle Scholar
  867. R. Jones, R. Kumar, B. Pang, and A. Tomkins. 2007. “I know what you did last summer”: Query logs and user privacy. In Proceedings of the 16th ACM Conference on Information and Knowledge Management (CIKM ’07). ACM, New York, NY, 909–914. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  868. S. M. Jones, M. Klein, M. C. Weigle, and M. L. Nelson. 2024. Summarizing web archive corpora via social media storytelling by automatically selecting and visualizing exemplars. ACM Trans. Web 18, 1, 1–48. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  869. M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. 2017. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. In R. Barzilay and K. Min-Yen (Eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, Canada. Association for Computational Linguistics, 1601–1611. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  870. A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. 2017. Bag of tricks for efficient text classification. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, Valencia, Spain. Association for Computational Linguistics, 427–431.Google ScholarGoogle Scholar
  871. A. Joulin, P. Bojanowski, T. Mikolov, H. Jégou, and E. Grave. 2018. Loss in translation: Learning bilingual word mapping with a retrieval criterion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium. Association for Computational Linguistics, 2979–2984. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  872. M. Jugovac and D. Jannach. 2017. Interacting with recommenders—Overview and research directions. ACM Trans. Interact. Intell. Syst. 7, 3, 1–46. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  873. M. Jugovac, D. Jannach, and L. Lerche. 2017. Efficient optimization of multiple recommendation quality factors according to individual user tendencies. Expert Syst. Appl. 81, 321–331. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  874. H. J. Jung and M. Lease. 2015. A discriminative approach to predicting assessor accuracy. In N. Fuhr, A. Rauber, G. Kazai, and A. Hanbury (Eds.), Advances in Information Retrieval. Proceedings of the 37th European Conference on IR Research (ECIR ’15), Vol. 9022: Lecture Notes in Computer Science. Springer, Cham, 159–171. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  875. P. N. Juslin. 2010. Handbook of Music and Emotion: Theory, Research, Applications. Oxford University Press, Oxford. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  876. P. N. Juslin. 2019. Musical Emotions Explained. Oxford University Press, Oxford. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  877. D. Kahneman. 2011. Thinking Fast and Slow. Farrar, Straus and Giroux.Google ScholarGoogle Scholar
  878. M. Kaiser, R. S. Roy, and G. Weikum. 2020. Conversational question answering over passages by leveraging word proximity networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 2129–2132. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  879. M. Kaisser, M. A. Hearst, and J. B. Lowe. 2008. Improving search results quality by customizing summary lengths. In Proceedings of Association for Computational Linguistics (ACL). Association for Computational Linguistics, 701–709.Google ScholarGoogle Scholar
  880. S. Kallumadi, T. H. King, S. Malmasi, and M. de Rijke. 2021. ECOM ’21: The SIGIR 2021 Workshop on eCommerce. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 2685–2688. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  881. E. Kamalloo, A. Jafari, X. Zhang, N. Thakur, and J. Lin. July. 2023. HAGRID: A Human–LLM collaborative dataset for generative information-seeking with attribution. arXiv:2307.16883. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  882. I. Kamehkhosh and D. Jannach. 2017. User perception of next-track music recommendations. In Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization (UMAP ’17). ACM, New York, NY, 113–121. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  883. M. Kaminskas and D. Bridge. 2016. Diversity, serendipity, novelty, and coverage: A survey and empirical analysis of beyond-accuracy objectives in recommender systems. ACM Trans. Interact. Intell. Syst. 7, 1, 1–42. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  884. M. Kamvar, M. Kellar, R. Patel, and Y. Xu. 2009. Computers and iPhones and mobile phones, oh my!: A logs-based comparison of search users on different devices. In Proceedings of the 18th International Conference on World Wide Web (WWW ’09). ACM, New York, NY, 801–810. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  885. N. Kando. 2007. Overview of the sixth NTCIR workshop. In Proceedings of the Sixth NTCIR Workshop.Google ScholarGoogle Scholar
  886. W. Kang and J. J. McAuley. 2018. Self-attentive sequential recommendation. In Proceedings of the 18th IEEE International Conference on Data Mining (ICDM ’18). IEEE, 197–206. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  887. N. Kanhabua, R. Blanco, and K. Nørvåg. 2015. Temporal information retrieval. Found. Trends Inf. Retr. 9, 2, 91–208. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  888. Y. Kano, M.-Y. Kim, M. Yoshioka, Y. Lu, J. Rabelo, N. Kiyota, R. Goebel, and K. Satoh. 2018. COLIEE-2018: Evaluation of the competition on legal information extraction and entailment. In New Frontiers in Artificial Intelligence, JSAI-isAI 2018, Vol. 11717: Lecture Notes in Computer Science. Springer, Cham, 177–192. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  889. E. Kanoulas, D. Li, L. Azzopardi, and R. Spijker. September. 2019. CLEF 2019 technology assisted reviews in empirical medicine overview. CEUR Workshop Proceedings, 2380, Article 250. CEUR-WS.org.Google ScholarGoogle Scholar
  890. K. Kapoor, V. Kumar, L. Terveen, J. A. Konstan, and P. Schrater. 2015. “I like to explore sometimes”: Adapting to dynamic user novelty preferences. In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys ’15). ACM, New York, NY, 19–26. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  891. D. Karakos, R. Zbib, W. Hartmann, R. Schwartz, and J. Makhoul. 2020. Reformulating information retrieval from speech and text as a detection problem. In Proceedings of the Workshop on Cross-Language Search and Summarization of Text and Speech, Marseille, France. European Language Resources Association, 38–43.Google ScholarGoogle Scholar
  892. S. Karimi, S. Pohl, F. Scholer, L. Cavedon, and J. Zobel. 2010. Boolean versus ranked querying for biomedical systematic reviews. BMC Med. Inform. Decis. Mak. 10, 1, 58. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  893. J. Karlgren, L. Dürlich, E. Gogoulou, L. Guillou, J. Nivre, M. Sahlgren, and A. Talman. 2023. ELOQUENT CLEF shared tasks for evaluation of generative language model quality. In N. Goharian, N. Tonellotto, Y. He, A. Lipani, G. McDonald, C. Macdonald, and I. Ounis (Eds.), Proceedings of the Advances in Information Retrieval: 46th European Conference on Information Retrieval, ECIR 2024, Part V , Glasgow, UK, March 24–28, 2024, Vol. 14612: Lecture Notes in Computer Science. Springer, Berlin, 459–465. .Google ScholarGoogle ScholarCross RefCross Ref
  894. R. M. Karp. 1972. Reducibility among combinatorial problems. In R. Miller and J. Thatcher (Eds.), Complexity of Computer Computations. Plenum Press, 85–103.Google ScholarGoogle Scholar
  895. V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih. 2020. Dense passage retrieval for open-domain question answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 6769–6781. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  896. A. Katharopoulos and F. Fleuret. 2018. Not all samples are created equal: Deep learning with importance sampling. In Proceedings of the 35th International Conference on Machine Learning. PMLR 80, 2525–2534.Google ScholarGoogle Scholar
  897. A. Kaushik. 2006. Experimentation and Testing: A Primer. Occam’s Razor. Retrieved from https://www.kaushik.net/avinash/experimentation-and-testing-a-primer/.Google ScholarGoogle Scholar
  898. V. Kayhan. 2015. Confirmation bias: Roles of search engines and search contexts. In Thirty Sixth International Conference on Information Systems. Association for Information Systems.Google ScholarGoogle Scholar
  899. K. Kayode and E. Ayetiran. October. 2018. Survey on cross-lingual information retrieval. Int. J. Sci. Eng. Res. 9, 484–491.Google ScholarGoogle Scholar
  900. G. Kazai, J. Kamps, M. Koolen, and N. Milić-Frayling. 2011. Crowdsourcing for book search evaluation: Impact of HIT design on comparative system ranking. In W.-Y. Ma, J.-Y. Nie, R. Baeza-Yates, T.-S. Chua, W. B. Croft (Eds.), Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 205–214. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  901. G. Kazai, J. Kamps, and N. Milić-Frayling. 2012. The face of quality in crowdsourcing relevance labels: Demographics, personality and labeling accuracy. In I. Ounis, I. Ruthven, B. Berendt, A. P. de Vries, and F. Wenfei (Eds.), Proceedings of the 21st International Conference on Information and Knowledge Management (CIKM ’12). ACM, New York, NY, 2583–2586. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  902. M. T. Keane, M. O’Brien, and B. Smyth. 2008. Are people biased in their use of search engines? Commun. ACM 51, 2, 49–52. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  903. J. Kekäläinen and K. Järvelin. November. 2002. Using graded relevance assessments in IR evaluation. J. Am. Soc. Inf. Sci. Technol. 53, 13, 1120–1129. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  904. D. Kelly. 2009. Methods for evaluating interactive information retrieval systems with users. Found. Trends Inf. Retr. 3, 1–2, 1–224. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  905. D. Kelly and J. Teevan. 2003. Implicit feedback for inferring user preference: A bibliography. SIGIR Forum 37, 2, 18–28. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  906. L. Kelly, L. Goeuriot, H. Suominen, T. Schreck, G. Leroy, D. Mowery, S. Velupillai, W. Chapman, D. Martinez, G. Zuccon, and J. Palotti. September. 2014. Overview of the ShARe/CLEF eHealth evaluation lab 2014. In Information Access Evaluation. Multilinguality, Multimodality, and Interaction (CLEF ’14), Vol. 8685: Lecture Notes in Computer Science. Springer, Cham, 172–191. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  907. L. Kelly, L. Goeuriot, H. Suominen, A. Névéol, J. Palotti, and G. Zuccon. September. 2016. Overview of the CLEF eHealth evaluation lab 2016. In Experimental IR Meets Multilinguality, Multimodality, and Interaction, CLEF 2016, Vol. 9822: Lecture Notes in Computer Science. Springer, Cham, 255–266. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  908. L. Kelly, H. Suominen, L. Goeuriot, M. Neves, E. Kanoulas, D. Li, L. Azzopardi, R. Spijker, G. Zuccon, H. Scells, and J. Palotti. 2019. Overview of the CLEF eHealth evaluation lab 2019. In F. Crestani, M. Braschler, J. Savoy, A. Rauber, H. Müller, D. E. Losada, G. Heinatz Bürki, L. Cappellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction: Proceedings of the 10th International Conference of the CLEF Association (CLEF ’19), Vol. 11696: Lecture Notes in Computer Science. Springer, Cham, 322–339. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  909. T. Kenter and M. de Rijke. 2017. Attentive memory networks: Efficient machine reading for conversational search. In SIGIR 1st International Workshop on Conversational Approaches to Information Retrieval (CAIR ’17), Tokyo, Japan. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  910. M. Khadkevich and M. Omologo. 2013. Large-scale cover song identification using chord profiles. In Proceedings of the 14th International Society for Music Information Retrieval Conference. Curitiba, Brazil. ISMIR, 233–238. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  911. M. Khadkevich, T. Fillon, G. Richard, and M. Omologo. 2012. A probabilistic approach to simultaneous extraction of beats and downbeats. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 445–448. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  912. F. A. Khan, E. Manis, and J. Stoyanovich. 2021. Translation tutorial: Fairness and friends. In Proceedings of the ACM Conference on Fairness, Accountability, and Transparency. ACM, New York, NY.Google ScholarGoogle Scholar
  913. S. Kharazmi, F. Scholer, D. Vallet, and M. Sanderson. June. 2016. Examining additivity and weak baselines. ACM Trans. Inf. Syst. 34, 4, 1–18. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  914. E. Kharitonov, C. Macdonald, P. Serdyukov, and I. Ounis. 2013. User model-based metrics for offline query suggestion evaluation. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 633–642. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  915. O. Khattab and M. Zaharia. 2020. ColBERT: Efficient and effective passage search via contextualized late interaction over BERT. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 39–48. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  916. S. Khenissi and O. Nasraoui. 2020. Modeling and Counteracting Exposure Bias in Recommender Systems. Electronic Theses and Dissertations. Paper 3182. University of Louisville. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  917. A. Khwileh, D. Ganguly, and G. J. F. Jones. January. 2016. Utilisation of metadata fields and query expansion in cross-lingual search of user-generated internet video. J. Artif. Intell. Res. 55, 1, 249–281. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  918. J. Kiesel, A. Bahrami, B. Stein, A. Anand, and M. Hagen. 2018. Toward voice query clarification. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 1257–1260. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  919. J. Kiesel, D. Spina, H. Wachsmuth, and B. Stein. 2021. The meant, the said, and the understood: Conversational argument search and cognitive biases. In Proceedings of the 3rd Conference on Conversational User Interfaces (CUI ’21). ACM, New York, NY, 1–5. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  920. J. Kim and W. B. Croft. 2009. Retrieval experiments using pseudo-desktop collections. In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM ’09). ACM, New York, NY, 1297–1306. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  921. J. Kim and W. B. Croft. 2010. Ranking using multiple document types in desktop search. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’10). ACM, New York, NY, 50–57. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  922. J. Kim, A. Bakalov, D. A. Smith, and W. B. Croft. 2010. Building a semantic representation for personal information. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM ’10). ACM, New York, NY, 1741–1744. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  923. J. Kim, W. B. Croft, D. A. Smith, and A. Bakalov. 2011a. Evaluating an associative browsing model for personal information. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM ’11). ACM, New York, NY, 647–652. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  924. J. W. Kim, J. Salamon, P. Li, and J. P. Bello. 2018. CREPE: A convolutional representation for pitch estimation. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada. IEEE, 161–165. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  925. S. Kim, H. Noveck, J. Galt, L. Hogshire, L. Willett, and K. O’Rourke. June. 2014. Searching for answers to clinical questions using Google versus evidence-based summary resources: A randomized controlled crossover study. Acad. Med. 89, 6, 940–943. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  926. Y. Kim, J. Seo, and W. B. Croft. 2011b. Automatic Boolean query suggestion for professional search. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 825–834. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  927. I. King, K.-T. Chen, O. Alonso, and M. Larson. May. 2016. Special issue: Crowd in intelligent systems. ACM Trans. Intell. Syst. Technol. 7, 4, 1–2. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  928. T. H. King, C. Arora, F. Guerin, S. Kelkar, and J. Massuda. 2021. The last mile: Taking query language identification from model ready to production. In Proceedings of SIGIR ECOM ’21. CEUR-WS.org.Google ScholarGoogle Scholar
  929. E. Kirshenbaum, G. Forman, and M. Dugan. 2012. A live comparison of methods for personalized article recommendation at Forbes.com. In Machine Learning and Knowledge Discovery in Databases, ECML PKDD ’12, Vol. 7524: Lecture Notes in Computer Science. Springer, Berlin, 51–66. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  930. K. Kishida and N. Kando. 2006. A hybrid approach to query and document translation using a pivot language for cross-language information retrieval. In C. Peters, F. C. Gey, J. Gonzalo, H. Müller, G. J. F. Jones, M. Kluck, B. Magnini, and M. de Rijke (Eds.), Accessing Multilingual Information Repositories, Vol. 4022: Lecture Notes in Computer Science. Springer, Berlin, 93–101. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  931. K. Kishida, K. Chen, S. Lee, K. Kuriyama, N. Kando, H. Chen, S. Myaeng, and K. Eguchi. 2004. Overview of CLIR task at the Fourth NTCIR workshop. In N. Kando and H. Ishikawa (Eds.), Proceedings of the Fourth NTCIR Workshop on Research in Information Access Technologies Information Retrieval, Question Answering and Summarization, NTCIR-4, National Center of Sciences, Tokyo, Japan, June 2–4, 2004. National Institute of Informatics (NII), Tokyo, Japan.Google ScholarGoogle Scholar
  932. N. Kitaev, Ł. Kaiser, and A. Levskaya. 2020. Reformer: The efficient transformer. arXiv:2001.04451. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  933. A. P. Klapuri. 2005. A perceptually motivated multiple-f0 estimation method. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. IEEE, 291–294. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  934. A. P. Klapuri. 2006. Multiple fundamental frequency estimation by summing harmonic amplitudes. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 216–221. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  935. A. P. Klapuri, A. J. Eronen, and J. T. Astola. 2005. Analysis of the meter of acoustic musical signals. IEEE Trans. Audio Speech Lang. Process. 14, 1, 342–355. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  936. J. Kleinberg. 2000. The small-world phenomenon: An algorithmic perspective. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing (STOC ’00). ACM, New York, NY, 163–170. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  937. J. Kleinberg, H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan. February. 2017. Human Decisions and Machine Predictions. Working Paper 23180. National Bureau of Economic Research.Google ScholarGoogle Scholar
  938. S. R. Klemmer, A. K. Sinha, J. Chen, J. A. Landay, N. Aboobaker, and A. Wang. 2000. SUEDE: A wizard of Oz prototyping tool for speech user interfaces. In Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology (UIST ’00). ACM, New York, NY, 1–10. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  939. B. Klimt and Y. Yang. 2004. The Enron corpus: A new dataset for email classification research. In Machine Learning: ECML 2004, Proceedings of the 15th European Conference on Machine Learning, Vol. 3201: Lecture Notes in Computer Science. Springer, Berlin, 217–226. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  940. M. Kluck. 2005. The domain-specific track in CLEF 2004: Overview of the results and remarks on the assessment process. In C. Peters, P. Clough, J. Gonzalo, G. J. F. Jones, M. Kluck, and B. Magnini (Eds.), Multilingual Information Access for Text, Speech and Images, Vol. 3491: Lecture Notes in Computer Science. Springer, Berlin, 260–270. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  941. M. Kluck and M. Stempfhuber. 2006. Domain-specific track CLEF 2005: Overview of results and approaches, remarks on the assessment analysis. In C. Peters, F. C. Gey, J. Gonzalo, H. Müller, G. J. F. Jones, M. Kluck, B. Magnini, and M. de Rijke (Eds.), Accessing Multilingual Information Repositories, Vol. 4022: Lecture Notes in Computer Science. Springer, Berlin, 212–221. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  942. P. Knees and M. Schedl. 2016. Music Similarity and Retrieval: An Introduction to Audio- and Web-based Strategies. Springer, Berlin. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  943. P. Knees, A. Faraldo, P. Herrera, R. Vogl, S. Böck, F. Hörschläger, and M. Le Goff. 2015. Two data sets for tempo estimation and key detection in electronic dance music annotated from user corrections. In Proceedings of the 16th International Society for Music Information Retrieval Conference. ISMIR, 364–370. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  944. B. P. Knijnenburg and M. C. Willemsen. 2015. Evaluating recommender systems with user experiments. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook. Springer, New York, NY, 309–352. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  945. B. P. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu, and C. Newell. 2012. Explaining the user experience of recommender systems. User Model. User-Adapt. Interact. 22, 441–504. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  946. S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras. 2012. DEAP: A database for emotion analysis using physiological signals. IEEE Trans. Affect. Comput. 3, 1, 18–31. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  947. R. Kohavi and R. Longbotham. March. 2011. Unexpected results in online controlled experiments. SIGKDD Explor. Newsl. 12, 2, 31–35. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  948. R. Kohavi, T. Crook, R. Longbotham, B. Frasca, R. Henne, J. L. Ferres, and T. Melamed. 2009. Online experimentation at Microsoft. In P. van der Putten, G. Melli, and B. Kitts (Eds.), Proceedings of the 3rd International Workshop on Data Mining Case Studies (DMCS ’09). ACM, New York, NY, 11–22.Google ScholarGoogle Scholar
  949. R. Kohavi, A. Deng, R. Longbotham, and Y. Xu. 2014. Seven rules of thumb for web site experimenters. In S. A. Macskassy, C. Perlich, J. Leskovec, W. Wang, and R. Ghani (Eds.), Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’14). ACM, New York, NY, 1857–1866. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  950. R. Kohavi, D. Tang, and Y. Xu. April. 2020. Trustworthy Online Controlled Experiments. A Practical Guide to A/B Testing. Cambridge University Press, Cambridge, UK. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  951. W. Kong, M. Bendersky, M. Najork, B. Vargo, and M. Colagrosso. 2020. Learning to cluster documents into workspaces using large scale activity logs. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20). ACM, New York, NY, 2416–2424. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  952. M. Koolen, S. Kumpulainen, and L. Melgar-Estrada. 2020. A workflow analysis perspective to scholarly research tasks. In Proceedings of the 2020 Conference on Human Information Interaction and Retrieval (CHIIR ’20). ACM, New York, NY, 183–192. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  953. B. Koopman and G. Zuccon. 2023. Dr ChatGPT tell me what I want to hear: How different prompts impact health answer correctness. In H. Bouamor, J. Pino, and K. Bali (Eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 15012–15022. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  954. B. Koopman, G. Zuccon, and P. Bruza. 2017. What makes an effective clinical query and querier? J. Assoc. Inf. Sci. Technol. 68, 11, 2557–2571. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  955. H. V. Koops, W. Bas De Haas, J. A. Burgoyne, J. Bransen, A. Kent-Muller, and A. Volk. 2019. Annotator subjectivity in harmony annotations of popular music. J. New Music Res. 48, 3, 232–252. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  956. Y. Koren. 2008. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’08). ACM, New York, NY, 426–434. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  957. Y. Koren. 2009. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’09). ACM, New York, NY, 447–456. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  958. Y. Koren, R. M. Bell, and C. Volinsky. 2009. Matrix factorization techniques for recommender systems. Computer 42, 8, 30–37. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  959. A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas. 2009. Releasing search queries and clicks privately. In Proceedings of the 18th International Conference on World Wide Web (WWW ’09). ACM, New York, NY, 171–180. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  960. F. Korzeniowski, S. Böck, and G. Widmer. 2014. Probabilistic extraction of beat positions from a beat activation function. In Proceedings of the 15th International Society for Music Information Retrieval Conference (ISMIR ’14). ISMIR, 513–518. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  961. P. Kouki, I. Fountalis, N. Vasiloglou, X. Cui, E. Liberty, and K. Al Jadda. 2020. From the lab to production: A case study of session-based recommendations in the home-improvement domain. In Proceedings of the 14th ACM Conference on Recommender Systems (RecSys ’20). ACM, New York, NY, 140–149. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  962. D. H. Krantz, R. D. Luce, P. Suppes, and A. Tversky. 1971. Foundations of Measurement. Additive and Polynomial Representations, Vol. 1. Academic Press, New York, NY.Google ScholarGoogle Scholar
  963. A. Krause and E. Horvitz. 2010. A utility-theoretic approach to privacy in online services. J. Artif. Intell. Res. 39, 1, 633–662. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  964. F. Krebs, S. Böck, and G. Widmer. 2013. Rhythmic pattern modeling for beat and downbeat tracking in musical audio. In Proceedings of the 14th International Society for Music Information Retrieval Conference. ISMIR, 227–232. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  965. F. Krebs, S. Böck, and G. Widmer. 2015. An efficient state-space model for joint tempo and meter tracking. In Proceedings of the 16th International Society for Music Information Retrieval Conference. ISMIR, 72–78. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  966. W. Krichene and S. Rendle. 2020. On sampled metrics for item recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’20). ACM, New York, NY, 1748–1757. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  967. K. H. Krippendorff. 2004. Content Analysis: An Introduction to Its Methodology. SAGE Publications.Google ScholarGoogle Scholar
  968. W. H. Kruskal and W. A. Wallis. December. 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 260, 583–621. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  969. T. Kudo and J. Richardson. 2018. SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Brussels, Belgium. Association for Computational Linguistics, 66–71. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  970. C. C. Kuhlthau. 1991. Inside the search process: Information seeking from the user’s perspective. J. Am. Soc. Inf. Sci. 42, 5, 361–371. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  971. T. S. Kuhn. 1996. The Structure of Scientific Revolutions (3rd. ed.). University of Chicago Press.Google ScholarGoogle Scholar
  972. S. Kum, C. Oh, and J. Nam. 2016. Melody extraction on vocal segments using multi-column deep neural networks. In Proceedings of the 17th International Society for Music Information Retrieval Conference. ISMIR, 819–825. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  973. R. Kumar, M. Kumar, N. Shah, and C. Faloutsos. 2018. Did we get it right? Predicting query performance in e-commerce search. In Proceedings of ECOM ’18, CEUR-WS.org.Google ScholarGoogle Scholar
  974. M. Kunaver and T. Požrl. May. 2017. Diversity in recommender systems—A survey. Knowl. Based Syst. 123, 154–162. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  975. O. Kurland and J. S. Culpepper. 2018. Fusion in information retrieval: SIGIR 2018 half-day tutorial. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 1383–1386. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  976. W. Kusa, O. E. Mendoza, P. Knoth, G. Pasi, and A. Hanbury. 2023. Effective matching of patients to clinical trials using entity extraction and neural re-ranking. J. Biomed. Inform. 144, 104444. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  977. A. Kutiyanawala, P. Verma, and Z. Yan. 2018. Towards a simplified ontology for better e-commerce search. In Proceedings of ECOM ’18, CEUR-WS.org.Google ScholarGoogle Scholar
  978. M. H. Kutner, C. J. Nachtsheim, J. Neter, and W. Li. 2005. Applied Linear Statistical Models (5th. ed.). McGraw-Hill/Irwin, New York.Google ScholarGoogle Scholar
  979. S. Kuzi, D. Carmel, A. Libov, and A. Raviv. 2017. Query expansion for email search. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 849–852. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  980. T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.-W. Chang, A. M. Dai, J. Uszkoreit, Q. Le, and S. Petrov. 2019. Natural questions: A benchmark for question answering research. Trans. Assoc. Comput. Linguist. 7, 452–466. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  981. A. Lakshman and P. Malik. 2010. Cassandra: A decentralized structured storage system. SIGOPS Oper. Syst. Rev. 44, 2, 35–40. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  982. M. Lalmas, H. O’Brien, and E. Yom-Tov. 2014. Measuring User Engagement. Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan & Claypool Publishers.Google ScholarGoogle Scholar
  983. M. Lamming, P. Brown, K. Carter, M. Eldridge, M. Flynn, G. Louie, P. Robinson, and A. Sellen. 1994. The design of a human memory prosthesis. Comput. J. 37, 3, 153–163. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  984. G. Lample and A. Conneau. 2019. Cross-lingual language model pretraining. In Advances in Neural Information Processing Systems (NIPS ’19). Curran Associates, Red Hook, NY, 7059–7069.Google ScholarGoogle Scholar
  985. G. Lample, A. Conneau, M. Ranzato, L. Denoyer, and H. Jégou. 2018. Word translation without parallel data. In 6th International Conference on Learning Representations (ICLR ’18), Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings. OpenReview.net.Google ScholarGoogle Scholar
  986. F. W. Lancaster. 1979. Information Retrieval Systems: Characteristics, Testing, and Evaluation (2nd. ed.). John Wiley & Sons, New York, NY.Google ScholarGoogle Scholar
  987. T. K. Landauer and M. L. Littman. 1991. A statistical method for language-independent representation of the topical content of text segments. In Proceedings of the 11th International Conference: Expert Systems and Their Applications. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=feaaf5b0b066862077cec9d61b24dc97f676c214.Google ScholarGoogle Scholar
  988. H. A. Landsberger. 1958. Hawthorne Revisited: Management and the Worker, Its Critics, and Developments in Human Relations in Industry. Cornell University, Ithaca, NY.Google ScholarGoogle Scholar
  989. M. Lansdale and E. Edmonds. 1992. Using memory for events in the design of personal filing systems. Int. J. Man Mach. Stud. 36, 1, 97–126. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  990. M. W. Lansdale. March. 1988. The psychology of personal information management. Appl. Ergon. 19, 1, 55–66. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  991. B. Larsen. 2019. The scholarly impact of CLEF 2010–2017. In N. Ferro and C. Peters (Eds.), Information Retrieval Evaluation in a Changing World. The Information Retrieval Series, Vol. 41. Springer, Cham, 547–554. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  992. S. A. Lastres. 2013. Rebooting Legal Research in a Digital Age. Technical Report. LexisNexis.Google ScholarGoogle Scholar
  993. N. K. Lathia. 2010. Evaluating Collaborative Filtering Over Time. Ph.D. thesis. University College London, UK.Google ScholarGoogle Scholar
  994. N. Lathia, S. Hailes, L. Capra, and X. Amatriain. 2010. Temporal diversity in recommender systems. In Proceedings of the 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’10). ACM, New York, NY, 210–217. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  995. S. Latifi, N. Mauro, and D. Jannach. 2020. Session-aware recommendation: A surprising quest for the state-of-the-art. Inf. Sci. 573, 291–315. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  996. C. Laurier. 2011. Automatic Classification of Musical Mood by Content-Based Analysis. Ph.D. thesis. Universitat Pompeu Fabra, Spain.Google ScholarGoogle Scholar
  997. V. Lavrenko and W. B. Croft. 2001. Relevance-based language models. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’01). ACM, New York, NY, 120–127. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  998. E. Law, P. N. Bennett, and E. Horvitz. 2011. The effects of choice in routing relevance judgments. In W.-Y. Ma, J.-Y. Nie, R. Baeza-Yates, T.-S. Chua, and W. Bruce Croft (Eds.), Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 1127–1128. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  999. D. Lawrie, J. Mayfield, D. W. Oard, and E. Yang. 2022. HC4: A new suite of test collections for ad hoc CLIR. In Advances in Information Retrieval, Proceedings of the 44th European Conference on Information Retrieval (ECIR ’22), Vol. 13185: Lecture Notes in Computer Science. Springer, Cham, 351–366. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1000. T. Lazovich, L. Belli, A. Gonzales, A. Bower, U. Tantipongpipat, K. Lum, F. Huszár, and R. Chowdhury. August. 2022. Measuring disparate outcomes of content recommendation algorithms with distributional inequality metrics. Patterns 3, 8, 100568. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1001. E. Le Merrer, G. Trédan, and A. Yesilkanat. 2023. Modeling rabbit-holes on YouTube. Soc. Netw. Anal. Min. 13, 1, 100. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1002. M. Lease and E. Yilmaz. April. 2013. Crowdsourcing for information retrieval: Introduction to the special issue. Inf. Retr. 16, 2, 91–100. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1003. Y. LeCun and Y. Bengio. 1998. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA, 255–258.Google ScholarGoogle Scholar
  1004. J. Lee, N. J. Bryan, J. Salamon, Z. Jin, and J. Nam. 2020a. Disentangled multidimensional metric learning for music similarity. In 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020). IEEE, 6–10. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1005. J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. 2020b. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36, 4, 1234–1240. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1006. J. H. Lee. 1997. Analyses of multiple evidence combination. In N. J. Belkin, A. D. Narasimhalu, P. Willett, W. Hersh, F. Can, and E. M. Voorhees (Eds.), Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’97). ACM, New York, NY, 267–276. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1007. J.-S. Lee and J. Hsiang. 2019. PatentBERT: Patent classification with fine-tuning a pre-trained BERT model. arXiv:1906.02124. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1008. S. Lee, S.-H. Myaeng, H. Kim, J. Seo, B. Lee, and S. Cho. January. 2002. Characteristics of the Korean test collection for CLIR in NTCIR-3. In Proceedings of the Third NTCIR Workshop. National Institute of Informatics.Google ScholarGoogle Scholar
  1009. E. L. Lehmann. December. 1993. The Fisher, Neyman–Pearson theories of testing hypotheses: One theory or two? J. Am. Stat. Assoc. 88, 424, 1242–1249. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1010. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. 2015. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6, 2, 167–195. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1011. D. B. Lenat. 1995. CYC: A large-scale investment in knowledge infrastructure. Commun. ACM 38, 11, 32–38. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1012. F. Lerdahl and R. S. Jackendoff. 1996. A Generative Theory of Tonal Music. MIT Press.Google ScholarGoogle Scholar
  1013. M. Lesk. 1986. Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone. In Proceedings of the 5th Annual International Conference on Systems Documentation (SIGDOC ’86). ACM, New York, NY, 24–26. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1014. V. I. Levenshtein. February. 1966. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10, 707–710.Google ScholarGoogle Scholar
  1015. M. Levy. 2011. Improving perceptual tempo estimation with crowd-sourced annotations. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR ’11), Miami. ISMIR, 317–322. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1016. D. D. Lewis and K. A. Knowles. 1997. Threading electronic mail: A preliminary case study. Inf. Process. Manag. 33, 2, 209–217. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1017. M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer. 2020a. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 7871–7880. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1018. P. Lewis, B. Oğuz, R. Rinott, S. Riedel, and H. Schwenk. 2019. MLQA: Evaluating cross-lingual extractive question answering. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 7315–7330. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1019. P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela. 2020b. Retrieval-augmented generation for knowledge-intensive NLP tasks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Proceedings of the 34th Annual Conference on Neural Information Processing Systems (NIPS ’20). Curran Associates, Red Hook, NY, 9459–9474.Google ScholarGoogle Scholar
  1020. M. Ley. 2009. DBLP: Some lessons learned. Proc. VLDB Endow. 2, 2, 1493–1500. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1021. B. Li and P. Cheng. 2018. Learning neural representation for CLIR with adversarial framework. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 1861–1870. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1022. C. Li, M. Zhang, M. Bendersky, H. Deng, D. Metzler, and M. Najork. 2019a. Multi-view embedding-based synonyms for email search. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 575–584. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1023. C. Li, A. Yates, S. MacAvaney, B. He, and Y. Sun. August. 2023a. PARADE: Passage representation aggregation for document reranking. ACM Trans. Inf. Syst. 42, 2, 1–26. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1024. D. Li and M. de Rijke. 2023. Extending label aggregation models with a Gaussian process to denoise crowdsourcing labels. In H.-H. Chen, E. W.-J. Duh, H.-H. Huang, M. P. Kato, J. Mothe, and B. Poblete (Eds.), Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’23). ACM, New York, NY, 729–738. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1025. D. Li, Z. Ren, and E. Kanoulas. 2021. CrowdGP: A Gaussian process model for inferring relevance from crowd annotations. In J. Leskovec, M. Grobelnik, M. Najork, J. Tang, and Z. Leila (Eds.), Proceedings of the Web Conference 2021 (WWW ’21). ACM, New York, NY, 1821–1832. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1026. H. Li. 2011. A short introduction to learning to rank. IEICE Trans. Inf. Syst. 94, 10, 1854–1862. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1027. H. Li. 2022. Learning to Rank for Information Retrieval and Natural Language Processing. Springer Nature.Google ScholarGoogle Scholar
  1028. J. Li, S. Huffman, and A. Tokuda. 2009. Good abandonment in mobile and PC internet search. In J. Allan, J. Aslam, M. Sanderson, C. Zhai, and J. Zobel (Eds.), Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’09). ACM, New York, NY, 43–50. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1029. J. Li, C. Liu, J. Wang, L. Bing, H. Li, X. Liu, D. Zhao, and R. Yan. 2020. Cross-lingual low-resource set-to-description retrieval for global e-commerce. In The Thirty-Fourth AAAI Conference on Artificial Intelligence AAAI ’20, New York, NY, February 7–12, 2020. AAAI Press, Palo Alto, CA, 8212–8219. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1030. L. Li, H. Deng, A. Dong, Y. Chang, H. Zha, and R. Baeza-Yates. 2015. Analyzing user’s sequential behavior in query auto-completion via Markov processes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 123–132. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1031. L. Li, H. Deng, J. Chen, and Y. Chang. 2017a. Learning parametric models for context-aware query auto-completion via Hawkes processes. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM ’17). ACM, New York, NY, 131–139. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1032. L. Li, H. Deng, A. Dong, Y. Chang, R. Baeza-Yates, and H. Zha. 2017b. Exploring query auto-completion and click logs for contextual-aware web search and query suggestion. In Proceedings of the 26th International Conference on World Wide Web (WWW ’17). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 539–548. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1033. P. Li, Z. Qin, X. Wang, and D. Metzler. 2019b. Combining decision trees and neural networks for learning-to-rank in personal search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’19). ACM, New York, NY, 2032–2040. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1034. Q. Li, S. H. Myaeng, Y. Jin, and B.-Y. Kang. 2006. Translation of unknown terms via web mining for information retrieval. In Information Retrieval Technology, Proceedings of the 3rd Asia Conference on Information Retrieval Technology (AIRS ’06), Vol. 4182: Lecture Notes in Computer Science. Springer, Berlin, 258–269. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1035. S. Li, A. Karatzoglou, and C. Gentile. 2016a. Collaborative filtering bandits. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 539–548. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1036. X. Li, H. Xianyu, J. T. W. Chen, F. Meng, M. Xu, and L. Cai. 2016b. A deep bidirectional long short-term memory based multi-scale approach for music dynamic emotion prediction. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 544–548. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1037. X. Li, C. Xu, X. Wang, W. Lan, Z. Jia, G. Yang, and J. Xu. 2019c. COCO-CN for cross-lingual image tagging, captioning, and retrieval. IEEE Trans. Multimed. 21, 9, 2347–2360. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1038. X. Li, Y. Cao, L. Pan, Y. Ma, and A. Sun. 2023b. Towards verifiable generation: A benchmark for knowledge-aware language model attribution. arXiv:2310.05634. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1039. Y. Li, A. Dong, H. Wang, H. Deng, Y. Chang, and C. Zhai. 2014. A two-dimensional click model for query auto-completion. In Proceedings of the 37th International ACM SIGIR Conference (SIGIR ’14). ACM, New York, NY, 455–464. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1040. Y. Li, M. Franz, M. A. Sultan, B. Iyer, Y.-S. Lee, and A. Sil. 2022. Learning cross-lingual IR from an English retriever. In M. Carpuat, M.-C. de Marneffe, and I. V. Meza Ruiz (Eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Seattle, 4428–4436. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1041. Z. Li, X. Zhang, H. Müller, and S. Zhang. January. 2018. Large-scale retrieval for medical image analytics: A comprehensive review. Med. Image Anal. 43, 66–84. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1042. D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara. 2018. Variational autoencoders for collaborative filtering. In Proceedings of the World Wide Web Conference (WWW ’18). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 689–698. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1043. L. Liao, L. H. Long, Z. Zhang, M. Huang, and T.-S. Chua. 2021. MMConv: An environment for multimodal conversational search across multiple domains. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 675–684. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1044. Q. V. Liao, W. Geyer, M. Muller, and Y. Khazaen. 2020. Conversational interfaces for information search. In Understanding and Improving Information Search. Springer, Cham, 267–287. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1045. J. C. R. Licklider. March. 1960. Man–computer symbiosis. IRE Trans. Hum. Factors Electron. HFE-1, 1, 4–11. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1046. C. Lin, J. Wang, and J. Lu. 2017. Location-sensitive query auto-completion. In Proceedings of the 26th International Conference on World Wide Web Companion (WWW ’17). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 819–820. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1047. H. Lin, P. Xiong, D. Zhang, F. Yang, R. Kato, M. Kumar, W. Headden, and B. Yin. 2020. Light feed-forward networks for shard selection in large-scale product search. In Proceedings of ECOM ’20. CEUR-WS.org.Google ScholarGoogle Scholar
  1048. J. Lin. 2019. The neural hype, justified!: A recantation. SIGIR Forum 53, 2, 88–93. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1049. J. Lin and X. Ma. 2021. A few brief notes on DeepImpact, COIL, and a conceptual framework for information retrieval techniques. arXiv:2106.14807. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1050. J. Lin, R. Nogueira, and A. Yates. 2021. Pretrained Transformers for Text Ranking: BERT and Beyond, Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers.Google ScholarGoogle Scholar
  1051. L. I.-K. Lin. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 1, 255–268. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1052. Y. Lin, P. Ren, Z. Chen, Z. Ren, J. Ma, and M. de Rijke. 2019. Improving outfit recommendation with co-supervision of fashion generation. In The World Wide Web Conference (WWW ’19). ACM, New York, NY, 1095–1105. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1053. G. Linden, B. Smith, and J. York. 2003. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Comput. 7, 1, 76–80. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1054. C. Ling, B. Steichen, and A. G. Choulos. 2018. A comparative user study of interactive multilingual search interfaces. In Proceedings of the 2018 Conference on Human Information Interaction & Retrieval (CHIIR ’18). ACM, New York, NY, 211–220. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1055. X. Ling and D. S. Weld. 2010. Temporal information extraction. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI). AAAI Press, Palo Alto, CA, 1385–1390. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1056. C. Lioma, J. G. Simonsen, and B. Larsen. 2017. Evaluation measures for relevance and credibility in ranked lists. In J. Kamps, E. Kanoulas, M. de Rijke, H. Fang, and E. Yilmaz (Eds.), Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR ’17). ACM, New York, NY, 91–98. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1057. A. Lipani, M. Lupu, A. Aizawa, and A. Hanbury. 2015a. An initial analytical exploration of retrievability. In Proceedings of the 2015 International Conference on the Theory of Information Retrieval (ICTIR ’15). ACM, New York, NY, 329–332. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1058. A. Lipani, M. Lupu, and A. Hanbury. 2015b. Splitting water: Precision and anti-precision to reduce pool bias. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 103–112. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1059. A. Lipani, D. E. Losada, G. Zuccon, and M. Lupu. April. 2021. Fixed-cost pooling strategies. IEEE Trans. Knowl. Data Eng. 33, 4, 1503–1522. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1060. J. List. 2013. The name of the game: Information seeking in a professional context. In Proceedings of the Integrating IR Technologies for Professional Search Workshop, Moscow, Russia (March 24, 2013). CEUR-WS.org.Google ScholarGoogle Scholar
  1061. R. Litschko, G. Glavaš, S. P. Ponzetto, and I. Vulić. 2018. Unsupervised cross-lingual information retrieval using monolingual data only. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 1253–1256. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1062. R. Litschko, G. Glavaš, I. Vulic, and L. Dietz. 2019. Evaluating resource-lean cross-lingual embedding models in unsupervised retrieval. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 1109–1112. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1063. R. Litschko, I. Vulić, S. P. Ponzetto, and G. Glavaš. 2021. Evaluating multilingual text encoders for unsupervised cross-lingual retrieval. In Advances in Information Retrieval, 43rd European Conference on IR Research, Vol. 12656: Lecture Notes in Computer Science. Springer, Cham, 342–358. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1064. R. Litschko, I. Vulić, and G. Glavaš. 2022a. Parameter-efficient neural reranking for cross-lingual and multilingual retrieval. In Proceedings of the 29th International Conference on Computational Linguistics. International Committee on Computational Linguistics, 1071–1082.Google ScholarGoogle Scholar
  1065. R. Litschko, I. Vulić, S. P. Ponzetto, and G. Glavaš. 2022b. On cross-lingual retrieval with multilingual text encoders. Inf. Retr. J. 25, 149–183. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1066. M. L. Littman, S. T. Dumais, and T. K. Landauer. 1998a. Automatic cross-language information retrieval using latent semantic indexing. In Cross-Language Information Retrieval. Springer, Boston, MA, 51–62. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1067. M. L. Littman, F. Jiang, and G. A. Keim. 1998b. Learning a language-independent representation for terms from a partially aligned corpus. In Proceedings of the Fifteenth International Conference on Machine Learning (ICML ’98). Morgan Kaufmann Publishers, San Francisco, CA, 314–322.Google ScholarGoogle Scholar
  1068. B. Liu, J. Bennett, C. Elkan, P. Smyth, and D. Tikk. 2007. KDD Cup and workshop 2007. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’07). ACM, New York, NY, 1. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1069. D. Liu, P. Cheng, Z. Dong, X. He, W. Pan, and Z. Ming. 2020. A general knowledge distillation framework for counterfactual recommendation via uniform data. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 831–840. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1070. J. Liu, Y. Lin, Z. Liu, and M. Sun. July. 2019a. XQA: A cross-lingual open-domain question answering dataset. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy. Association for Computational Linguistics, 2358–2368. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1071. Q. Liu, J. Chao, T. Mahoney, A. Chern, C. Min, F. Javed, and V. Jijkoun. 2018. Lessons learned from developing and deploying a large-scale employer name normalization system for online recruitment. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18). ACM, New York, NY, 556–565. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1072. T.-Y. Liu. March. 2009. Learning to rank for information retrieval. Found. Trends Inf. Retr. 3, 3, 225–331. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1073. T.-Y. Liu. 2011. Learning to Rank for Information Retrieval. Springer, Berlin. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1074. Y. Liu, R. Song, Y. Chen, J.-Y. Nie, and J.-R. Wen. 2012. Adaptive query suggestion for difficult queries. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’12). ACM, New York, NY, 15–24. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1075. Y. Liu, Y. Liu, K. Zhou, M. Zhang, S. Ma, Y. Yin, and H. Luo. 2016. Detecting promotion campaigns in query auto completion. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM ’16). ACM, New York, NY, 125–134. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1076. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. 2019b. RoBERTa: A robustly optimized BERT pretraining approach. arXiv:1907.11692. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1077. Y.-H. Liu and N. Wacholder. July. 2017. Evaluating the impact of MeSH (Medical Subject Headings) terms on different types of searchers. Inf. Process. Manag. 53, 4, 851–870. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1078. Z. Liu, K. Zhou, and M. L. Wilson. 2021. Meta-evaluation of conversational search evaluation metrics. ACM Trans. Inf. Syst. 39, 4, 52:1–52:42. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1079. D. Locke, G. Zuccon, and H. Scells. 2017. Automatic query generation from legal texts for case law retrieval. In Information Retrieval Technology, Asia Information Retrieval Symposium, Vol. 10648: Lecture Notes in Computer Science. Springer, Cham, 181–193. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1080. E. Loginova, S. Varanasi, and G. Neumann. 2018. Towards multilingual neural question answering. In A. Benczúr, B. Thalheim, T. Horváth, S. Chiusano, T. Cerquitelli, C. Sidló, and P. Z. Revesz (Eds.), New Trends in Databases and Information Systems. Springer, Cham, 274–285. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1081. S. Longpre, Y. Lu, and J. Daiber. 2021. MKQA: A linguistically diverse benchmark for multilingual open domain question answering. Trans. Assoc. Comput. Linguist. 9, 1389–1406. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1082. F. M. Lord. 1953. On the statistical treatment of football numbers. Am. Psychol. 8, 12, 750–751. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1083. D. E. Losada, J. Parapar, and A. Barreiro. 2016. Feeling lucky? Multi-armed bandits for ordering judgements in pooling-based evaluation. In S. Ossowski (Ed.), Proceedings of the 31st Annual ACM Symposium on Applied Computing (SAC ’16). ACM, New York, NY, 1027–1034. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1084. D. E. Losada, J. Parapar, and A. Barreiro. September. 2017. Multi-armed bandits for adjudicating documents in pooling-based evaluation of information retrieval systems. Inf. Process. Manag. 53, 5, 1005–1025. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1085. J. Lovejoy, B. R. Watson, S. Lacy, and D. Riffe. 2016. Three decades of reliability in communication content analyses: Reporting of reliability statistics and coefficient levels in three top journals. J. Mass Commun. Q. 93, 4, 1135–1159. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1086. H. Lu, Y. Xu, Q. Yin, T. Cao, B. Aleksandrovsky, Y. Song, X. Fan, and B. Yin. 2021. Unsupervised synonym extraction for document enhancement in e-commerce search. In The Web Conference 2021 Workshop on Knowledge Management in E-Commerce. ACM, New York, NY.Google ScholarGoogle Scholar
  1087. J. Lu and J. Callan. 2005. Federated search of text-based digital libraries in hierarchical peer-to-peer networks. In Advances in Information Retrieval, European Conference on Information Retrieval, Vol. 3408: Lecture Notes in Computer Science. Springer, Berlin, 52–66. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1088. X. Lu, S. Pramanik, R. Saha Roy, A. Abujabal, Y. Wang, and G. Weikum. 2019. Answering complex questions by joining multi-document evidence with quasi knowledge graphs. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 105–114. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1089. Y. Luan, J. Eisenstein, K. Toutanova, and M. Collins. 2021. Sparse, dense, and attentional representations for text retrieval. Trans. Assoc. Comput. Linguist. 9, 329–345. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1090. R. D. Luce and J. W. Tukey. January. 1964. Simultaneous conjoint measurement: A new type of fundamental measurement. J. Math. Psychol. 1, 1, 1–27. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1091. R. D. Luce, D. H. Krantz, P. Suppes, and A. Tversky. 1990. Foundations of Measurement. Representation, Axiomatization, and Invariance, Vol. 3. Academic Press, New York.Google ScholarGoogle Scholar
  1092. M. Ludewig and D. Jannach. 2019. User-centric evaluation of session-based recommendations for an automated radio station. In Proceedings of the 13th ACM Conference on Recommender Systems (RecSys ’19). ACM, New York, NY, 516–520. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1093. M. Ludewig, S. Latifi, N. Mauro, and D. Jannach. 2021. Empirical analysis of session-based recommendation algorithms. User Model. User-Adapt. Interact. 31, 149–181. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1094. M. Lupu, A. Fujii, D. W. Oard, M. Iwayama, and N. Kando. 2017a. Patent-related tasks at NTCIR. In M. Lupu, K. Mayer, N. Kando, and A. J. Trippe (Eds.), Current Challenges in Patent Information Retrieval. Springer, Berlin, 77–111. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1095. M. Lupu, K. Mayer, N. Kando, and A. J. Trippe. (Eds.). 2017b. Current Challenges in Patent Information Retrieval, Vol. 37. Springer, Berlin. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1096. Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. 2007. Multi-Probe LSH: Efficient indexing for high-dimensional similarity search. In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB ’07), VLDB Endowment, 950–961.Google ScholarGoogle Scholar
  1097. M. Lykke, B. Larsen, H. Lund, and P. Ingwersen. 2010. Developing a test collection for the evaluation of integrated search. In C. Gurrin, Y. He, G. Kazai, U. Kruschwitz, S. Little, T. Roelleke, S. Rüger, and K. van Rijsbergen (Eds.), Advances in Information Retrieval, 32nd European Conference on IR Research, ECIR 2010, Vol. 5993: Lecture Notes in Computer Science. Springer, Berlin, 627–630. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1098. C. Ma and B. Zhang. 2018. A new query recommendation method supporting exploratory search based on search goal shift graphs. IEEE Trans. Knowl. Data Eng. 30, 2024–2036. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1099. S. MacAvaney, A. Yates, A. Cohan, and N. Goharian. 2019. CEDR: Contextualized embeddings for document ranking. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 1101–1104. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1100. S. MacAvaney, F. M. Nardini, R. Perego, N. Tonellotto, N. Goharian, and O. Frieder. 2020a. Efficient document re-ranking for transformers by precomputing term representations. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 49–58. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1101. S. MacAvaney, F. M. Nardini, R. Perego, N. Tonellotto, N. Goharian, and O. Frieder. 2020b. Expansion via prediction of importance with contextualization. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1573–1576. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1102. S. MacAvaney, A. Yates, S. Feldman, D. Downey, A. Cohan, and N. Goharian. 2021. Simplified data wrangling with ir˙datasets. In F. Diaz, C. Shah, T. Suel, P. Castells, R. Jones, T. Sakai, A. Bellogín, and M. Yoshioka (Eds.), Proceedings of the 44th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 2429–2436. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1103. C. Macdonald and I. Ounis. 2006. Combining fields in known-item email search. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’06). ACM, New York, NY, 675–676. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1104. C. Macdonald and N. Tonellotto. 2021. On approximate nearest neighbour selection for multi-stage dense retrieval. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM ’21). ACM, New York, NY, 3318–3322. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1105. C. Macdonald, R. L. T. Santos, and I. Ounis. 2012. The whens and hows of learning to rank for web search. Inf. Retr. 16, 5, 584–628. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1106. J. Mackenzie, K. Gupta, F. Qiao, A. H. Awadallah, and M. Shokouhi. 2019. Exploring user behavior in email re-finding tasks. In Proceedings of the 2019 World Wide Web Conference (WWW ’19). ACM, New York, NY, 1245–1255. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1107. E. Maddalena and S. Mizzaro. 2014. Axiometrics: Axioms of information retrieval effectiveness metrics. In S. Mizzaro and R. Song (Eds.), Proceedings of the 6th International Workshop on Evaluating Information Access (EVIA ’14), Tokyo, Japan. National Institute of Informatics, 17–24.Google ScholarGoogle Scholar
  1108. E. Maddalena, S. Mizzaro, F. Scholer, and A. Turpin. January. 2017. On crowdsourcing relevance magnitudes for information retrieval evaluation. ACM Trans. Inf. Syst. 35, 3, 1–32. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1109. L. A. Maggio, C. A. Aakre, G. Del Fiol, J. Shellum, and D. A. Cook. July. 2019. Impact of clinicians’ use of electronic knowledge resources on clinical and learning outcomes: Systematic review and meta-analysis. J. Med. Internet Res. 21, 7, e13315. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1110. P. P. Maglio and T. Matlock. 1999. The conceptual structure of information space. In A. J. Munro, K. Höök, and D. Benyon (Eds.), Social Navigation of Information Space. Springer, London, 155–173. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1111. B. Magnini, S. Romagnoli, A. Vallin, J. Herrera, A. Peñas, V. Peinado, M. Verdejo, and M. Rijke. August. 2003. The multiple language question answering track at CLEF 2003. In Comparative Evaluation of Multilingual Information Access Systems, CLEF 2003, Vol. 3237: Lecture Notes in Computer Science. Springer, Berlin, 471–486. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1112. B. Magnini, A. Vallin, C. Ayache, G. Erbach, A. Peñas, M. de Rijke, P. Rocha, K. Simov, and R. Sutcliffe. 2005. Overview of the CLEF 2004 multilingual question answering track. In C. Peters, P. Clough, J. Gonzalo, G. J. F. Jones, M. Kluck, and B. Magnini (Eds.), Multilingual Information Access for Text, Speech and Images, Vol. 3491: Lecture Notes in Computer Science. Springer, Berlin, 371–391. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1113. B. Magnini, D. Giampiccolo, P. Forner, C. Ayache, V. Jijkoun, P. Osenova, A. Peñas, P. Rocha, B. Sacaleanu, and R. Sutcliffe. 2007. Overview of the CLEF 2006 multilingual question answering track. In C. Peters, P. Clough, F. C. Gey, J. Karlgren, B. Magnini, D. W. Oard, M. de Rijke, and M. Stempfhuber (Eds.), Evaluation of Multilingual and Multi-modal Information Retrieval, Vol. 4730: Lecture Notes in Computer Science. Springer, Berlin, 223–256. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1114. M. Maistro, L. C. Lima, J. G. Simonsen, and C. Lioma. 2021. Principled multi-aspect evaluation measures of rankings. In G. Demartini, G. Zuccon, S. Culpepper, Z. Huang, and H. Tong (Eds.), Proceedings of the 30th International Conference on Information and Knowledge Management (CIKM ’21). ACM, New York, NY, 1232–1242. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1115. M. Maistro, T. Breuer, P. Schaer, and N. Ferro. May. 2023. An in-depth investigation on the behavior of measures to quantify reproducibility. Inf. Process. Manag. 60, 3, 103332. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1116. P. Majumder, M. Mitra, M. Agrawal, and P. Mehta (Eds.). 2007. FIRE 2012 & 2013: Post-Proceedings of the 4th and 5th Workshops of the Forum for Information Retrieval Evaluation: Fourth International Workshop, FIRE 2012, Kolkata, India, December 19–21, 2012 and Fifth International Workshop, FIRE 2013 New Delhi, India, December 4–6, 2013. ACM, New York, NY.Google ScholarGoogle Scholar
  1117. P. Majumder, M. Mitra, P. Bhattacharyya, L. V. Subramaniam, and P. Rosso (Eds.). 2013. Multilingual Information Access in South Asian Languages—Second and Third International Workshop of the Forum for Information Retrieval Evaluation (FIRE 2010 and 2011), Vol. 7536: Lecture Notes in Computer Science. Springer, Berlin. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1118. S. Makri, A. Blandford, and A. L. Cox. 2008. Investigating the information-seeking behaviour of academic lawyers: From Ellis’s model to design. Inf. Process. Manag. 44, 2, 613–634. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1119. Y. A. Malkov and D. A. Yashunin. 2020. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42, 4, 824–836. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1120. Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. January. 2013. Approximate nearest neighbor algorithm based on navigable small world graphs. Inf. Syst. 45, 61–68. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1121. A. Mallia, O. Khattab, T. Suel, and N. Tonellotto. 2021. Learning passage impacts for inverted indexes. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 1723–1727. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1122. A. Mallia, J. Mackenzie, T. Suel, and N. Tonellotto. 2022. Faster learned sparse retrieval with guided traversal. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 1901–1905. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1123. S. Malmasi, S. Kallumadi, N. Ueffing, O. Rokhlenko, E. Agichtein, and I. Guy (Eds.). 2020. Proceedings of the 3rd Workshop on e-Commerce and NLP. Association for Computational Linguistics.Google ScholarGoogle Scholar
  1124. S. Malmasi, S. Kallumadi, N. Ueffing, O. Rokhlenko, E. Agichtein, and I. Guy (Eds.). 2021. Proceedings of the 4th Workshop on e-Commerce and NLP. Association for Computational Linguistics.Google ScholarGoogle Scholar
  1125. T. W. Malone. January. 1983. How do people organize their desks? Implications for the design of office information systems. ACM Trans. Inf. Syst. 1, 1, 99–112. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1126. U. Manber and S. Wu. 1994. Glimpse: A tool to search through entire file systems. In Proceedings of the USENIX Winter 1994 Technical Conference (WTEC ’94). USENIX Association, 23–32.Google ScholarGoogle ScholarDigital LibraryDigital Library
  1127. C. D. Manning, P. Raghavan, and H. Schütze. 2008. Introduction to Information Retrieval, Vol. 39. Cambridge University Press, Cambridge. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1128. M. Mansoury, H. Abdollahpouri, B. Mobasher, M. Pechenizkiy, R. Burke, and M. Sabouri. 2021a. Unbiased cascade bandits: Mitigating exposure bias in online learning to rank recommendation. arXiv:2108.03440. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1129. M. Mansoury, H. Abdollahpouri, M. Pechenizkiy, B. Mobasher, and R. D. Burke. 2021b. A graph-based approach for mitigating multi-sided exposure bias in recommender systems. ACM Trans. Inf. Syst. 40, 1–31. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1130. J. Manzi. May. 2012. Uncontrolled: The Surprising Payoff of Trial-and-Error for Business, Politics, and Society. Basic Books, New York, NY.Google ScholarGoogle Scholar
  1131. J. Mao, C. Luo, M. Zhang, and S. Ma. 2018. Constructing click models for mobile search. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 775–784. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1132. Y. Mao, T. Zhao, A. Kan, C. Zhang, X. L. Dong, C. Faloutsos, and J. Han. 2020. Octet: Online catalog taxonomy enrichment with self-supervision. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20). ACM, New York, NY, 2247–2257. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1133. F. Marcello and N. Bertoldi. 2002. Statistical cross-language information retrieval using n-best query translations. In K. Järvelin, M. Beaulieu, R. A. Baeza-Yates, and S. Myaeng (Eds.), Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’02), August 11–15, 2002, Tampere, Finland. ACM, New York, NY, 167–174. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1134. U. Marchand and G. Peeters. 2015. Swing ratio estimation. In Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15).Google ScholarGoogle Scholar
  1135. G. Marchionini. 1997. Information Seeking in Electronic Environments. Cambridge University Press. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1136. A. Marcus and A. Parameswaran. December. 2015. Crowdsourced data management: Industry and academic perspectives. Found. Trends Databases 6, 1–2, 1–161. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1137. H. M. Marcus-Roberts and F. S. Roberts. Winter. 1987. Meaningless statistics. J. Educ. Behav. Stat. 12, 4, 383–394. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1138. B. M. Marlin and R. S. Zemel. 2009. Collaborative prediction and ranking with non-random missing data. In Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys ’09). ACM, New York, NY, 5–12. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1139. M. Marolt. 2006. A mid-level melody-based representation for calculating audio similarity. In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR ’06). ISMIR, 280–285. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1140. F. Martínez-Plumed, S. Tolan, A. Pesole, J. Hernández-Orallo, E. Fernández-Macas, and E. Gómez. 2020. Does AI qualify for the job? A bidirectional model mapping labour and AI intensities. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES ’20). ACM, New York, NY, 94–100. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1141. D. Mason. 2006. Legal information retrieval study—Lexis professional and Westlaw UK. Leg. Inf. Manag. 6, 4, 246–250. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1142. J. Masthoff and A. Delić. 2022. Group recommender systems: Beyond preference aggregation. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 381–420. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1143. A. Mathur, J. Vitak, A. Narayanan, and M. Chetty. 2018. Characterizing the use of browser-based blocking extensions to prevent online tracking. In Proceedings of the Fourteenth USENIX Conference on Usable Privacy and Security (SOUPS ’18). USENIX Association, 103–116.Google ScholarGoogle Scholar
  1144. M. Mauch. 2010. Automatic Chord Transcription from Audio Using Computational Models of Musical Context. Ph.D. thesis. Queen Mary University London, UK.Google ScholarGoogle Scholar
  1145. M. Mauch and S. Dixon. 2014. PYIN: A fundamental frequency estimator using probabilistic threshold distributions. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy. IEEE, 659–663. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1146. D. Maxwell and L. Azzopardi. 2016a. Simulating interactive information retrieval: SimIIR: A framework for the simulation of interaction. In R. Perego, F. Sebastiani, J. Aslam, I. Ruthven, and J. Zobel (Eds.), Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 1141–1144. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1147. D. Maxwell and L. Azzopardi. 2016b. Agents, simulated users and humans: An analysis of performance and behaviour. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM ’16). ACM, New York, NY, 731–740. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1148. D. Maxwell, L. Azzopardi, and Y. Moshfeghi. 2017. A study of snippet length and informativeness: Behaviour, performance and user experience. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 135–144. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1149. S. Maxwell and H. D. Delaney. 2004. Designing Experiments and Analyzing Data. A Model Comparison Perspective (2nd. ed.). Lawrence Erlbaum Associates, Mahwah, NJ.Google ScholarGoogle Scholar
  1150. P. P. Mazur and R. Dale. 2010. WikiWars: A new corpus for research on temporal expressions. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, Cambridge, MA, 913–922.Google ScholarGoogle Scholar
  1151. J. S. McCarley. 1999. Should we translate the documents or the queries in cross-language information retrieval? In R. Dale and K. W. Church (Eds.), Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, University of Maryland, College Park, MD, June 20–26, 1999. Association for Computational Linguistics, 208–214.Google ScholarGoogle Scholar
  1152. D. McClure. 2007. Startup metrics for pirates: AARRR!!! Retrieved from https://www.slideshare.net/dmc500hats/startup-metrics-for-pirates-long-version.Google ScholarGoogle Scholar
  1153. J. H. McDermott, A. F. Schultz, E. A. Undurraga, and R. A. Godoy. 2016. Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature 535, 547–550. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1154. N. McDonald and A. Forte. 2020. The politics of privacy theories: Moving from norms to vulnerabilities. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20). ACM, New York, NY, 1–14. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1155. R. McGill, J. W. Tukey, and W. A. Larsen. February. 1978. Variations of box plots. Am. Stat. 32, 1, 12–16. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1156. K. A. McKibbon and D. B. Fridsma. December. 2006. Effectiveness of clinician-selected electronic information resources for answering primary care physicians’ information needs. J. Am. Med. Inform. Assoc. 13, 6, 653–659. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1157. M. F. McKinney and D. Moelants. 2004. Deviations from the resonance theory of tempo induction. In Proceedings of the Conference on Interdisciplinary Musicology (CIM ’04), Graz/Austria, April 15–18, 2004. Department of Musicology, University of Graz, Austria.Google ScholarGoogle Scholar
  1158. P. McNamee. 2008. Textual Representations for Corpus-Based Bilingual Retrieval. Ph.D. thesis. University of Maryland, Baltimore County.Google ScholarGoogle Scholar
  1159. P. McNamee and J. Mayfield. 2002. Comparing cross-language query expansion techniques by degrading translation resources. In K. Järvelin, M. Beaulieu, R. A. Baeza-Yates, and S. Myaeng (Eds.), Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’02), Tampere, Finland, August 11–15, 2002. ACM, New York, NY, 159–166. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1160. S. M. McNee, J. Riedl, and J. A. Konstan. 2006. Being accurate is not enough: How accuracy metrics have hurt recommender systems. In Proceedings of ACM CHI 2006 Conference on Human Factors in Computing Systems—Extended Abstracts (CHI EA ’06). ACM, New York, NY, 1097–1101. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1161. M. McTear, Z. Callejas, and D. Griol. 2016. The Conversational Interface: Talking to Smart Devices. Springer, Cham. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1162. Mediative. 2014. The Evolution of Google’s Search Results Pages and Their Effects on User Behavior (white paper).Google ScholarGoogle Scholar
  1163. R. Mehrotra, J. McInerney, H. Bouchard, M. Lalmas, and F. Diaz. 2018. Towards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fairness & satisfaction in recommendation systems. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, 2243–2251. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1164. E. Mena-Maldonado, R. Cañamares, P. Castells, Y. Ren, and M. Sanderson. 2021. Popularity bias in false-positive metrics for recommender systems evaluation. ACM Trans. Inf. Syst. 39, 3, 1–43. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1165. E. Ménard and V. Girouard. 2015. Image retrieval with SINCERITY: A search engine designed for our multilingual world! OCLC Syst. Serv. 31, 4, 204–218. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1166. W. Mendenhall and T. Sincich. 2012. A Second Course in Statistics. Regression Analysis (7th. ed). Prentice Hall.Google ScholarGoogle Scholar
  1167. P. N. Mendes, M. Jakob, A. Garca-Silva, and C. Bizer. 2011. DBpedia spotlight: Shedding light on the web of documents. In Proceedings of the 7th International Conference on Semantic Systems (I-Semantics ’11). ACM, New York, NY, 1–8. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1168. R. K. Merton. 1968. The Matthew effect in science. The reward and communication systems of science are considered. Science 159, 3810, 56–63. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1169. D. Metzler and W. B. Croft. 2005. A Markov random field model for term dependencies. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’05). ACM, New York, NY, 472–479. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1170. J. Michel. 1986. Measurement scales and statistics: A clash of paradigms. Psychol. Bull. 100, 3, 398–407. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1171. J. Michel. 1990. An Introduction to the Logic of Psychological Measurement. Lawrence Erlbaum Associates, Mahwah, NJ.Google ScholarGoogle Scholar
  1172. T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal. September. 2018. Can a suit of armor conduct electricity? A new dataset for open book question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2381–2391. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1173. T. Mikolov, Q. V. Le, and I. Sutskever. 2013a. Exploiting similarities among languages for machine translation. arXiv:1309.4168. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1174. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013b. Distributed representations of words and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS ’13). Curran Associates, Red Hook, NY, 3111–3119.Google ScholarGoogle Scholar
  1175. W. D. Miles. 1982. A History of the National Library of Medicine: The Nation’s Treasury of Medical Knowledge—Digital Collections—National Library of Medicine. U.S. Department of Health and Human Services.Google ScholarGoogle Scholar
  1176. A. Mishra and K. Berberich. 2016. Event digest: A holistic view on past events. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 493–502. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1177. T. Mitamura, H. Shima, T. Sakai, N. Kando, T. Mori, K. Takeda, C.-Y. Lin, R. Song, C.-J. Lin, and C.-W. Lee. January. 2010. Overview of the NTCIR-8 ACLIA tasks: Advanced cross-lingual information access. In Proceedings of the 8th NTCIR Workshop Meeting, Tokyo, Japan, June 15–18, 2010. National Institute of Informatics, 15–24.Google ScholarGoogle Scholar
  1178. S. Mitchell, E. Potash, S. Barocas, A. D’Amour, and K. Lum. March. 2021. Algorithmic fairness: Choices, assumptions, and definitions. Annu. Rev. Stat. Appl. 8, 1, 141–163. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1179. B. Mitra. 2015. Exploring session context using distributed representations of queries and reformulations. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 3–12. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1180. B. Mitra, M. Shokouhi, F. Radlinski, and K. Hofmann. 2014. On user interactions with query auto-completion. In Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 1055–1058. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1181. M. Mitra and P. Majumdar. 2008. FIRE: Forum for information retrieval evaluation. In Proceedings of the 2nd Workshop on Cross Lingual Information Access (CLIA) Addressing the Information Need of Multilingual Societies.Google ScholarGoogle Scholar
  1182. T. Miyanishi and T. Sakai. 2013. Time-aware structured query suggestion. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 809–812. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1183. S. Mizzaro. September. 1997. Relevance: The whole history. J. Am. Soc. Inf. Sci. Technol. 48, 9, 810–832. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1184. A. Moffat. 2013. Seven numeric properties of effectiveness metrics. In R. E. Banchs, F. Silvestri, T.-Y. Liu, M. Zhang, S. Gao, and J. Lang (Eds.), Information Retrieval Technology, Proceedings of the 9th Asia Information Retrieval Societies Conference (AIRS ’13), Vol. 8281: Lecture Notes in Computer Science. Springer, Berlin, 1–12. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1185. A. Moffat. 2022. Batch evaluation metrics in information retrieval: Measures, scales, and meaning. IEEE Access 10, 105564–105577. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1186. A. Moffat. December. 2023. Categorical, ratio, and professorial data: The case for reciprocal rank. arXiv:2312.12672. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1187. A. Moffat and J. Zobel. December. 2008. Rank-biased precision for measurement of retrieval effectiveness. ACM Trans. Inf. Syst. 27, 1, 2:1–2:27. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1188. A. Moffat, P. Thomas, and F. Scholer. 2013. Users versus models: What observation tells us about effectiveness metrics. In A. Iyengar, Q. He, J. Pei, R. Rastogi, and W. Nejdl (Eds.), Proceedings of the 22nd International Conference on Information and Knowledge Management (CIKM ’13). ACM, New York, NY, 659–668. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1189. A. Moffat, P. Bailey, F. Scholer, and P. Thomas. June. 2017. Incorporating user expectations and behavior into the measurement of search effectiveness. ACM Trans. Inf. Syst. 35, 3, 1–38. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1190. A. Moffat, J. Mackenzie, P. Thomas, and L. Azzopardi. 2022. A flexible framework for offline effectiveness metrics. In E. Amigo, P. Castells, J. Gonzalo, B. Carterette, J. Shane Culpepper, and G. Kazai (Eds.), Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 578–587. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1191. J. C. Mogul. 1984. Representing information about files. In Proceedings of the 4th International Conference on Distributed Computing Systems. IEEE, 432–439.Google ScholarGoogle Scholar
  1192. V. Mohan, Y. Song, P. Nigam, C. H. Teo, W. Ding, V. Lakshman, A. Shingavi, H. Gu, and B. Yin. 2019. Semantic product search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’19). ACM, New York, NY, 2876–2885. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1193. J. Molino, J. A. Underwood, and C. Ayrey. 1990. Musical fact and the semiology of music. Music Anal. 9, 2, 105–156. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1194. M. Momma, A. B. Garakani, and Y. Sun. 2019. Multi-objective relevance ranking. In Proceedings of the SIGIR 2019 eCom Workshop, Paris, France, July 2019. CEUR-WS.org.Google ScholarGoogle Scholar
  1195. F. Morreale. 2021. Where does the buck stop? Ethical and political issues with AI in music creation. Trans. Int. Soc. Music Inf. Retr. 4, 1, 105–113. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1196. F. Morreale, M. Sharma, and I.-C. Wei. 2023. Data collection in music generation training sets: A critical analysis. In Proceedings of the 24th International Society for Music Information Retrieval Conference (ISMIR). ISMIR, 37–46. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1197. Y. Moshfeghi and A. F. Huertas-Rosero. July. 2022. A game theory approach for estimating reliability of crowdsourced relevance assessments. ACM Trans. Inf. Syst. 40, 3, 1–19. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1198. Y. Moshfeghi, A. F. Huertas-Rosero, and J. M. Jose. 2016. A game-theory approach for effective crowdsource-based relevance assessment. ACM Trans. Intell. Syst. Technol. 7, 4, 1–5. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1199. H. Müller and D. Unay. September. 2017. Retrieval from and understanding of large-scale multi-modal medical datasets: A review. IEEE Trans. Multimed. 19, 9, 2093–2104. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1200. C. Mulwa, S. Lawless, M. Sharp, and V. Wade. 2011. The evaluation of adaptive and personalised information retrieval systems: A review. Int. J. Knowl. Web Intell. 2, 2/3, 138–156. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1201. T. Murakami, K. Mori, and R. Orihara. 2008. Metrics for evaluating the serendipity of recommendation lists. In New Frontiers in Artificial Intelligence: JSAI 2007 Conference and Workshops, Revised Selected Papers, Miyazaki, Japan, June 18–22, 2007, Vol. 4914: Lecture Notes in Computer Science. Springer, Berlin, 40–46. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1202. L. Murgai. 2023. Mitigating Bias in Machine Learning. Retrieved from https://www.mitigatingbias.ml.Google ScholarGoogle Scholar
  1203. C. Musto, M. de Gemmis, P. Lops, F. Narducci, and G. Semeraro. 2022. Semantics and content-based recommendations. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 251–298. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1204. T. H. Myer and D. A. Henderson. April. 1975. Message Transmission Protocol. Internet Engineering Task Force, Network Working Group, Request for Comment 680.Google ScholarGoogle Scholar
  1205. B. T. Mynatt, L. M. Leventhal, K. Instone, J. Farhat, and D. S. Rohlman. June. 1992. Hypertext or book: Which is better for answering questions? In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’92). ACM, New York, NY, 19–25. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1206. S. Nair, P. Galuscakova, and D. W. Oard. 2020a. Combining contextualized and non-contextualized query translations to improve CLIR. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1581–1584. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1207. S. Nair, A. Ragni, O. Klejch, P. Galuščáková, and D. Oard. February. 2020b. Experiments with cross-language speech retrieval for lower-resource languages. In Information Retrieval Technology, Proceedings of the Information Retrieval Technology: 15th Asia Information Retrieval Societies Conference (AIRS ’19), Hong Kong, China, November 7–9, Vol. 12004: Lecture Notes in Computer Science. Springer, Cham, 145–157. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1208. S. Nair, E. Yang, D. Lawrie, K. Duh, P. McNamee, K. Murray, J. Mayfield, and D. W. Oard. 2022. Transfer learning approaches for building cross-language dense retrieval models. In M. Hagen, S. Verberne, C. Macdonald, C. Seifert, K. Balog, K. Nørvåg, and V. Setty (Eds.), Advances in Information Retrieval, Proceedings of the 44th European Conference on IR Research (ECIR ’22), Part I, Vol. 13185: Lecture Notes in Computer Science. Springer, Cham, 382–396. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1209. B. Nardi, K. Anderson, and T. Erickson. 1994. Filing and Finding Computer Files. Technical Report # 118. Apple Computer Inc.Google ScholarGoogle Scholar
  1210. L. Narens. 2002. Theories of Meaningfulness. Lawrence Erlbaum Associates, Mahwah, NJ.Google ScholarGoogle Scholar
  1211. National Academies of Sciences, Engineering, and Medicine. 2019. Reproducibility and Replicability in Science. The National Academies Press, Washington, DC. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1212. National Institute of Standards and Technology. 2017. The Official Original Derivation of AQWV. Retrieved from https://www.nist.gov/system/files/documents/2017/10/26/aqwv˙derivation.pdf.Google ScholarGoogle Scholar
  1213. National Institute of Standards and Technology. 2020. NIST Privacy Framework: A Tool for Improving Privacy through Enterprise Risk Management, Version 1.0. Technical Report NIST CSWP 01162020. National Institute of Standards and Technology.Google ScholarGoogle Scholar
  1214. R. P. Neco and M. L. Forcada. 1997. Asynchronous translations with recurrent neural nets. In Proceedings of International Conference on Neural Networks (ICNN ’97), Vol. 4. IEEE, 2535–2540. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1215. D. Newman. July. 1939. The distribution of range in samples from a normal population, expressed in terms of an independent estimate of standard deviation. Biometrika 31, 2, 20–30. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1216. M. E. J. Newman. September. 2005. Power laws, pareto distributions and Zipf’s law. Contemp. Phys. 46, 5, 323–351. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1217. J. Neyman and E. S. Pearson. July. 1928. On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika 20A, 1/2,175–240. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1218. B. Neyshabur and N. Srebro. 2015. On symmetric and asymmetric LSHs for inner product search. In Proceedings of the 32nd International Conference on Machine Learning (ICML ’15), Vol. 37. JMLR.org, 1926—1934.Google ScholarGoogle Scholar
  1219. T. V. Nguyen, N. Rao, and K. Subbian. 2020. Learning robust models for e-commerce product search. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 6861–6869. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1220. J.-Y. Nie. 2010. Cross-Language Information Retrieval. Morgan & Claypool Publishers.Google ScholarGoogle Scholar
  1221. J. Nielsen. 2005. Ten Usability Heuristics. Retrieved from https://www.nngroup.com/articles/ten-usability-heuristics/.Google ScholarGoogle Scholar
  1222. J. Nielsen, October. 2006. The 90-9-1 Rule for Participation Inequality in Social Media and Online Communities. Retrieved from https://www.nngroup.com/articles/participation-inequality/.Google ScholarGoogle Scholar
  1223. J. Nielsen and T. K. Landauer. 1993. A mathematical model of the finding of usability problems. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing Systems (CHI ’93). ACM, New York, NY, 206–213. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1224. O. Nieto, M. McCallum, M. E. Davies, A. Robertson, A. M. Stark, and E. Egozy. 2019. The Harmonix set: Beats, downbeats, and functional segment annotations of western popular music. In Proceedings of the 20th International Society for Music Information Retrieval Conference. ISMIR, 565–572. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1225. A. N. Nikolakopoulos, X. Ning, C. Desrosiers, and G. Karypis. 2022. Trust your neighbors: A comprehensive survey of neighborhood-based methods for recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 39–89. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1226. V. Nikoulina and S. Clinchant. 2013. Domain adaptation of statistical machine translation models with monolingual data for cross lingual information retrieval. In Advances in Information Retrieval, Proceedings of the 35th European Conference on IR Research (ECIR ’13), Vol. 7814: Lecture Notes in Computer Science. Springer, Berlin, 768–771. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1227. V. Nikoulina, B. Kovachev, N. Lagos, and C. Monz. April. 2012. Adaptation of statistical machine translation model for cross-lingual information retrieval in a service context. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France. Association for Computational Linguistics, 109–119.Google ScholarGoogle Scholar
  1228. X. Ning and G. Karypis. 2011. SLIM: Sparse linear methods for top-N recommender systems. In Proceedings of the 11th IEEE International Conference on Data Mining (ICDM ’11). IEEE, Washington, DC, 497–506. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1229. R. Nishikimi, E. Nakamura, M. Goto, and K. Yoshii. 2019. End-to-end melody note transcription based on a beat-synchronous attention mechanism. In 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). IEEE, 26–30. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1230. S. U. Noble. 2018. Algorithms of Oppression: How Search Engines Reinforce Racism. New York University Press.Google ScholarGoogle Scholar
  1231. R. Nogueira and K. Cho. 2019. Passage re-ranking with BERT. arXiv:1901.04085. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1232. R. Nogueira and J. Lin. 2019. From doc2query to docTTTTTquery. Online preprint.Google ScholarGoogle Scholar
  1233. R. Nogueira, W. Yang, K. Cho, and J. Lin. 2019a. Multi-stage document ranking with BERT. arXiv:1910.14424. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1234. R. Nogueira, W. Yang, J. Lin, and K. Cho. 2019b. Document expansion by query prediction. arXiv:1904.08375. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1235. R. Nogueira, Z. Jiang, R. Pradeep, and J. Lin. 2020. Document ranking with a pretrained sequence-to-sequence model. In Findings of the Association for Computational Linguistics: EMNLP 2020. Association for Computational Linguistics, 708–718. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1236. M. Nørgaard and K. Hornbæk. 2006. What do usability evaluators do in practice? An explorative study of think-aloud testing. In Proceedings of the 6th Conference on Designing Interactive Systems (DIS ’06). ACM, New York, NY, 209–218. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1237. H. Nori, Y. T. Lee, S. Zhang, D. Carignan, R. Edgar, N. Fusi, N. King, J. Larson, Y. Li, W. Liu, R. Luo, S. M. McKinney, R. O. Ness, H. Poon, T. Qin, N. Usuyama, C. White, and E. Horvitz. 2023. Can generalist foundation models outcompete special-purpose tuning? Case study in medicine. arXiv:2311.16452. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1238. O. C. Norocel and D. Lewandowski. 2023. Google, data voids, and the dynamics of the politics of exclusion. Big Data Soc. 10, 1, 20539517221149099. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1239. C. Nota, G. Theocharous, M. Saad, and P. S. Thomas. 2021. Preventing contrast effect exploitation in recommendations. In Proceedings of ECOM ’21. CEUR-WS.org.Google ScholarGoogle Scholar
  1240. G. M. D. Nunzio, N. Ferro, G. J. F. Jones, and C. Peters. 2005. CLEF 2005: Ad hoc track overview. In C. Peters and N. Ferro (Eds.), Working Notes for CLEF 2005 Workshop co-located with the 9th European Conference on Digital Libraries (ECDL ’05), Wien, Austria, September 21–22, 2005, CEUR Workshop Proceedings, Vol. 1171. CEUR-WS.org.Google ScholarGoogle Scholar
  1241. D. Oard, W. Webber, D. A. Kirsch, and S. Golitsynskiy. 2015. Avocado research email collection. Linguistic Data Consortium. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1242. D. W. Oard and A. R. Diekema. 1998. Cross-language information retrieval. Annu. Rev. Inf. Sci. Technol. (ARIST) 33, 223–256.Google ScholarGoogle Scholar
  1243. D. W. Oard and F. Ertunc. 2002. Translation-based indexing for cross-language retrieval. In Advances in Information Retrieval, Proceedings of the 24th BCS-IRSG European Colloquium on IR, Vol. 2291: Lecture Notes in Computer Science. Springer, Berlin, 324–333. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1244. D. W. Oard and F. C. Gey. February. 2003. The TREC 2002 Arabic/English CLIR track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Eleventh Text REtrieval Conference (TREC 2002), November 19–22, 2002, Special Publication 500-251. National Institute of Standards and Technology, Gaithersburg, MD.Google ScholarGoogle Scholar
  1245. D. W. Oard and W. Webber. 2013. Information retrieval for e-discovery. Found. Trends Inf. Retr. 7, 2–3, 99–237. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1246. D. W. Oard, J. Wang, G. J. F. Jones, R. W. White, P. Pecina, D. Soergel, X. Huang, and I. Shafran. 2006. Overview of the CLEF-2006 cross-language speech retrieval track. In A. Nardi, C. Peters, J. L. Vicedo, and N. Ferro (Eds.), CLEF 2006 Working Notes. CEUR-WS.org.Google ScholarGoogle Scholar
  1247. R. M. O’Brien. June. 1985. The relationship between ordinal measures and their underlying values: Why all the disagreement? Qual. Quant. 19, 3, 265–277. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1248. R. N. Oddy. 1977. Information retrieval through man–machine dialogue. J. Doc. 33, 1, 1–14. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1249. W. Ogden, J. Cowie, M. Davis, E. Ludovik, S. Nirenburg, H. Molina-Salgado, and N. Sharples. 1999. Keizai: An interactive cross-language text retrieval system. In Proceedings of the MT SUMMIT VII Workshop on Machine Translation for Cross Language Information Retrieval, Vol. 416.Google ScholarGoogle Scholar
  1250. W. C. Ogden and M. W. Davis. 2000. Improving cross-language text retrieval with human interactions. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences (HICSS-33), Maui, Hawaii, January 4–7, 2000. IEEE, 9. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1251. J. Oh, S. Park, H. Yu, M. Song, and S.-T. Park. 2011. Novel recommendation based on personal popularity tendency. In Proceedings of the 11th IEEE Conference on Data Mining (ICDM ’11). IEEE, 507–516. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1252. S. Okura, Y. Tagami, S. Ono, and A. Tajima. 2017. Embedding-based news recommendation for millions of users. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’17). ACM, New York, NY, 1933–1942. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1253. S. Olejnik and J. Algina. December. 2003. Generalized eta and omega squared statistics: Measures of effect size for some common research designs. Psychol. Methods 8, 4, 434–447. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1254. A. Olteanu, C. Castillo, F. Diaz, and E. Kiciman. January. 2016. Social data: Biases, methodological pitfalls, and ethical boundaries. Front. Big Data 2, 13. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1255. A. Olteanu, J. Garcia-Gathright, M. de Rijke, and M. D. Ekstrand, A. Roegiest, A. Lipani, A. Beutel, A. Olteanu, A. Lučić, A. A. Stoica, A. Das, A. Biega, B. Voorn, C. Hauff, D. Spina, D. D. Lewis, D. W. Oard, E. Yilmaz, F. Hasibi, G. Kazai, G. McDonald, H. Haned, I. Ounis, I. Van Der Linden, J. Garcia-Gathright, J. Baan, K. N. Lau, K. Balog, M. De Rijke, M. Sayed, M. Panteli, M. Sanderson, M. Lease, M. D. Ekstrand, P. Lahoti, T. Kamishima. 2019. FACTS-IR: Fairness, accountability, confidentiality, transparency, and safety in information retrieval. ACM SIGIR Forum 53, 2, 20–43. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1256. K. Ong, K. Järvelin, M. Sanderson, and F. Scholer. 2018. QWERTY: The effects of typing on web search behavior. In Proceedings of the 2018 Conference on Human Information Interaction and Retrieval (CHIIR ’18). ACM, New York, NY, 281–284. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1257. H. Oosterhuis and M. de Rijke. 2021. Unifying online and counterfactual learning to rank: A novel counterfactual estimator that effectively utilizes online interventions. In L. Lewin-Eytan, D. Carmel, E. Yom-Tov, E. Agichtein, and E. Gabrilovich (Eds.), Proceedings of the 14th ACM International Conference on Web Searching and Data Mining (WSDM ’21). ACM, New York, NY, 463–471. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1258. Open Science Collaboration. August. 2015. Estimating the reproducibility of psychological science. Science 349, 6251, 943–952. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1259. OpenAI. March. 2023. GPT-4 Technical Report. arXiv:2303.08774. DOI: .Google ScholarGoogle Scholar
  1260. OpenStreetMap contributors. 2021. OpenStreetMap. https://www.openstreetmap.org.Google ScholarGoogle Scholar
  1261. J. Osmalskyj. 2017. A Combining Approach to Cover Song Identification. Ph.D. thesis. University of Liege, Belgium.Google ScholarGoogle Scholar
  1262. D. Otero, J. Parapar, and N. Ferro. 2023. How discriminative are your qrels? How to study the statistical significance of document adjudication methods. In I. Frommholz, F. Hopfgartner, M. Lee, M. Oakes, M. Lalmas, M. Zhang, and R. Santos (Eds.), Proceedings of the 32nd International Conference on Information and Knowledge Management (CIKM ’23). ACM, New York, NY, 1960–1970. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1263. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano, J. Leike, and R. Lowe. 2022. Training language models to follow instructions with human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Proceedings of the 36th Annual Conference on Neural Information Processing Systems (NeurIPS ’22). Curran Associates, Red Hook, NY, 27730–27744. https://proceedings.neurips.cc/paper˙files/paper/2022.Google ScholarGoogle Scholar
  1264. A. Overwijk, C. Xiong, and J. Callan. 2022. ClueWeb22: 10 billion web documents with rich information. In E. Amigo, P. Castells, J. Gonzalo, B. Carterette, J. Shane Culpepper, and G. Kazai (Eds.), Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 3360–3362. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1265. P. Owoicho, J. Dalton, M. Aliannejadi, L. Azzopardi, J. Trippas, and S. Vakulenko. February. 2023. TREC CAsT 2022: Going beyond user ask and system retrieve with initiative and response generation. In Proceedings of the Thirty-First Text REtrieval Conference (TREC 2022), Special Publication 500-338. National Institute of Standards and Technology.Google ScholarGoogle ScholarCross RefCross Ref
  1266. I. Palomares, C. Porcel, L. Pizzato, I. Guy, and E. Herrera-Viedma. 2021. Reciprocal recommender systems: Analysis of state-of-art literature, challenges and opportunities towards social recommendation. Inf. Fusion 69, 103–127. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1267. J. Palotti, A. Hanbury, H. Müller, and C. E. Kahn. April. 2016. How users search and what they search for in the medical domain. Inf. Retr. J. 19, 1, 189–224. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1268. J. Palotti, G. Zuccon, and A. Hanbury. 2018. MM: A new framework for multidimensional evaluation of search engines. In A. Cuzzocrea, J. Allan, N. W. Paton, D. Srivastava, R. Agrawal, A. Broder, M. J. Zaki, S. Candan, A. Labrinidis, A. Schuster, and H. Wang (Eds.), Proceedings of the 27th International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, 1699–1702. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1269. J. R. M. Palotti, G. Zuccon, Jimmy, P. Pecina, M. Lupu, L. Goeuriot, L. Kelly, and A. Hanbury. 2017. CLEF 2017 task overview: The IR task at the eHealth evaluation lab—Evaluating retrieval methods for consumer health search. In L. Cappellato, N. Ferro, L. Goeuriot, and T. Mandl (Eds.), Working Notes of CLEF 2017—Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings, Vol. 1866. CEUR-WS.org.Google ScholarGoogle Scholar
  1270. R. Panda. 2019. Emotion-based Analysis and Classification of Audio Music Emotion. Ph.D. thesis. Universidade de Coimbra, Portugal.Google ScholarGoogle Scholar
  1271. R. Panda, R. M. Rui, and P. Paiva. 2018. Musical texture and expressivity features for music emotion recognition. In Proceedings of the 19th International Society for Music Information Retrieval Conference, Paris, France. ISMIR, 383–391. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1272. L. Pang, Y. Lan, J. Guo, J. Xu, and X. Cheng. 2016. A study of MatchPyramid models on ad-hoc retrieval. arXiv:1606.04648. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1273. L. Pang, Y. Lan, J. Guo, J. Xu, J. Xu, and X. Cheng. 2017. DeepRank: A new deep architecture for relevance ranking in information retrieval. In Proceedings of the 2017 ACM Conference on Information and Knowledge Management (CIKM ’17). ACM, New York, NY, 257–266. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1274. H. Papadopoulos and G. Peeters. 2007. Large-scale study of chord estimation algorithms based on chroma representation and HMM. In 2007 International Workshop on Content-Based Multimedia Indexing. IEEE, 53–60. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1275. B. Paria, C. Yeh, I. E. Yen, N. Xu, P. Ravikumar, and B. Póczos. 2020. Minimizing FLOPs to learn efficient sparse representations. In Proceedings of the ICLR 2020.Google ScholarGoogle Scholar
  1276. N. Parikh and N. Sundaresan. 2011. Beyond relevance in marketplace search. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM ’11). ACM, New York, NY, 2109–2112. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1277. E. Pariser. 2011. The Filter Bubble: What the Internet Is Hiding from You. Penguin, UK.Google ScholarGoogle ScholarDigital LibraryDigital Library
  1278. D. H. Park and R. Chiba. 2017. A neural language model for query auto-completion. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 1189–1192. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1279. G. Pass, A. Chowdhury, and C. Torgeson. 2006. A picture of search. In Proceedings of the 1st International Conference on Scalable Information Systems (InfoScale ’06). ACM, New York, NY, 1-es. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1280. G. P. Patil and C. Taillie. 1982. Diversity as a concept and its measurement. J. Am. Stat. Assoc. 77, 379, 548–561. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1281. G. K. Patro, A. Biswas, N. Ganguly, K. P. Gummadi, and A. Chakraborty. 2020. FairRec: Two-sided fairness for personalized recommendations in two-sided platforms. In Proceedings of the Web Conference (WWW ’20). ACM/IW3C2, 1194–1204. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1282. M. J. Pazzani and D. Billsus. 2007. Content-based recommendation systems. In P. Brusilovsky, A. Kobsa, and W. Nejdl (Eds) The Adaptive Web: Methods and Strategies of Web Personalization, Vol. 4321: Lecture Notes in Computer Science. Springer, Berlin, 325–341. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1283. P. Pecina, P. Hoffmannová, G. Jones, Y. Zhang, and D. Oard. January. 2007. Overview of the CLEF-2007 cross-language speech retrieval track. In Advances in Multilingual and Multimodal Information Retrieval: 8th Workshop of the Cross-Language Evaluation Forum (CLEF ’07), Vol. 5152: Lecture Notes in Computer Science. Springer, Berlin, 674–686. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1284. G. Peeters. 2005. Time variable tempo detection and beat marking. In Proceedings of the International Computer Music Conference (ICMC). International Computer Music Association, 539–542.Google ScholarGoogle Scholar
  1285. G. Peeters and J. Flocon-Cholet. 2012. Perceptual tempo estimation using GMM-regression. In Proceedings of the Second International ACM Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies (MIRUM ’12). ACM, New York, NY, 45–50. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1286. G. Peeters and H. Papadopoulos. 2010. Simultaneous beat and downbeat-tracking using a probabilistic framework: Theory and large-scale evaluation. IEEE Trans. Audio Speech Lang. Process. 19, 6, 1754–1769. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1287. G. Penha and C. Hauff. 2020. Challenges in the evaluation of conversational search systems. In Proceedings of KDD Workshop on Conversational Systems Towards Mainstream Adoption (KDD Converse ’20). CEUR-WS.org, 5.Google ScholarGoogle Scholar
  1288. G. Penha, A. Balan, and C. Hauff. 2019. Introducing MANtIS: A novel multi-domain information seeking dialogues dataset. arXiv:1912.04639. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1289. J. Pennington, R. Socher, and C. Manning. October. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar. Association for Computational Linguistics, 1532–1543. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1290. G. Percival and G. Tzanetakis. 2014. Streamlined tempo estimation based on autocorrelation and cross-correlation with pulses. IEEE/ACM Trans. Audio Speech Lang. Process. 22, 12, 1765–1776. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1291. P. O. Perry and P. J. Wolfe. 2013. Point process modeling for directed interaction networks. J. R. Stat. Soc. Ser. B Stat. Methodol. 75, 5, 821–849. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1292. C. Peters (Ed.). 2001. Cross-Language Information Retrieval and Evaluation: Workshop of Cross-Language Evaluation Forum (CLEF ’2000), Vol. 2069: Lecture Notes in Computer Science. Springer, Berlin. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1293. C. Peters. August. 2005. What happened in CLEF 2004? In Multilingual Information Access for Text, Speech and Images (CLEF ’04), Vol. 3491: Lecture Notes in Computer Science. Springer, Berlin, 1–9. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1294. C. Peters, M. Braschler, J. Gonzalo, and M. Kluck (Eds.). 2002. Evaluation of Cross-Language Information Retrieval Systems: Second Workshop of the Cross-Language Evaluation Forum (CLEF ’01) Revised Papers, Vol. 2406: Lecture Notes in Computer Science. Springer, Berlin. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1295. C. Peters, M. Braschler, J. Gonzalo, and M. Kluck (Eds.). 2003. Advances in Cross-Language Information Retrieval: Third Workshop of the Cross-Language Evaluation Forum (CLEF ’02) Revised Papers, Vol. 2785: Lecture Notes in Computer Science. Springer, Berlin. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1296. C. Peters, M. Braschler, and P. Clough. 2012. Multilingual Information Retrieval: From Research to Practice. Computer Science. Springer, Berlin. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1297. M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. June. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana. Association for Computational Linguistics, 2227–2237. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1298. V. Petras and S. Baerisch. 2009. The domain-specific track at CLEF 2008. In C. Peters, T. Deselaers, N. Ferro, J. Gonzalo, G. J. F. Jones, M. Kurimo, T. Mandl, A. Peñas, and V. Petras (Eds.), Evaluating Systems for Multilingual and Multimodal Information Access, Vol. 5706: Lecture Notes in Computer Science. Springer, Berlin, 186–198. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1299. V. Petras, S. Baerisch, and M. Stempfhuber. 2008. The domain-specific track at CLEF 2007. In C. Peters, V. Jijkoun, T. Mandl, H. Müller, D. W. Oard, A. Peñas, V. Petras, and D. Santos (Eds.), Advances in Multilingual and Multimodal Information Retrieval, CLEF 2007, Vol. 5152: Lecture Notes in Computer Science. Springer, Berlin, 160–173. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1300. D. Petrelli and E. Not. 2005. User-centred design of flexible hypermedia for a mobile guide: Reflections on the HyperAudio experience. User Model. User Adap. Interact. 15, 303–338. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1301. F. Petroni, T. Rocktäschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu, and A. Miller. 2019. Language models as knowledge bases? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics, 2463–2473. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1302. T. Pica. 1994. Research on negotiation: What does it reveal about second-language learning conditions, processes, and outcomes? Lang. Learn. 44, 3, 493–527. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1303. A. Pikrakis, I. Antonopoulos, and S. Theodoridis. 2004. Music meter and tempo tracking from raw polyphonic audio. In Proceedings of the 5th International Conference on Music Information Retrieval (ISMIR ’04). ISMIR. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1304. I. Pillai, I. Fumera, and F. Roli. August. 2013. Multi-label classification with a reject option. Pattern Recognit. 46, 8, 2256–2266. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1305. A. Pirkola. 1998. The effects of query structure and dictionary setups in dictionary-based cross-language information retrieval. In W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel (Eds.), Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’98), Melbourne, Australia, August 24–28, 1998. ACM, New York, NY, 55–63. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1306. F. Piroi and A. Hanbury. 2019. Multilingual patent text retrieval evaluation: CLEF–IP. In Information Retrieval Evaluation in a Changing World. Springer, Cham, 365–387. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1307. F. Piroi, M. Lupu, A. Hanbury, and V. Zenz. 2011. CLEF-IP 2011: Retrieval in the intellectual property domain. In CLEF 2011 Labs and Workshop, Notebook Papers. CEUR-WS.org.Google ScholarGoogle Scholar
  1308. P. Pluye and R. M. Grad. August. 2004. How information retrieval technology may impact on physician practice: An organizational case study in family medicine. J. Eval. Clin. Pract. 10, 3, 413–430. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1309. G. E. Poliner, D. P. W. Ellis, A. F. Ehmann, E. Gómez, S. Streich, and B. Ong. 2007. Melody transcription from music audio: Approaches and evaluation. IEEE Trans. Audio Speech Lang. Process. 15, 4, 1247–1256. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1310. S. Polley. 2022. Towards explainable search in legal text. In Advances in Information Retrieval: 44th European Conference on Information Retrieval (ECIR ’22), Vol. 13186: Lecture Notes in Computer Science. Springer, Cham, 528–536. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1311. S. Polley, R. R. Koparde, A. B. Gowri, M. Perera, and A. Nuernberger. 2021. Towards trustworthiness in the context of explainable search. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 2580–2584. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1312. J. Pons. 2019. Deep Neural Networks for Music and Audio Tagging. Ph.D. thesis. Universitat Pompeu Fabra, Spain, Barcelona.Google ScholarGoogle Scholar
  1313. J. M. Ponte and W. B. Croft. 1998. A language modeling approach to information retrieval. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’98). ACM, New York, NY, 275–281. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1314. K. Popper. 2002. The Logic of Scientific Discovery (2nd. ed). Routledge, Taylor & Francis Group, UK.Google ScholarGoogle Scholar
  1315. L. Porcaro, C. Castillo, and E. Gómez. 2021. Diversity by design in music recommender systems. Trans. Int. Soc. Music Inf. Retr. 4, 1, 114–126. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1316. L. Porcaro, E. Gómez, and C. Castillo. 2022a. Perceptions of diversity in electronic music: The impact of listener, artist, and track characteristics. Proc. ACM Hum. Comput. Interact. 6, CSCW1, 1–26. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1317. L. Porcaro, E. Gómez, and C. Castillo. 2022b. Diversity in the music listening experience: Insights from focus group interviews. In Proceedings of the 2022 Conference on Human Information Interaction and Retrieval (CHIIR ’22). ACM, New York, NY, 272–276. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1318. L. Porcaro, E. Gómez, and C. Castillo. 2024. Assessing the impact of music recommendation diversity on listeners: A longitudinal study. ACM Trans. Recommender Syst. 2, 1, 1–47. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1319. J. Postel, November. 1975. On the Junk Mail Problem. Internet Engineering Task Force, Network Working Group, Request for Comments 706.Google ScholarGoogle Scholar
  1320. M. Potthast, T. Gollub, M. Wiegmann, and B. Stein. 2019. TIRA integrated research architecture. In N. Ferro and C. Peters (Eds.), Information Retrieval Evaluation in a Changing World. Springer, Cham, 123–160. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1321. P. Pu, L. Chen, and R. Hu. 2011. A user-centric evaluation framework for recommender systems. In Proceedings of the 5th ACM Conference on Recommender Systems (RecSys ’11). ACM, New York, NY, 157–164. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1322. I. Purificato. 2021. Behind the scenes of Deliveroo’s algorithm: In the blindness of “Frank” its discriminatory potential. Italian Labour Law E J. 14, 1, 169–194. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1323. J. Pustejovsky, R. Ingria, R. Saur, J. M. Castaño, J. Littman, R. J. Gaizauskas, A. Setzer, G. Katz, and I. Mani. 2005. The specification language timeML. In I. Mani, J. Pustejovsky, and R. J. Gaizauskas (Eds.), The Language of Time—A Reader. Oxford University Press, 545–558. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1324. S. Qi, D. Wu, and N. Mamoulis. 2016. Location aware keyword query suggestion based on document proximity. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, 1566–1567. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1325. X. Qi, D. Yang, and X. Chen. 2018. Triplet convolutional network for music version identification. In Multimedia Modeling (MMM ’18), Vol. 10704: Lecture Notes in Computer Science. Springer, Cham, 544–555. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1326. H. Qian, P. Gu, R. Yan, and H. Tang. 2019. Robust multipitch estimation of piano sounds using deep spiking neural networks. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2335–2341. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1327. QLever. 2023. QLever. https://qlever.cs.uni-freiburg.de/ir-book.Google ScholarGoogle Scholar
  1328. C. Qu, L. Yang, W. B. Croft, J. R. Trippas, Y. Zhang, and M. Qiu. 2018. Analyzing and characterizing user intent in information-seeking conversations. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 989–992. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1329. C. Qu, L. Yang, W. B. Croft, Y. Zhang, J. R. Trippas, and M. Qiu. 2019a. User intent prediction in information-seeking conversations. In Proceedings of the 2019 Conference on Information Interaction and Retrieval (CHIIR ’19). ACM, New York, NY, 25–33. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1330. C. Qu, L. Yang, M. Qiu, Y. Zhang, C. Chen, W. B. Croft, and M. Iyyer. 2019b. Attentive history selection for conversational question answering. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM ’19). ACM, New York, NY, 1391–1400. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1331. M. Quadrana, P. Cremonesi, and D. Jannach. 2018. Sequence-aware recommender systems. ACM Comput. Surv. 51, 4, 1–36. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1332. W. V. Quine. 1998. From Stimulus to Science. Harvard University Press, Cambridge, MA.Google ScholarGoogle Scholar
  1333. J. Rabelo, M.-Y. Kim, R. Goebel, M. Yoshioka, Y. Kano, and K. Satoh. 2020. COLIEE 2020: Methods for legal document retrieval and entailment. In New Frontiers in Artificial Intelligence: JSAI International Symposium on Artificial Intelligence, Vol. 12758: Lecture Notes in Computer Science. Springer, Cham, 196–210. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1334. A. Radford and K. Narasimhan. 2018. Improving Language Understanding by Generative Pre-Training. OpenAI Technical Report.Google ScholarGoogle Scholar
  1335. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. 2019. Language Models are Unsupervised Multitask Learners. OpenAI Technical Report.Google ScholarGoogle Scholar
  1336. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. 2021. Learning transferable visual models from natural language supervision. Proceedings of the 38th International Conference on Machine Learning, Vol. 139. JMLR, 8748–8763.Google ScholarGoogle Scholar
  1337. F. Radlinski and N. Craswell. 2017. A theoretical framework for conversational search. In Proceedings of the 2017 Conference on Human Information Interaction and Retrieval (CHIIR ’17). ACM, New York, NY, 117–126. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1338. F. Radlinski and T. Joachims. 2006. Minimally invasive randomization for collecting unbiased preferences from clickthrough logs. In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI ’06:), Vol. 2. AAAI Press, 1406–1412.Google ScholarGoogle Scholar
  1339. F. Radlinski, R. Kleinberg, and T. Joachims. 2008a. Learning diverse rankings with multi-armed bandits. In W. W. Cohen, A. McCallum, and S. T. Roweis (Eds.), Proceedings of the Twenty-Fifth International Conference on Machine Learning (ICML ’08). ACM International Conference Proceeding Series, Vol. 307. ACM, New York, NY, 784–791. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1340. F. Radlinski, M. Kurup, and T. Joachims. 2008b. How does clickthrough data reflect retrieval quality? In J. G. Shanahan, S. Amer-Yahia, I. Manolescu, Y. Zhang, D. A. Evans, A. Kolcz, K.-S. Choi, and A. Chowdhury (Eds.), Proceedings of the 17th International Conference on Information and Knowledge Management (CIKM ’08). ACM, New York, NY, 43–52. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1341. M. Rae, C. Cox, and G. Claxton. March. 2020. Coverage and utilization of telemedicine services by enrollees in large employer plans. Peterson-KFF Health System Tracker. https://www.healthsystemtracker.org/brief/coverage-and-utilization-of-telemedicine-services-by-enrollees-in-large-employer-plans/.Google ScholarGoogle Scholar
  1342. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 140, 1–67.Google ScholarGoogle Scholar
  1343. R. Rahimi, A. Montazeralghaem, and A. Shakery. 2020. An axiomatic approach to corpus-based cross-language information retrieval. Inf. Retr. J. 23, 3, 191–215. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1344. R. Rahimi, Y. Kim, H. Zamani, and J. Allan. 2021. Explaining documents’ relevance to search queries. arXiv:2111.01314. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1345. A. Raj and M. D. Ekstrand. 2022. Measuring fairness in ranked results: An analytical and empirical comparison. In E. Amigo, P. Castells, J. Gonzalo, B. Carterette, J. Shane Culpepper, and G. Kazai (Eds.), Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 726–736. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1346. T. V. Rampisela, M. Maistro, T. Ruotsalo, and C. Lioma. 2024. Evaluation measures of individual item fairness for recommender systems: A critical study. ACM Trans. Recommender Syst. (TOIS), 1–55. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1347. L. Rashidi, J. Zobel, and A. Moffat. August. 2023. The impact of judgment variability on the consistency of offline effectiveness measures. ACM Trans. Inf. Syst. (TOIS) 42, 1, 19:1–19:31. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1348. H. Rashkin, V. Nikolaev, M. Lamm, L. Aroyo, M. Collins, D. Das, S. Petrov, G. S. Tomar, I. Turc, and D. Reitter. August. 2023. Measuring attribution in natural language generation models. Comput. Linguist. 49, 4, 777–840. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1349. S. Ravuri and D. P. Ellis. 2010. Cover song detection: From high scores to general classification. In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 65–68. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1350. V. C. Raykar and S. Yu. February. 2012. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. J. Mach. Learn. Res. 13, 491–518.Google ScholarGoogle ScholarDigital LibraryDigital Library
  1351. V. C. Raykar, L. H. Zhao, G. Hermosillo Valadez, C. Florin, L. Bogoni, and L. Moy. April. 2010. Learning from crowds. J. Mach. Learn. Res. 11, 1297–1322.Google ScholarGoogle ScholarDigital LibraryDigital Library
  1352. Redis Enterprise. 2011. Redis In-Memory Database. https://redis.io.Google ScholarGoogle Scholar
  1353. N. Rekabsaz, O. Lesota, M. Schedl, J. Brassey, and C. Eickhoff. 2021. TripClick: The log files of a large health web search engine. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 2507–2513. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1354. P. Ren, Z. Chen, Z. Ren, E. Kanoulas, C. Monz, and M. De Rijke. October. 2021. Conversations with search engines: SERP-based conversational response generation. ACM Trans. Inf. Syst. 39, 4, 47. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1355. Y. Ren, M. Tomko, F. Salim, J. Chan, C. Clarke, and M. Sanderson. October. 2018. A location-query-browse graph for contextual recommendation. IEEE Trans. Knowl. Data Eng. 30, 204–218. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1356. S. Rendle. 2010. Factorization machines. In Proceedings of the 10th IEEE International Conference on Data Mining (ICDM ’10). IEEE, 995–1000. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1357. S. Rendle. May. 2012. Factorization machines with libFM. ACM Trans. Intell. Syst. Technol. 3, 3, 1–22. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1358. S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In J. A. Bilmes and A. Y. Ng (Eds.), Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI ’09). AUAI Press, Arlington, VA, 452–461.Google ScholarGoogle Scholar
  1359. S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. 2010. Factorizing personalized Markov chains for next-basket recommendation. In Proceedings of the 19th International Conference on World Wide Web (WWW ’10). ACM, New York, NY, 811–820. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1360. S. Rendle, W. Krichene, L. Zhang, and J. R. Anderson. 2020. Neural collaborative filtering vs. matrix factorization revisited. In Proceedings of the 14th ACM Conference on Recommender Systems (RecSys ’20). ACM, New York, NY, 240–248. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1361. P. Resnick. April. 2001. Internet Message Format. Internet Engineering Task Force, Network Working Group, Request for Comment 2822.Google ScholarGoogle Scholar
  1362. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. 1994. GroupLens: An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work (CSCW ’94). ACM, New York, NY, 175–186. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1363. P. Resnik, D. Oard, and G. Levow. 2001. Improved cross-language retrieval using backoff translation. In Proceedings of the First International Conference on Human Language Technology Research (HLT ’01). Association for Computational Linguistics, 1–3. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1364. F. Ricci, L. Rokach, and B. Shapira (Eds.). 2022. Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 1060. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1365. D. J. Rigden and X. M. Fernández. January. 2022. The 2022 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res. 50, D1, D1–D10. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1366. M. Ringel, E. Cutrell, S. Dumais, and E. Horvitz. September. 2003. Milestones in time: The value of landmarks in retrieving information from personal stores. In Proceedings of the 9th IFIP TC13 International Conference on Human–Computer Interaction. IOS Press, 184–191.Google ScholarGoogle Scholar
  1367. S. G. Rizzo, M. Brucato, and D. Montesi. 2023. Ranking models for the temporal dimension of text. ACM Trans. Inf. Syst. 41, 2, 49:1–49:34. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1368. A. Roberts, C. Raffel, and N. Shazeer. 2020. How much knowledge can you pack into the parameters of a language model? In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 5418–5426. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1369. F. S. Roberts. September. 1985. Applications of the theory of meaningfulness to psychology. J. Math. Psychol. 29, 3, 311–332. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1370. K. Roberts, M. Simpson, D. Demner-Fushman, E. Voorhees, and W. Hersh. April. 2016. State-of-the-art in biomedical literature retrieval for clinical cases: A survey of the TREC 2014 CDS track. Inf. Retr. J. 19, 1, 113–148. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1371. K. Roberts, D. Demner-Fushman, E. M. Voorhees, S. Bedrick, and W. R. Hersh. February. 2021. Overview of the TREC 2020 precision medicine track. In Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC 2020), Special Publication 1266. National Institute of Standards and Technology.Google ScholarGoogle Scholar
  1372. G. G. Robertson, J. D. Mackinlay, and S. K. Card. 1991. Cone trees: Animated 3D visualizations of hierarchical information. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’91). ACM, New York, NY, 189–194. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1373. S. Robertson. 2006. On GMAP: And other transformations. In P. S. Yu, V. Tsotras, E. Fox, and B. Liu (Eds.), Proceedings of the 15th ACM International Conference on Information and Knowledge Management (CIKM ’06). ACM, New York, NY, 78–83. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1374. S. Robertson. 2008. A new interpretation of average precision. In T.-S. Chua, M.-K. Leong, S. H. Myaeng, D. W. Oard, and F. Sebastiani (Eds.), Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’08). ACM, New York, NY, 689–690. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1375. S. Robertson and H. Zaragoza. 2009. The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retr. 3, 4, 333–389. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1376. S. Robertson, H. Zaragoza, and M. Taylor. 2004. Simple BM25 extension to multiple weighted fields. In Proceedings of the 13th ACM International Conference on Information and Knowledge Management. ACM, New York, NY, 42–49. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1377. S. E. Robertson. 1977. The probability ranking principle in IR. J. Doc. 33, 4, 294–304. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1378. S. E. Robertson and S. Walker. 1994. Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’94). Springer, London, 232–241. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1379. J. Rocchio. 1971. Relevance feedback in information retrieval. In The Smart Retrieval System—Experiments in Automatic Document Processing. Prentice-Hall, Englewood Cliffs, NJ, 313–323.Google ScholarGoogle Scholar
  1380. K. Rodden, H. B. Hutchinson, and X. Fu. 2010. Measuring the user experience on a large scale: User-centered metrics for web applications. In E. D. Mynatt, D. Schoner, G. Fitzpatrick, S. E. Hudson, W. K. Edwards, and T. Rodden (Eds.), Proceedings of the 28th International Conference on Human Factors in Computing Systems (CHI ’10). ACM, New York, NY, 2395–2398. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1381. K. Roitero, E. Maddalena, S. Mizzaro, and F. Scholer. November. 2021. On the effect of relevance scales in crowdsourcing relevance assessments for information retrieval evaluation. Inf. Process. Manag. 58, 6, 102688. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1382. S. Roller, E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu, J. Xu, M. Ott, E. M. Smith, Y.-L. Boureau, and J. Weston. 2021. Recipes for building an open-domain chatbot. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Association for Computational Linguistics, 300–325. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1383. G. Rosemblat, D. Gemoets, A. C. Browne, and T. Tse. 2003. Machine translation-supported cross-language information retrieval for a consumer health resource. AMIA Annu. Symp. Proc. 2003, 564–568.Google ScholarGoogle Scholar
  1384. G. D. Rosin, I. Guy, and K. Radinsky. 2022. Time masking for temporal language models. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (WSDM ’22). ACM, New York, NY, 833–841. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1385. C. Rosset, C. Xiong, X. Song, D. Campos, N. Craswell, S. Tiwary, and P. Bennett. 2020. Leading conversational search by suggesting useful questions. In Proceedings of World Wide Web Conference (WWW ’20). ACM, New York, NY, 1160–1170. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1386. M. Rossetti, F. Stella, and M. Zanker. 2016. Contrasting offline and online results when evaluating recommendation algorithms. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16). ACM, New York, NY, 31–34. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1387. K. Roteiro, A. Brunello, G. Serra, and S. Mizzaro. March. 2020. Effectiveness evaluation without human relevance judgments: A systematic analysis of existing methods and of their combinations. Inf. Process. Manag. 57, 2, 102149. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1388. B. R. Rowe, D. W. Wood, A. L. Link, and D. A. Simoni. July. 2010. Economic Impact Assessment of NIST’s Text REtrieval Conference (TREC) Program. RTI Project Number 0211875. RTI International. https://trec.nist.gov/pubs/2010.economic.impact.pdf.Google ScholarGoogle Scholar
  1389. J. Rowley. 2000. Product search in e-shopping: A review and research propositions. J. Consum. Mark. 17, 1, 20–35. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1390. J. Rowley. 2007. The wisdom hierarchy: Representations of the DIKW hierarchy. J. Inf. Sci. 33, 2, 163–180. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1391. R. K. Roy. 2001. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement. John Wiley & Sons, New York.Google ScholarGoogle Scholar
  1392. C. Rubino. 2020. The effect of linguistic parameters in cross-language information retrieval performance: Evidence from IARPA’s MATERIAL program. In Proceedings of the Cross-Language Search and Summarization of Text and Speech Workshop. European Language Resources Association, 1–6.Google ScholarGoogle Scholar
  1393. A. Rücklé, K. Swarnkar, and I. Gurevych. 2019. Improved cross-lingual question retrieval for community question answering. In The World Wide Web Conference (WWW ’19). ACM, New York, NY, 3179–3186. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1394. S. Ruder, I. Vulić, and A. Søgaard. 2019. A survey of cross-lingual word embedding models. J. Artif. Intell. Res. 65, 569–631. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1395. P. Ruiz, P. Morales-Álvarez, R. Molina, and A. K. Katsaggelos. April. 2019. Learning from crowds with variational Gaussian processes. Pattern Recognit. 88, 298–311. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1396. J. A. Russell. 1980. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 6, 1161–1178. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1397. T. Russell-Rose. 2020. Toward explainability in professional search. In The 3rd International Workshop on ExplainAble Recommendation and Search (EARS ’20).Google ScholarGoogle Scholar
  1398. T. Russell-Rose, J. Lamantia, and M. Burrell. 2011. A taxonomy of enterprise search. In EuroHCIR, Proceedings of the 1st European Workshop on Human–Computer Interaction and Information Retrieval. CEUR-WS.org, 15–18.Google ScholarGoogle Scholar
  1399. T. Russell-Rose, J. Chamberlain, and L. Azzopardi. 2018. Information retrieval in the workplace: A comparison of professional search practices. Inf. Process. Manag. 54, 6, 1042–1057. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1400. A. Rutherford. 2011. ANOVA and ANCOVA. A GLM Approach (2nd. ed.). John Wiley & Sons, New York. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1401. I. Ruthven and D. Kelly (Eds.). 2011. Interactive Information Seeking, Behaviour and Retrieval. Facet Publishing, UK.Google ScholarGoogle Scholar
  1402. M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. 1998. A Bayesian approach to filtering junk e-mail. In M. Sahami (Ed.), Papers from the 1998 AAAI Workshop on Learning for Text Categorization, AAAI Technical Report WS-98-05. AAAI Press, 55–62.Google ScholarGoogle Scholar
  1403. N. G. Sahib, D. Al Thani, A. Tombros, and T. Stockman. 2012. Accessible information seeking. In Proceedings of Digital Futures ’12. 1–3.Google ScholarGoogle Scholar
  1404. A. Said, D. Tikk, K. Stumpf, Y. Shi, M. A. Larson, and P. Cremonesi. 2012. Recommender systems evaluation: A 3D benchmark. In Proceedings of the Workshop on Recommendation Utility Evaluation: Beyond RMSE (RUE 2011), RUE@ RecSys. 21–23.Google ScholarGoogle Scholar
  1405. Y. Saito, S. Yaginuma, Y. Nishino, H. Sakata, and K. Nakata. 2020. Unbiased recommender learning from missing-not-at-random implicit feedback. In Proceedings of the 13th International Conference on Web Search and Data Mining (WSDM ’20). ACM, New York, NY, 501–509. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1406. K. Sakaguchi, R. Le Bras, C. Bhagavatula, and Y. Choi. September. 2021. WinoGrande: An adversarial Winograd Schema Challenge at scale. Commun ACM 64, 9, 99–106. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1407. T. Sakai. 2014a. Metrics, statistics, tests. In N. Ferro (Ed.), Bridging Between Information Retrieval and Databases—PROMISE Winter School 2013, Revised Tutorial Lectures, Vol. 8173: Lecture Notes in Computer Science. Springer, Berlin, 116–163. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1408. T. Sakai. June. 2014b. Statistical reform in information retrieval? ACM SIGIR Forum 48, 1, 3–12. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1409. T. Sakai. June. 2016a. Topic set size design. Inf. Retr. J. 19, 3, 256–283. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1410. T. Sakai. 2016b. A simple and effective approach to score standardisation. In B. A. Carterette, H. Fang, M. Lalmas, and J.-Y. Nie (Eds.), Proceedings of the 2nd ACM International Conference on the Theory of Information Retrieval (ICTIR ’16). ACM, New York, NY, 95–104. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1411. T. Sakai. 2016c. Statistical significance, power, and sample sizes: A systematic review of SIGIR and TOIS, 2006–2015. In R. Perego, F. Sebastiani, J. Aslam, I. Ruthven, and J. Zobel (Eds.), Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 5–14. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1412. T. Sakai. 2017. Evaluating evaluation measures with worst-case confidence interval widths. In N. Ferro and I. Soboroff (Eds.), Proceedings of the 8th International Workshop on Evaluating Information Access (EVIA ’17). CEUR Workshop Proceedings. CEUR-WS.org, 16–19. ISSN 1613-0073. https://ceur-ws.org/Vol-2008/.Google ScholarGoogle Scholar
  1413. T. Sakai. 2018. Conclusions. In Laboratory Experiments in Information Retrieval. The Information Retrieval Series, Vol. 40. Springer, Singapore, 147–148. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1414. T. Sakai. 2019. How to run an evaluation task. In N. Ferro and C. Peters (Eds.), Information Retrieval Evaluation in a Changing World. The Information Retrieval Series, Vol. 41. Springer, Cham, 71–102. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1415. T. Sakai. June. 2020. On Fuhr’s guideline for IR evaluation. ACM SIGIR Forum 54, 1, 1–8. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1416. T. Sakai and R. Song. 2011. Evaluating diversified search results using per-intent graded relevance. In W.-Y. Ma, J.-Y. Nie, R. Baeza-Yates, T.-S. Chua, and W. Bruce Croft (Eds.), Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 1043–1052. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1417. T. Sakai, N. Kando, C.-J. Lin, T. Mitamura, H. Shima, D. Ji, K.-H. Chen, and E. Nyberg. 2008. Overview of the NTCIR-7 ACLIA IR4QA task. In Proceedings of the 7th NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-Lingual Information Access, NTCIR-7, Tokyo, Japan, December 16–19, 2008. National Institute of Informatics.Google ScholarGoogle Scholar
  1418. T. Sakai, D. W. Oard, and N. Kando (Eds.). 2020. Evaluating Information Retrieval and Access Tasks – NTCIR’s Legacy of Research Impact. The Information Retrieval Series, Vol. 43. Springer, Singapore. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1419. T. Sakai, S. Tao, Z. Chu, M. Maistro, Y. Li, N. Chen, N. Ferro, J. Wang, I. Soboroff, and Y. Liu. 2022. Overview of the NTCIR-16 We Want Web with CENTRE (WWW-4) task. In M. P. Kato, T. Yamamoto, and Z. Dou (Eds.), Proceedings of the 16th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-16). National Institute of Informatics, Tokyo, Japan, 231–242.Google ScholarGoogle Scholar
  1420. R. Salakhutdinov and A. Mnih. 2007. Probabilistic matrix factorization. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis (Eds.), Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems (NIPS ’07). Curran Associates, Red Hook, NY, 1257–1264.Google ScholarGoogle Scholar
  1421. J. Salamon. 2019. What’s broken in music informatics research? Three uncomfortable statements. In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, California.Google ScholarGoogle Scholar
  1422. J. Salamon and E. Gómez. August. 2012. Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Trans. Audio Speech Lang. Process. 20, 1759–1770. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1423. J. Salamon and J. Urbano. 2012. Current challenges in the evaluation of predominant melody extraction algorithms. In Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR ’12). ISMIR, 289–294. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1424. J. Salamon, J. Serrà, and E. Gómez. 2012. Melody, bass line, and harmony representations for music version identification. In Proceedings of the International World Wide Web Conference (WWW ’12 Companion): 4th International Workshop on Advances in Music Information Research (AdMIRe ’12). ACM, New York, NY, 887–894. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1425. J. Salamon, E. Gómez, D. P. W. Ellis, and G. Richard. 2014. Melody extraction from polyphonic music signals: Approaches, applications, and challenges. IEEE Signal Process. Mag. 31, 2, 118–134. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1426. M. Salampasis and A. Hanbury. 2014. PerFedPat: An integrated federated system for patent search. World Pat. Inf. 38, 4–11. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1427. S. Saleh and P. Pecina. 2016. Reranking hypotheses of machine-translated queries for cross-lingual information retrieval. In N. Fuhr, P. Quaresma, T. Goncalves, B. Larsen, K. Balog, C. Macdonald, L. Cappellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the Seventh International Conference of the CLEF Association (CLEF ’16), Vol. 9822: Lecture Notes in Computer Science. Springer, Cham, 54–66. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1428. S. Saleh and P. Pecina. 2019. An extended CLEF eHealth test collection for cross-lingual information retrieval in the medical domain. In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra (Eds.), Advances in Information Retrieval, Proceedings of the 41st European Conference on IR Research, ECIR 2019, Part II, Vol. 11438: Lecture Notes in Computer Science. Springer, Cham, 188–195. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1429. S. Saleh and P. Pecina. July. 2020. Document translation vs. query translation for cross-lingual information retrieval in the medical domain. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 6849–6860. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1430. G. Salton and M. E. Lesk. January. 1968. Computer evaluation of indexing and text processing. J. ACM 15, 1, 8–36. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1431. G. Salton, A. Wong, and C. S. Yang. November. 1975. A vector space model for automatic indexing. Commun. ACM 18, 11, 613–620. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1432. M. Sanderson. 2010. Test collection based evaluation of information retrieval systems. Found. Trends Inf. Retr. 4, 4, 247–375. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1433. M. Sanderson and W. B. Croft. 2012. The history of information retrieval research. Proc. IEEE 100, Special Centennial Issue, 1444–1451. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1434. M. Sanderson and J. Zobel. 2005. Information retrieval system evaluation: Effort, sensitivity, and reliability. In R. Baeza-Yates, N. Ziviani, G. Marchionini, A. Moffat, and J. Tait (Eds.), Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’05). ACM, New York, NY, 162–169. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1435. M. Sanderson, M. Lestari Paramita, P. Clough, and E. Kanoulas. 2010. Do user preferences and evaluation measures line up? In F. Crestani, S. Marchand-Maillet, E. N. Efthimiadis, and J. Savoy (Eds.), Proceedings of the 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’10). ACM, New York, NY, 555–562. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1436. V. Sanh, L. Debut, J. Chaumond, and T. Wolf. 2019. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. In Proceedings of the 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @ NeurIPS 2019.Google ScholarGoogle Scholar
  1437. S. K. K. Santu, P. Sondhi, and C. Zhai. 2017. On application of learning to rank for e-commerce search. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 475–484. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1438. J. Sanz-Cruzado and P. Castells. 2018. Enhancing structural diversity in social networks by recommending weak ties. In S. Pera, M. D. Ekstrand, X. Amatriain, and J. O’Donovan (Eds.), Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY, 233–241. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1439. T. Saracevic. 1968. Comparative Systems Laboratory Final Technical Report, An Inquiry into Testing of Information Retrieval Systems. Part II: Analysis of Results. Technical Report. Case Western Reserve University.Google ScholarGoogle Scholar
  1440. T. Saracevic. November/December. 1975. RELEVANCE: A review of and a framework for the thinking on the notion in information science. J. Am. Soc. Inf. Sci. Technol. 26, 6, 321–343. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1441. Á. Sarasúa, C. Laurier, and P. Herrera. 2012. Support vector machine active learning for music mood tagging. In Proceedings of the 9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012). Queen Mary University of London, 518–525.Google ScholarGoogle Scholar
  1442. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. 2001. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web (WWW ’01). ACM, New York, NY, 285–295. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1443. S. M. Sarwar, H. Bonab, and J. Allan. July. 2019. A multi-task architecture on relevance-based neural query translation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy. Association for Computational Linguistics, 6339–6344. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1444. S. Sasaki, S. Sun, S. Schamoni, K. Duh, and K. Inui. June. 2018. Cross-lingual learning-to-rank with shared representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), New Orleans, Louisiana. Association for Computational Linguistics, 458–463. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1445. Y. Sasaki, H.-H. Chen, K.-H. Chen, and C.-J. Lin. 2005. Overview of the NTCIR-5 cross-lingual question answering task (CLQA1). In Proceedings of the Fifth {NTCIR} Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-Lingual Information Access, NTCIR-5, Tokyo, Japan, December 6–9, 2005. National Institute of Informatics, 175–185.Google ScholarGoogle Scholar
  1446. Y. Sasaki, C.-J. Lin, K.-H. Chen, and H.-H. Chen. April. 2007. Overview of the NTCIR-6 cross-Lingual question answering (CLQA) task. In Proceedings of the NTCIR-6 Workshop Meeting, Tokyo, Japan, May 15–18, 2007.Google ScholarGoogle Scholar
  1447. J. Sauro and J. R. Lewis. 2016. Quantifying the User Experience: Practical Statistics for User Research (2nd. ed.). Morgan Kaufmann Publisher, San Francisco, CA.Google ScholarGoogle Scholar
  1448. J. Savoy. 1997. Statistical inference in retrieval effectiveness evaluation. Inf. Process. Manag. 33, 44, 495–512. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1449. M. F. Sayed and D. W. Oard. 2019. Jointly modeling relevance and sensitivity for search among sensitive content. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 615–624. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1450. M. F. Sayed, W. Cox, J. L. Rivera, C. Christian-Lamb, M. Iqbal, D. W. Oard, and K. Shilton. 2020. A test collection for relevance and sensitivity. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1605–1608. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1451. E. W. Sayers, E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau, R. Connor, K. Funk, C. Kelly, S. Kim, T. Madej, A. Marchler-Bauer, C. Lanczycki, S. Lathrop, Z. Lu, F. Thibaud-Nissen, T. Murphy, L. Phan, Y. Skripchenko, T. Tse, J. Wang, R. Williams, B. W. Trawick, K. D. Pruitt, and S. T. Sherry. January. 2022. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 50, D1, D20–D26. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1452. M. A. Scaffidi, R. Khan, C. Wang, D. Keren, C. Tsui, A. Garg, S. Brar, K. Valoo, M. Bonert, J. F. de Wolff, J. Heilman, and S. C. Grover. October. 2017. Comparison of the impact of Wikipedia, UpToDate, and a digital textbook on short-term knowledge acquisition among medical students: Randomized controlled trial of three web-based resources. JMIR Med. Educ. 3, 2, e20. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1453. S. M. Scariano and J. M. Davenport. 1987. The effects of violations of independence assumptions in the one-way ANOVA. Am. Stat. 41, 2, 123–129. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1454. H. Scells and G. Zuccon. 2018. Generating better queries for systematic reviews. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 475–484. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1455. H. Scells, G. Zuccon, B. Koopman, A. Deacon, L. Azzopardi, and S. Geva. 2017. A test collection for evaluating retrieval of studies for inclusion in systematic reviews. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, 1237–1240. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1456. J. B. Schafer, J. Konstan, and J. Riedl. 1999. Recommender systems in e-commerce. In Proceedings of the 1st ACM Conference on Electronic Commerce (EC ’99). ACM, New York, NY, 158–166. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1457. J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne, C. Chelba, M. Cohen, M. Kamvar, and B. Strope. 2010. “Your word is my command”: Google search by voice: A case study. In Advances in Speech Recognition. Springer, Boston, MA, 61–90. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1458. S. Schamoni, F. Hieber, A. Sokolov, and S. Riezler. June. 2014. Learning translational and knowledge-based similarities from relevance rankings for cross-language retrieval. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Baltimore, MD. Association for Computational Linguistics, 488–494. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1459. M. Schedl, A. Flexer, and J. Urbano. 2013. The neglected user in music information retrieval research. J. Intell. Inf. Syst. 41, 3, 523–539. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1460. M. Schedl, E. Gómez, and J. Urbano. 2014. Music information retrieval: Recent developments and applications. Found. Trends Inf. Retr. 8, 2–3, 127–261. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1461. M. Schedl, E. Gómez, E. S. Trent, M. Tkalčič, H. Eghbal-Zadeh, and A. Martorell. 2018. On the interrelation between listener characteristics and the perception of emotions in classical orchestra music. IEEE Trans. Affect. Comput. 9, 4, 507–525. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1462. H. Scheffe. June. 1953. A method for judging all contrasts in the analysis of variance. Biometrika 40, 1/2, 87–104. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1463. E. D. Scheirer. 1998. Tempo and beat analysis of acoustic musical signals. J. Acoust. Soc. Am. 103, 1, 588–601. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1464. S. Schenk, O. Görlitz, and S. Staab. 2006. TagFS: Bringing semantic metadata to the filesystem. In Demos and Posters of the 3rd European Semantic Web Conference (ESWC 2006).Google ScholarGoogle Scholar
  1465. D. Schiffrin. 1985. Conversational coherence: The role of well. Language 61, 3, 640–667. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1466. F. Schilder and C. Habel. 2005. From temporal expressions to temporal information: Semantic tagging of news messages. In I. Mani, J. Pustejovsky, and R. J. Gaizauskas (Eds.), The Language of Time: A Reader. Oxford University Press, 533–544. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1467. E. M. Schmidt and Y. E. Kim. 2011. Modeling musical emotion dynamics with conditional random fields. In Proceedings of the 12th International Society for Music Information Retrieval Conference. ISMIR, 777–782. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1468. T. Schnabel, A. Swaminathan, A. Singh, N. Chandak, and T. Joachims. June. 2016. Recommendations as treatments: Debiasing learning and evaluation. In Proceedings of the 33rd International Conference on Machine Learning (ICML ’16). Proceedings of Machine Learning Research, Sheffield, UK. JMLR.org, 1670–1679.Google ScholarGoogle Scholar
  1469. A. Z. Scholten and D. Borsboom. April. 2009. A reanalysis of Lord’s statistical treatment of football numbers. J. Math. Psychol. 53, 2, 69–75. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1470. P. H. Schönemann. 1966. A generalized solution of the orthogonal procrustes problem. Psychometrika 31, 1, 1–10. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1471. H. Schreiber and M. Müller. 2018. A single-step approach to musical tempo estimation using a convolutional neural network. In Proceedings of the 19th International Society for Music Information Retrieval Conference, Paris, France. ISMIR, 98–105. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1472. B. Schuller, C. Hage, D. Schuller, and G. Rigoll. 2010. “Mister D.J., Cheer Me Up!”: Musical and textual features for automatic mood classification. J. New Music Res. 39, 13–34. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1473. M. Schuster and K. Nakajima. 2012. Japanese and Korean voice search. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 5149–5152. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1474. A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke. 2014. Multileaved comparisons for fast online evaluation. In J. Li, X. Sean Wang, M. Garofalakis, I. Soboroff, T. Suel, and M. Wang (Eds.), Proceedings of the 23rd ACM International Conference on Information and Knowledge Management (CIKM ’14). ACM, New York, NY, 71–80. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1475. F. Sebastiani. June. 2020. Evaluation measures for quantification: An axiomatic approach. Inf. Retr. J. 23, 3, 255–288. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1476. I. Sekulić, A. Soleimani, M. Aliannejadi, and F. Crestani. February. 2021. Longformer for MS MARCO document re-ranking task. In Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC 2020), Special Publication 1266. National Institute of Standards and Technology.Google ScholarGoogle Scholar
  1477. M. Seltzer and N. Murphy. 2009. Hierarchical file systems are dead. In Proceedings of HotOS ’09: 12th Workshop on Hot Topics in Operating Systems (HotOS ’09). USENIX Association, Berkeley, CA.Google ScholarGoogle Scholar
  1478. O. Semerci, A. Gruson, C. Edwards, B. Lacker, C. Gibson, and V. Radosavljevic. 2019. Homepage personalization at Spotify. In Proceedings of the 13th ACM Conference on Recommender Systems (RecSys ’19). ACM, New York, NY, 527. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1479. V. L. Senders. 1958. Measurement and Statistics: A Basic Text Emphasizing Behavioral Science Applications. Oxford University Press, New York.Google ScholarGoogle Scholar
  1480. R. Sennrich, B. Haddow, and A. Birch. August. 2016. Neural machine translation of rare words with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany. Association for Computational Linguistics, 1715–1725. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1481. P. Senthil Kumar, V. Salaka, T. H. King, and B. Johnson. 2014. Mickey mouse is not a phrase: Improving relevance in e-commerce with multiword expressions. In Proceedings of the 10th Workshop on Multiword Expressions (MWE). Association for Computational Linguistics, 62–66. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1482. A. Sepliarskaia, S. Genc, and M. de Rijke. 2021. A deep reinforcement learning-based approach to query-free interactive target item retrieval. In Proceedings of the 2021 SIGIR Workshop on eCommerce (SIGIR eCom ’21). CEUR-WS.org.Google ScholarGoogle Scholar
  1483. J. Serrà. 2011. Identification of Versions of the Same Musical Composition by Processing Audio Descriptions. Ph.D. thesis. Universitat Pompeu Fabra, Spain.Google ScholarGoogle Scholar
  1484. J. Serrà, E. Gómez, and P. Herrera. 2008a. Transposing chroma representations to a common key. In Proceedings of the IEEE CS Conference on the Use of Symbols to Represent Music and Multimedia Objects. 45–48.Google ScholarGoogle Scholar
  1485. J. Serrà, E. Gómez, P. Herrera, and X. Serra. 2008b. Chroma binary similarity and local alignment applied to cover song identification. IEEE Trans. Audio Speech Lang. Process. 16, 6, 1138–1151. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1486. J. Serrà, X. Serra, and R. G. Andrzejak. 2009. Cross recurrence quantification for cover song identification. New J. Phys. 11, 093017. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1487. J. Serrà, E. Gómez, and P. Herrera. 2010. Audio cover song identification and similarity: Background, approaches, evaluation, and beyond. In Z. W. Ras and A. A. Wieczorkowska (Eds.), Advances in Music Information Retrieval, Studies in Computational Intelligence, Vol. 274. Springer, Berlin, 307–332. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1488. B. Settles. 2012. Active Learning. Morgan & Claypool Publishers.Google ScholarGoogle Scholar
  1489. K. Seyerlehner, G. Widmer, and D. Schnitzer. 2007. From rhythm patterns to perceived tempo. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR ’07). ISMIR, 519–524. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1490. G. Sfakianakis, I. Patlakas, N. Ntarmos, and P. Triantafillou. 2013. Interval indexing and querying on key-value cloud stores. In 2013 IEEE 29th International Conference on Data Engineering (ICDE). IEEE, 805–816. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1491. C. Shah. 2023. AI Information Retrieval: A Search Engine Researcher Explains the Promise and Peril of Letting ChatGPT and Its Cousins Search the Web for You. Retrieved from https://theconversation.com/ai-information-retrieval-a-search-engine-researcher-explains-the-promise-and-peril-of-letting-chatgpt-and-its-cousins-search-the-web-for-you-200875.Google ScholarGoogle Scholar
  1492. C. Shah and E. M. Bender. 2022. Situating search. In Proceedings of the 2022 Conference on Human Information Interaction and Retrieval (CHIIR ’22). ACM, New York, NY, 221–232. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1493. D. Shakespeare, L. Porcaro, E. Gómez, and C. Castillo. 2020. Exploring artist gender bias in music recommendation. In Proceedings of the 2nd Workshop on the Impact of Recommender Systems (ImpactRS20), Co-located at RecSys ’20. CEUR-WS.org.Google ScholarGoogle Scholar
  1494. W. Shalaby and W. Zadrozny. 2019. Patent retrieval: A literature review. Knowl. Inf. Syst. 61, 631–660. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1495. G. Shani and A. Gunawardana. 2011. Evaluating recommendation systems. In F. Ricci, L. Rokach, B. Shapira, and P. Kantor (Eds.), Recommender Systems Handbook. Springer, Boston, MA, 257–297. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1496. T. Shao, H. Chen, and W. Chen. April. 2018. Query auto-completion based on word2vec semantic similarity. J. Phys. Conf. Ser. 1004, 012018. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1497. D. Shen, J. D. Ruvini, M. Somaiya, and N. Sundaresan. 2011. Item categorization in the e-commerce domain. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM ’11). ACM, New York, NY, 1921–1924. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1498. D. Shen, J.-D. Ruvini, and B. Sarwar. 2012. Large-scale item categorization for e-commerce. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management (CIKM ’12). ACM, New York, NY, 595–604. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1499. X. Shen, B. Tan, and C. Zhai. 2005. Context-sensitive information retrieval using implicit feedback. In R. Baeza-Yates, N. Ziviani, G. Marchionini, A. Moffat, and J. Tait (Eds.), Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’05). ACM, New York, NY, 43–50. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1500. X. Shen, Z. Chen, M. Backes, and Y. Zhang. 2023. In ChatGPT we trust? Measuring and characterizing the reliability of ChatGPT. arXiv:2304.08979. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1501. P. Sheridan and J. P. Ballerini. 1996. Experiments in multilingual information retrieval using the SPIDER system. In Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’96). ACM, New York, NY, 58–65. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1502. P. Sheridan, M. Wechsler, and P. Schäuble. July. 1997. Cross-language speech retrieval: Establishing a baseline performance. ACM SIGIR Forum 31, SI, 99–108. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1503. P. Shi and J. Lin. 2019. Cross-lingual relevance transfer for document retrieval. arXiv:1911.02989. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1504. Y. Shi, A. Karatzoglou, L. Baltrunas, M. A. Larson, N. Oliver, and A. Hanjalic. 2012. CLiMF: Learning to maximize reciprocal rank with collaborative less-is-more filtering. In P. Cunningham, N. J. Hurley, I. Guy, and S. S. Anand (Eds.), Proceedings of the 6th ACM Conference on Recommender Systems (RecSys ’12). ACM, New York, NY, 139–146. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1505. H.-S. Shing, J. Barrow, P. Galušcáková, D. W. Oard, and P. Resnik. 2019. Unsupervised system combination for set-based retrieval with expectation maximization. In F. Crestani, M. Braschler, J. Savoy, A. Rauber, H. Müller, D. E. Losada, G. H. Bürki, L. Cappellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF ’19), Vol. 11696: Lecture Notes in Computer Science. Springer, Cham, 191–197. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1506. M. Shokouhi. 2013. Learning to personalize query auto-completion. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 103–112. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1507. M. Shokouhi and K. Radinsky. 2012. Time-sensitive query auto-completion. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’12). ACM, New York, NY, 601–610. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1508. L. Si and H. Yang. 2014. Privacy-preserving IR: When information retrieval meets privacy and security. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’14). ACM, New York, NY, 1295. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1509. S. Siegel. 1956. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New York.Google ScholarGoogle Scholar
  1510. S. Sigtia, E. Benetos, and S. Dixon. 2016. An end-to-end neural network for polyphonic piano music transcription. IEEE/ACM Trans. Audio Speech Lang. Process. 24, 5, 927–939. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1511. R. Silberzahn and E. Uhlmann. October. 2015. Crowdsourced research: Many hands make tight work. Nature 526, 189–191. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1512. D. F. Silva, V. M. A. de Souza, and G. E. A. P. A. Batista. 2015. Music shapelets for fast cover song recognition. In Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR ’15), Málaga, Spain. ISMIR, 441–447. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1513. D. F. Silva, C.-C. M. Yeh, G. E. A. P. A. Batista, and E. J. Keogh. 2016. SiMPle: Assessing music similarity using subsequences joins. In Proceedings of the 17th International Society for Music Information Retrieval Conference (ISMIR ’16), New York, NY, August 7–11, 2016. ISMIR, 23–29. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1514. D. F. Silva, F. V. Falcão, and N. Andrade. 2018. Summarizing and comparing music data and its application on cover song identification. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR ’18), Paris, France. ISMIR, 732–739. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1515. G. Silvello, G. Bordea, N. Ferro, P. Buitelaar, and T. Bogers. June. 2017. Semantic representation and enrichment of information retrieval experimental data. Int. J. Digit. Libr. 18, 2, 145–172. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1516. A. Singh and T. Joachims. 2018. Fairness of exposure in rankings. In Y. Guo and F. Farooq (Eds.), Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’18). ACM, New York, NY, 2219–2228. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1517. J. Singh and A. Anand. 2019. EXS: Explainable search using local model agnostic interpretability. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (WSDM ’19). ACM, New York, NY, 770–773. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1518. A. Singhal. 2012. Introducing the Knowledge Graph: Things, Not Strings. https://www.blog.google/products/search/introducing-knowledge-graph-things-not/.Google ScholarGoogle Scholar
  1519. A. Singhal, J. Choi, D. Hindle, and F. C. N. Pereira. February. 1998. AT&T at TREC-6: SDR track. In E. M. Voorhees and D. K. Harman (Eds.), Proceedings of the Sixth Text REtrieval Conference (TREC-6), Special Publication 500-240. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  1520. A. Singla, E. Horvitz, E. Kamar, and R. White. 2014. Stochastic privacy. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI ’14), AAAI Press, Cambridge, MA, 152–158. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1521. S. Sitter and A. Stein. 1992. Modeling the illocutionary aspects of information-seeking dialogues. Inf. Process. Mange. 28, 2, 165–180. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1522. M. Skinner and S. Kallumadi. 2019. E-commerce query classification using product taxonomy mapping: A transfer learning approach. In Proceedings of the SIGIR 2019 Workshop on eCommerce, co-located with the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, eCom@SIGIR 2019. CEUR-WS.org, Aachen.Google ScholarGoogle Scholar
  1523. A. Slivkins. 2019. Introduction to multi-armed bandits. Found. Trends Mach. Learn. 12, 1–2, 1–286. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1524. P. Smaragdis and J. C. Brown. 2003. Non-negative matrix factorization for polyphonic music transcription. In Proceedings of the 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (IEEE Cat. No. 03TH8684), IEEE, 177–180. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1525. D. Smiley, E. Pugh, K. Parisa, and M. Mitchell. 2015. Apache Solr Enterprise Search Server. Packt Publishing, Birmingham.Google ScholarGoogle Scholar
  1526. A. Smirnova. 2020. Word order communicates user intent in search queries. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (CHI EA ’20). ACM, New York, NY, 1–8. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1527. B. Smith and G. Linden. 2017. Two decades of recommender systems at Amazon.com. IEEE Internet Comput. 21, 3, 12–18. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1528. S. L. Smith, D. H. P. Turban, S. Hamblin, and N. Y. Hammerla. 2017. Offline bilingual word vectors, orthogonal transformations and the inverted softmax. In Proceedings of the 5th International Conference on Learning Representations ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings. Curran Associates, Red Hook, NJ, 2521–2530.Google ScholarGoogle Scholar
  1529. T. F. Smith and M. S. Waterman. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147, 1, 195–197. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1530. M. D. Smucker and C. L. A. Clarke. 2012a. Time-based calibration of effectiveness measures. In W. Hersh, J. Callan, Y. Maarek, and M. Sanderson (Eds.), Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’12). ACM, New York, NY, 95–104. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1531. M. D. Smucker and C. L. A. Clarke. 2012b. Stochastic simulation of time-biased gain. In X. Chen, G. Lebanon, H. Wang, and M. J. Zaki (Eds.), Proceedings of the 21st International Conference on Information and Knowledge Management (CIKM 2012). ACM, New York, NY, 2040–2044. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1532. M. D. Smucker, J. Allan, and B. Carterette. 2007. A comparison of statistical significance tests for information retrieval evaluation. In Proceedings of the 16th ACM Conference on Information and Knowledge Management. ACM, New York, NY, 623–632. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1533. B. Smyth and P. McClave. 2001. Similarity vs. diversity. In Case-Based Reasoning Research and Development, Proceedings of the 4th International Conference on Case-Based Reasoning, ICCBR 2001, Vol. 2080: Lecture Notes in Computer Science. Springer, London, 347–361. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1534. I. Soboroff, S. Huang, and D. Harman. February. 2019. TREC 2018 News Track Overview. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Seventh Text REtrieval Conference (TREC 2018), Special Publication 500-331. National Institute of Standards and Technology, Gaithersburg, MD.Google ScholarGoogle Scholar
  1535. I. Soboroff, S. Huang, and D. Harman. February. 2020. TREC 2019 News Track Overview. In E. M. Voorhees and A. Ellis (Eds.), Proceedings of the Twenty-Eight Text REtrieval Conference (TREC 2019), Special Publication 500-331. National Institute of Standards and Technology, Gaithersburg, MD.Google ScholarGoogle Scholar
  1536. A. Søgaard, I. Vulić, S. Ruder, and M. Faruqui. 2019. Cross-Lingual Word Embeddings. Synthesis Lectures on Human Language Technologies, Vol. 12. Morgan & Claypool Publishers, Kentfield, CA, 1–132. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1537. A. Sokolov, F. Hieber, and S. Riezler. 2014. Learning to translate queries for CLIR. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, New York, NY, 1179–1182. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1538. P. Sondhi, M. Sharma, P. Kolari, and C. Zhai. 2018. A taxonomy of queries for e-commerce search. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR ’18. ACM, New York, NY, 1245–1248. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1539. B. Song, X. Yang, Y. Cao, and C. Xu. 2018. Neural collaborative ranking. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018. ACM, New York, NY, 1353–1362. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1540. Sophox. 2023. Sophox. https://wiki.openstreetmap.org/wiki/Sophox.Google ScholarGoogle Scholar
  1541. M. Sordo. 2012. Semantic Annotation of Music Collections: A Computational Approach. Ph.D. thesis. Universitat Pompeu Fabra, Barcelona, Spain.Google ScholarGoogle Scholar
  1542. D. Sorokina and E. Cantú-Paz. 2016. Amazon search: The joy of ranking products. In R. Perego, F. Sebastiani, J. A. Aslam, I. Ruthven, and J. Zobel (Eds.), Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 459–460. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1543. C. A. N. Soules and G. R. Ganger. 2005. Connections: Using context to enhance file search. In Proceedings of the 20th ACM Symposium on Operating Systems Principles. ACM, New York, NY, 119–132. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1544. K. Spackman. December. 2000. SNOMED RT and SNOMEDCT. Promise of an international clinical terminology. MD Comput. Comput. Med. Pract. 17, 6, 29.Google ScholarGoogle Scholar
  1545. E. R. Spangenberg, I. Kareklas, B. Devezer, and D. E. Sprott. 2016. A meta-analytic synthesis of the question–behavior effect. J. Consum. Psychol. 26, 3, 441–458. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1546. K. Spärck Jones. 1974. Automatic indexing. J. Doc. 30, 4, 393–432. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1547. K. Spärck Jones (Ed.). 1981. Information Retrieval Experiments. Butterworths, London.Google ScholarGoogle Scholar
  1548. K. Spärck Jones and C. J. van Rijsbergen. 1975. Report on the Need for and Provision of an ‘Ideal’ Information Retrieval Test Collection. British Library Research and Development Report 5266. University Computer Laboratory, Cambridge.Google ScholarGoogle Scholar
  1549. E. Spertus. 1997. Smokey: Automatic recognition of hostile messages. In Proceedings of the 9th Conference on Innovative Applications of Artificial Intelligence. AAAI Press, Washington, DC, 1058–1065.Google ScholarGoogle Scholar
  1550. D. Spina, J. R. Trippas, P. Thomas, H. Joho, K. Byström, L. Clark, N. Craswell, M. Czerwinski, D. Elsweiler, A. Frummet, S. Ghosh, J. Kiesel, I. Lopatovska, D. McDuff, S. Meyer, A. Mourad, P. Owoicho, S. P. Cherumanal, D. Russell, and L. Sitbon. July. 2021. Report on the future conversations workshop at CHIIR 2021. ACM SIGIR Forum 55, 1, 1–22. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1551. R. Srinivasan. 2018. Whose Global Village?: Rethinking How Technology Shapes Our World. NYU Press, New York, NY.Google ScholarGoogle Scholar
  1552. S. Srinivasan, N. Rao, K. Subbian, and L. Getoor. 2019. Identifying facet mismatches in search via micrographs. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management CIKM’19. ACM, New York, NY, 1663–1672. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1553. A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown, A. Santoro, A. Gupta, A. Garriga-Alonso, A. Kluska, A. Lewkowycz, A. Agarwal, A. Power, A. Ray, A. Warstadt, A. W. Kocurek, A. Safaya, A. Tazarv, A. Xiang, A. Parrish, A. Nie, A. Hussain, A. Askell, A. Dsouza, A. Slone, A. Rahane, A. S. Iyer, A. J. Andreassen, A. Madotto, A. Santilli, A. Stuhlmüller, A. M. Dai, A. La, A. Lampinen, A. Zou, A. Jiang, A. Chen, A. Vuong, A. Gupta, A. Gottardi, A. Norelli, A. Venkatesh, A. Gholamidavoodi, A. Tabassum, A. Menezes, A. Kirubarajan, A. Mullokandov, A. Sabharwal, A. Herrick, A. Efrat, A. Erdem, A. Karakas, B. R. Roberts, B. S. Loe, B. Zoph, B. Bojanowski, B. Özyurt, B. Hedayatnia, B. Neyshabur, B. Inden, B. Stein, B. Ekmekci, B. Y. Lin, B. Howald, B. Orinion, C. Diao, C. Dour, C. Stinson, C. Argueta, C. Ferri, C. Singh, C. Rathkopf, C. Meng, C. Baral, C. Wu, C. Callison-Burch, C. Waites, C. Voigt, C. D. Manning, C. Potts, C. Ramirez, C. E. Rivera, C. Siro, C. Raffel, C. Ashcraft, C. Garbacea, D. Sileo, D. Garrette, D. Hendrycks, D. Kilman, D. Roth, C. D. Freeman, D. Khashabi, D. Levy, D. M. González, D. Perszyk, D. Hernandez, D. Chen, D. Ippolito, D. Gilboa, D. Dohan, D. Drakard, D. Jurgens, D. Datta, D. Ganguli, D. Emelin, D. Kleyko, D. Yuret, D. Chen, D. Tam, D. Hupkes, D. Misra, D. Buzan, D. C. Mollo, D. Yang, D.-H. Lee, D. Schrader, E. Shutova, E. D. Cubuk, E. Segal, E. Hagerman, E. Barnes, E. Donoway, E. Pavlick, E. Rodolà, E. Lam, E. Chu, E. Tang, E. Erdem, E. Chang, E. A. Chi, E. Dyer, E. Jerzak, E. Kim, E. E. Manyasi, E. Zheltonozhskii, F. Xia, F. Siar, F. Martnez-Plumed, F. Happé, F. Chollet, F. Rong, G. Mishra, G. I. Winata, G. de Melo, G. Kruszewski, G. Parascandolo, G. Mariani, G. X. Wang, G. Jaimovitch-Lopez, G. Betz, G. Gur-Ari, H. Galijasevic, H. Kim, H. Rashkin, H. Hajishirzi, H. Mehta, H. Bogar, H. F. A. Shevlin, H. Schuetze, H. Yakura, H. Zhang, H. M. Wong, I. Ng, I. Noble, J. Jumelet, J. Geissinger, J. Kernion, J. Hilton, J. Lee, J. F. Fisac, J. B. Simon, J. Koppel, J. Zheng, J. Zou, J. Kocon, J. Thompson, J. Wingfield, J. Kaplan, J. Radom, J. Sohl-Dickstein, J. Phang, J. Wei, J. Yosinski, J. Novikova, J. Bosscher, J. Marsh, J. Kim, J. Taal, J. Engel, J. Alabi, J. Xu, J. Song, J. Tang, J. Waweru, J. Burden, J. Miller, J. U. Balis, J. Batchelder, J. Berant, J. Frohberg, J. Rozen, J. Hernandez-Orallo, J. Boudeman, J. Guerr, J. Jones, J. B. Tenenbaum, J. S. Rule, J. Chua, K. Kanclerz, K. Livescu, K. Krauth, K. Gopalakrishnan, K. Ignatyeva, K. Markert, K. Dhole, K. Gimpel, K. Omondi, K. W. Mathewson, K. Chiafullo, K. Shkaruta, K. Shridhar, K. McDonell, K. Richardson, L. Reynolds, L. Gao, L. Zhang, L. Dugan, L. Qin, L. Contreras-Ochando, L.-P. Morency, L. Moschella, L. Lam, L. Noble, L. Schmidt, L. He, L. Oliveros-Colón, L. Metz, L. K. Senel, M. Bosma, M. Sap, M. T. Hoeve, M. Farooqi, M. Faruqui, M. Mazeika, M. Baturan, M. Marelli, M. Maru, M. J. Ramirez-Quintana, M. Tolkiehn, M. Giulianelli, M. Lewis, M. Potthast, M. L. Leavitt, M. Hagen, M. Schubert, M. O. Baitemirova, M. Arnaud, M. McElrath, M. A. Yee, M. Cohen, M. Gu, M. Ivanitskiy, M. Starritt, M. Strube, M. Swˆedrowski, M. Bevilacqua, M. Yasunaga, M. Kale, M. Cain, M. Xu, M. Suzgun, M. Walker, M. Tiwari, M. Bansal, M. Aminnaseri, M. Geva, M. Gheini, M. V. T, N. Peng, N. A. Chi, N. Lee, N. G.-A. Krakover, N. Cameron, N. Roberts, N. Doiron, N. Martinez, N. Nangia, N. Deckers, N. Muennighoff, N. S. Keskar, N. S. Iyer, N. Constant, N. Fiedel, N. Wen, O. Zhang, O. Agha, O. Elbaghdadi, O. Levy, O. Evans, P. A. M. Casares, P. Doshi, P. Fung, P. P. Liang, P. Vicol, P. Alipoormolabashi, P. Liao, P. Liang, P. W. Chang, P. Eckersley, P. M. Htut, P. Hwang, P. Miłkowski, P. Patil, P. Pezeshkpour, P. Oli, Q. Mei, Q. Lyu, Q. Chen, R. Banjade, R. E. Rudolph, R. Gabriel, R. Habacker, R. Risco, R. Millière, R. Garg, R. Barnes, R. A. Saurous, R. Arakawa, R. Raymaekers, R. Frank, R. Sikand, R. Novak, R. Sitelew, R. L. Bras, R. Liu, R. Jacobs, R. Zhang, R. Salakhutdinov, R. A. Chi, S. R. Lee, R. Stovall, R. Teehan, R. Yang, S. Singh, S. M. Mohammad, S. Anand, S. Dillavou, S. Shleifer, S. Wiseman, S. Gruetter, S. R. Bowman, S. S. Schoenholz, S. Han, S. Kwatra, S. A. Rous, S. Ghazarian, S. Ghosh, S. Casey, S. Bischoff, S. Gehrmann, S. Schuster, S. Sadeghi, S. Hamdan, S. Zhou, S. Srivastava, S. Shi, S. Singh, S. Asaadi, S. S. Gu, S. Pachchigar, S. Toshniwal, S. Upadhyay, S. S. Debnath, S. Shakeri, S. Thormeyer, S. Melzi, S. Reddy, S. P. Makini, S.-H. Lee, S. Torene, S. Hatwar, S. Dehaene, S. Divic, S. Ermon, S. Biderman, S. Lin, S. Prasad, S. Piantadosi, S. Shieber, S. Misherghi, S. Kiritchenko, S. Mishra, T. Linzen, T. Schuster, T. Li, T. Yu, T. Ali, T. Hashimoto, T.-L. Wu, T. Desbordes, T. Rothschild, T. Phan, T. Wang, T. Nkinyili, T. Schick, T. Kornev, T. Tunduny, T. Gerstenberg, T. Chang, T. Neeraj, T. Khot, T. Shultz, U. Shaham, V. Misra, V. Demberg, V. Nyamai, V. Raunak, V. V. Ramasesh, Vinay Uday Prabhu, V. Padmakumar, V. Srikumar, W. Fedus, W. Saunders, W. Zhang, W. Vossen, X. Ren, X. Tong, X. Zhao, X. Wu, X. Shen, Y. Yaghoobzadeh, Y. Lakretz, Y. Song, Y. Bahri, Y. Choi, Y. Yang, Y. Hao, Y. Chen, Y. Belinkov, Y. Hou, Y. Hou, Y. Bai, Z. Seid, Z. Zhao, Z. Wang, Z. J. Wang, Z. Wang, and Z. Wu. 2023. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. Trans. Mach. Learn. Res. 2023, 5, 1–95.Google ScholarGoogle Scholar
  1554. M. Stamenovic. 2015. Identifying Cover Songs Using Deep Neural Networks. Ph.D. thesis. University of Rochester.Google ScholarGoogle Scholar
  1555. M. Stamenovic. 2018. Towards cover song detection with Siamese convolutional neural networks. In Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden. PMLR 80.Google ScholarGoogle Scholar
  1556. Stanford Human-Centered Artificial Intelligence. 2019. Artificial Intelligence Index Annual Report 2019. Stanford University, Stanford, CA.Google ScholarGoogle Scholar
  1557. Internet World Stats. 2020. Top 10 Languages Used On the Internet for 2020. Retrieved from https://klausnick.livejournal.com/3224754.html.Google ScholarGoogle Scholar
  1558. H. Steck. 2010. Training and testing of recommender systems on data missing not at random. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’10). ACM, New York, NY, 713–722. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1559. H. Steck. 2011. Item popularity and recommendation accuracy. In Proceedings of the 5th ACM Conference on Recommender Systems (RecSys ’11). ACM, New York, NY, 125–132. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1560. H. Steck. 2013. Evaluation of recommendations: Rating-prediction and ranking. In Proceedings of the 7th ACM Conference on Recommender Systems (RecSys ’13). ACM, New York, NY, 213–220. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1561. H. Steck. 2018. Calibrated recommendations. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY, 154–162. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1562. H. Steck. 2019. Embarrassingly shallow autoencoders for sparse data. In Proceedings of the World Wide Web Conference, WWW 2019. ACM, New York, NY, 3251–3257. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1563. H. Steck, L. Baltrunas, E. Elahi, D. Liang, Y. Raimond, and J. Basilico. 2021. Deep learning for recommender systems: A Netflix case study. AI Mag. 42, 3, 7–18. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1564. A. Stein and E. Maier. 1995. Structuring collaborative information-seeking dialogues. Knowl. Based Syst. 8, 2–3, 82–93. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1565. M. Stempfhuber and S. Baerisch. 2007. The domain-specific track at CLEF 2006: Overview of approaches, results and assessment. In C. Peters, P. Clough, F. C. Gey, J. Karlgren, B. Magnini, D. W. Oard, M. de Rijke, and M. Stempfhuber (Eds.), Evaluation of Multilingual and Multi-modal Information Retrieval, CLEF 2006, Vol. 4730: Lecture Notes in Computer Science. Springer, Berlin, 163–169. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1566. S. S. Stevens. June. 1946. On the theory of scales of measurement. Science 103, 2684, 677–680. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1567. J. Stoyanovich, K. Yang, and H. Jagadish. March 2018. Online set selection with fairness and diversity constraints. In M. Bohlen, R. Pichler, N. May, E. Rahm, S.-H. Wu, and K. Hose (Eds.), Proceedings of the Advances in Database Technology—EDBT 2018: 21st International Conference on Extending Database Technology, (Advances in Database Technology—EDBT, Vol. 2018. OpenProceedings.org, Konstanz, 241–252. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1568. S. Strassel, C. Cieri, A. Cole, D. Dipersio, M. Liberman, X. Ma, M. Maamouri, and K. Maeda. May. 2006. Integrated linguistic resources for language exploitation technologies. In Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC ’06), Genoa, Italy. European Language Resources Association.Google ScholarGoogle Scholar
  1569. J. Stray. 2020. Aligning AI optimization to community well-being. Int. J. Community Well-Being 3, 443–463. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1570. E. Strikland. Febuary. 2022. Andrew Ng: Unbiggen AI. IEEE Spectrum. Retrieved from https://spectrum.ieee.org/andrew-ng-data-centric-ai.Google ScholarGoogle Scholar
  1571. J. Strötgen and M. Gertz. 2010a. TimeTrails: A system for exploring spatio-temporal information in documents. Proc. VLDB Endow. 3, 1–2, 1569–1572.Google ScholarGoogle ScholarDigital LibraryDigital Library
  1572. J. Strötgen and M. Gertz. 2010b. HeidelTime: High quality rule-based extraction and normalization of temporal expressions. In K. Erk and C. Strapparava (Eds.), Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval@ACL 2010, Uppsala University, Uppsala, Sweden, July 15–16, 2010. Association for Computer Linguistics, 321–324.Google ScholarGoogle Scholar
  1573. Student. March. 1908. The probable error of a mean. Biometrika, 6, 1, 1–25. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1574. B. L. T. Sturm. 2013. Evaluating music emotion recognition: Lessons from music genre recognition? In Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). IEEE, San Jose, 1–6. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1575. B. L. T. Sturm. 2014. A simple method to determine if a music information retrieval system is a “horse.” IEEE Trans. Multimed. 16, 6, 1636–1644. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1576. B. L. T. Sturm, M. Iglesias, O. Ben-Tal, M. Miron, and E. Gómez. September. 2019. Artificial intelligence and music: Open questions of copyright law and engineering praxis. Arts, 8, 3, 115. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1577. D. Su and P. Fung. 2012. Personalized music emotion classification via active learning. In Proceedings of the 2nd International ACM Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies. ACM, New York, NY, 57–62. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1578. H. Su, H. Zhang, X. Zhang, and G. Gao. 2016. Convolutional neural network for robust pitch determination. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Piscataway, NJ, 579–583. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1579. N. Su, J. He, Y. Liu, M. Zhang, and S. Ma. 2018. User intent, behaviour, and perceived satisfaction in product search. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM 2018). ACM, New York, NY, 547–555. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1580. F. M. Suchanek, G. Kasneci, and G. Weikum. 2007. YAGO: A core of semantic knowledge unifying WordNet and Wikipedia. In C. Williamson and M. E. Zurko (Eds.), Proceedings of the 16th International Conference on World Wide Web (WWW 2007). ACM, New York, NY, 697–706. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1581. M. Suchanek, G. Kasneci, and G. Weikum. 2008. YAGO: A large ontology from Wikipedia and WordNet. J. Web Semant. 6, 3, 203–217. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1582. H. Sugiyama, T. Meguro, R. Higashinaka, and Y. Minami. 2013. Open-domain utterance generation for conversational dialogue systems using web-scale dependency structures. In Proceedings of the Special Interest Group on Discourse and Dialogue (SIGDIAL 2013), Metz. Association for Computational Linguistics, 334–338.Google ScholarGoogle Scholar
  1583. Summa Linguae. July. 2014. Language Diversity on the Web. Retrieved from https://summalinguae.com/language-culture/language-diversity-on-the-web/.Google ScholarGoogle Scholar
  1584. F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang. 2019a. BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM ’19). ACM, New York, NY, 1441–1450. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1585. S. Sun and K. Duh. 2020. CLIRMatrix: A massively large collection of bilingual and multilingual datasets for cross-lingual information retrieval. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 4160–4170. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1586. X. Sun, H. Wang, Y. Xiao, and Z. Wang. 2016. Syntactic parsing of web queries. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas. Association for Computational Linguistics, 1787–1796. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1587. Y. Sun and C. L. Giles. 2007. Popularity weighted ranking for academic digital libraries. In Advances in Information Retrieval, Proceedings of the European Conference on Information Retrieval, Vol. 4425: Lecture Notes in Computer Science. Springer, Berlin, 605–612. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1588. Z. Sun, Q. Guo, J. Yang, H. Fang, G. Guo, J. Zhang, and R. Burke. 2019b. Research commentary on recommendations with side information: A survey and research directions. Electron. Commer. Res. Appl. 37, 100879. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1589. H. Suominen, S. Salanterä, S. Velupillai, W. W. Chapman, G. Savova, N. Elhadad, S. Pradhan, B. R. South, D. L. Mowery, G. J. Jones, J. Leveling, L. Kelly, L. Goeuriot, D. Martinez, and G. Zuccon. 2013. Overview of the ShARe/CLEF eHealth evaluation lab 2013. In Information Access Evaluation. Multilinguality, Multimodality, and Visualization, Proceedings of the International Conference of the Cross-Language Evaluation Forum for European Languages, Vol. 8138: Lecture Notes in Computer Science. Springer, Berlin, 212–231. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1590. H. Suominen, L. Kelly, L. Goeuriot, A. Névéol, L. Ramadier, A. Robert, E. Kanoulas, R. Spijker, L. Azzopardi, D. Li, Jimmy, J. Palotti, and G. Zuccon. 2018. Overview of the CLEF eHealth evaluation lab 2018. In P. Bellot, C. Trabelsi, J. Mothe, F. Murtagh, J.-Y. Nie, L. Soulier, E. SanJuan, L. Cappellato, and N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction, Proceedings of the Ninth International Conference of the CLEF Association (CLEF ’18) , Vol. 11018: Lecture Notes in Computer Science. Springer, Heidelberg, 286–301. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1591. P. Suppes, D. H. Krantz, R. D. Luce, and A. Tversky. 1989. Foundations of Measurement: Geometrical, Threshold, and Probabilistic Representations, Vol. 2. Academic Press, New York, NY.Google ScholarGoogle Scholar
  1592. R. S. Sutton and A. G. Barto. 2021. Reinforcement Learning—An Introduction (2nd. ed.). Adaptive Computation and Machine Learning Series. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  1593. A. Swaminathan, A. Krishnamurthy, A. Agarwal, M. Dudík, J. Langford, D. Jose, and I. Zitouni. 2017. Off-policy evaluation for slate recommendation. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017). Curran Associates, Red Hook, NY, 3635–3645.Google ScholarGoogle Scholar
  1594. D. R. Swanson. July. 1972. Requirements study for future catalogs. Libr. Q 42, 3, 302–315. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1595. D. R. Swanson. 1988. Historical note: Information retrieval and the future of an illusion. J. Am. Soc. Inform. Sci. 39, 2, 92–98. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1596. L. Sweeney. October. 2002. k-Anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10, 5, 557–570. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1597. Systap. 2013. The Bigdata RDF Database. Retrieved from https://blazegraph.com/docs/bigdata˙architecture˙whitepaper.pdf.Google ScholarGoogle Scholar
  1598. S. Tadelis. 2016. Two-sided e-commerce marketplaces and the future of retailing. In E. Baskar (Ed.). Handbook on the Economics of Retailing and Distribution. Edward Elgar Publishing, Cheltenham, 455–475. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1599. J. Tagliabue. 2017. How I Learned to Stop Worrying and Love the Search Bar: Leveraging A.I. for Online Search and Discovery. Retrieved from https://medium.com/tooso/how-i-learned-to-stop-worrying-and-love-the-search-bar-fde3c3f63880.Google ScholarGoogle Scholar
  1600. J. Tagliabue, B. Yu, and M. Beaulieu. 2020. How to grow a (product) tree: Personalized category suggestions for e-Commerce type-ahead. In Proceedings of the 3rd Workshop on e-Commerce and NLP. Association for Computational Linguistics, Kerrville, TX, 7–18. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1601. J. M. Tague-Sutcliffe and J. Blustein. February. 1995. A statistical analysis of the TREC-3 data. In D. K. Harman (Ed.), Proceedings of the Third Text REtrieval Conference (TREC-3), Special Publication 500-225. National Institute of Standards and Technology/DIANE Publishing, Collingdale, PA, 385–398.Google ScholarGoogle Scholar
  1602. J. I. Tait. 2014. An introduction to professional search. In Professional Search in the Modern World, Vol. 8830: Lecture Notes in Computer Science. Springer, Berlin, 1–5. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1603. G. Takács and D. Tikk. 2012. Alternating least squares for personalized ranking. In Proceedings of the 6th ACM Conference on Recommender Systems (RecSys ’12). ACM, New York, NY, 83–90. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1604. A. Talmor, J. Herzig, N. Lourie, and J. Berant. 2019. CommonsenseQA: A question answering challenge targeting commonsense knowledge. In J. Burstein, C. Doran, and T. Solorio (Eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1 (Long and Short Papers). Association for Computational Linguistics, Kerrville, TX, 4149–4158. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1605. P. P. Talukdar and K. Crammer. 2009. New regularized algorithms for transductive learning. In Machine Learning and Knowledge Discovery in Databases, Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: Part II, ECML PKDD ’09, Vol. 5782: Lecture Notes in Computer Science. Springer, Berlin, 442–457. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1606. R. Tambi, A. Kale, and T. H. King. 2020. Search query language identification using weak labeling. In Proceedings of the 12th Language Resources and Evaluation Conference. European Language Resources Association, Marseille, France, 3520–3527.Google ScholarGoogle Scholar
  1607. T. Tamine-Lechani, M. Boughanem, and M. Daoud. 2010. Evaluation of contextual information retrieval effectiveness: Overview of issues and research. Knowl. Inf. Syst. 24, 1, 1–34. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1608. W. Tan, J. Dwivedi-Yu, Y. Li, L. Mathias, M. Saeidi, J. N. Yan, and A. Y. Halevy. 2023. TimelineQA: A benchmark for question answering over timelines. In Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July 9–14, 2023. Association for Computational Linguistics, Kerrville, TX, 77–91. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1609. E. Tang, S. Geva, A. Trotman, Y. Xu, and K. Itakura. 2011. Overview of the NTCIR-9 crosslink task: Cross-lingual link discovery. In N. Kando, D. Ishikawa, and M. Sugimoto (Eds.), Proceedings of the 9th NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-Lingual Information Access. National Institute of Informatics, Japan, 437–463.Google ScholarGoogle Scholar
  1610. J. Tang and K. Wang. 2018. Personalized top-N sequential recommendation via convolutional sequence embedding. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM 2018). ACM, New York, NY, 565–573. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1611. J. C. Tang, E. Wilcox, J. A. Cerruti, H. Badenes, S. Nusser, and J. Schoudt. 2008. Tag-it, snag-it, or bag-it: Combining tags, threads, and folders in e-mail. In Proceedings of the CHI ’08 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’08). ACM, New York, NY, 2179–2194. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1612. L.-X. Tang, I.-S. Kang, F. Kimura, Y.-H. Lee, A. Trotman, S. Geva, and Y. Xu. July. 2013. Overview of the NTCIR-10 cross-lingual link discovery task. In N. Kando and K. Kishida (Eds.), Proceedings of the 10th NTCIR Conference on Evaluation of Information Access Technologies. National Institute of Informatics, Tokyo, Japan, 8–38.Google ScholarGoogle Scholar
  1613. T. P. Tanon, D. Vrandecic, S. Schaffert, T. Steiner, and L. Pintscher. 2016. From Freebase to Wikidata: The great migration. In Proceedings of the 25th International Conference on World Wide Web (WWW ’16). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 1419–1428. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1614. T. P. Tanon, G. Weikum, and F. M. Suchanek. 2020. YAGO 4: A reason-able knowledge base. In The Semantic Web, Proceedings of the European Semantic Web Conference, Vol. 12123: Lecture Notes in Computer Science. Springer, Berlin, 583–596. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1615. D. Tao, J. Cheng, Z. Yu, K. Yue, and L. Wang. January. 2019. Domain-weighted majority voting for crowdsourcing. IEEE Trans. Neural Netw. Learn. Syst. 30, 1, 163–174. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1616. S. Tao, N. Chen, T. Sakai, Z. Chu, H. Arai, I. Soboroff, N. Ferro, and M. Maistro. 2023. Overview of the NTCIR-17 FairWeb-1 task. In M. P. Kato, T. Yamamoto, and Z. Dou (Eds.), Proceedings of the 17th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-17). National Institute of Informatics, Tokyo, Japan. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1617. R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto, March. 2023. Alpaca: A Strong, Replicable Instruction-Following Model. Retrieved from https://crfm.stanford.edu/2023/03/13/alpaca.html.Google ScholarGoogle Scholar
  1618. S. Tata, A. Popescul, M. Najork, M. Colagrosso, J. Gibbons, A. Green, A. Mah, M. Smith, D. Garg, C. Meyer, and R. Kan. 2017. Quick Access: Building a smart experience for Google Drive. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, 1643–1651. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1619. S. Tata, V. Panait, S. J. Chen, and M. Colagrosso. 2019. ItemSuggest: A data management platform for machine learned ranking services. In Proceedings of the 9th Biennial Conference on Innovative Data Systems Research (CIDR ’19), Asilomar, CA.Google ScholarGoogle Scholar
  1620. R. S. Taylor. 1962. The process of asking questions. Am. Doc. 13, 4, 391–396. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1621. E. C. Teppan and M. Zanker. 2015. Decision biases in recommender systems. J. Internet Commer. 14, 2, 255–275. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1622. The UniProt Consortium. 2017. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D1, D158–D169. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1623. J. Thickstun, Z. Harchaoui, and S. Kakade. 2016. Learning features of music from scratch. arXiv:1611.09827. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1624. Think with Google. July. 2012. The Doctor’s Digital Path to Treatment. Retrieved from https://www.thinkwithgoogle.com/marketing-strategies/search/the-doctors-digital-path-to-treatment/.Google ScholarGoogle Scholar
  1625. P. Thomas, F. Scholer, and A. Moffat. 2013. What users do: The eyes have it. In R. E. Banchs, F. Silvestri, T.-Y. Liu, M. Zhang, S. Gao, and J. Lang (Eds.), Information Retrieval Technology, Proceedings of the 9th Asia Information Retrieval Symposium (AIRS 2013) – Information Retrieval Technology, Vol. 8281: Lecture Notes in Computer Science. Springer, 416–427. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1626. P. Thomas, D. McDuff, M. Czerwinski, and N. Craswell. 2017. MISC: A data set of information-seeking conversations. In Proceedings of the SIGIR 1st International Workshop on Conversational Approaches to Information Retrieval (CAIR ’17). ACM, New York, NY.Google ScholarGoogle Scholar
  1627. P. Thomas, M. Czerwinski, D. McDuff, N. Craswell, and G. Mark. 2018. Style and alignment in information-seeking conversation. In Proceedings of the 2018 Conference on Human Information Interaction and Retrieval (CHIIR ’18). ACM, New York, NY, 42–51. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1628. P. Thomas, D. McDuff, M. Czerwinski, and N. Craswell. 2020. Expressions of style in information seeking conversation with an agent. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1171–1180. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1629. P. Thomas, S. Spielman, N. Craswell, and B. Mitra. 2024. Large language models can accurately predict searcher preferences. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24). ACM, New York, NY, 1930–1940. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1630. J. Thorne, M. Yazdani, M. Saeidi, F. Silvestri, S. Riedel, and A. Halevy. 2021. Database reasoning over text. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, Kerrville, TX, 3091–3104. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1631. C. V. Thornley, A. C. Johnson, A. F. Smeaton, and H. Lee. April. 2011. The scholarly impact of TRECVid (2003–2009). J. Am. Soc. Inf. Sci. Technol. 62, 4, 613–627. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1632. S. Tian, Q. Jin, L. Yeganova, P.-T. Lai, Q. Zhu, X. Chen, Y. Yang, Q. Chen, W. Kim, D. C. Comeau, R. Islamaj, A. Kapoor, X. Gao, and Z. Lu. 2023. Opportunities and challenges for ChatGPT and large language models in biomedicine and health. Brief. Bioinform. 25, 1, bbad493. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1633. T. Tian, J. Zhu, and Y. Qiaoben. October. 2019. Max-margin majority voting for learning from crowds. IEEE Trans. Pattern Anal. Mach. Intell. 41, 10, 2480–2494. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1634. S. Tolan. 2019. Fair and unbiased algorithmic decision making: Current state and future challenges. arXiv:1901.04730. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1635. N. Tonellotto and C. Macdonald. 2021. Query embedding pruning for dense retrieval. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management, Virtual Event Queensland, Australia. ACM, New York, NY, 3453–3457. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1636. N. Tonellotto, C. Macdonald, and I. Ounis. 2018. Efficient query processing for scalable web search. Found. Trends Inform. Retr. 12, 4–5, 319–492. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1637. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. February. 2023a. LLaMA: Open and efficient foundation language models. arXiv:2302.13971. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1638. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. Singh Koura, M.-H. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom. July. 2023b. Llama 2: Open foundation and fine-tuned chat models. arXiv:2307.09288. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1639. J. T. Townsend and F. G. Ashby. 1984. Measurement scales and statistics: The misconception misconceived. Psychol. Bull. 96, 2, 394–401. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1640. C. J. Tralie. 2017. Early MFCC and HPCP fusion for robust cover song identification. In Proceedings of the 18th International Society for Music Information Retrieval Conference, ISMIR ’17, Suzhou, China. ISMIR, 294–301. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1641. C. Trattner and D. Jannach. 2019. Learning to recommend similar items from human judgements. User Model. User Adapt. Interact. 30, 1–49. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1642. J. R. Trippas. 2015. Spoken conversational search: Information retrieval over a speech-only communication channel. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 1067. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1643. J. R. Trippas. 2019. Spoken Conversational Search: Audio-Only Interactive Information Retrieval. Ph.D. thesis. RMIT University, Melbourne, Australia.Google ScholarGoogle Scholar
  1644. J. R. Trippas and P. Thomas. 2019. Data sets for spoken conversational search. In Proceedings of the CHIIR 2019 Workshop on Barriers to Interactive IR Resources Re-use (BIIRRR 2019), Glasgow, UK. CEUR-WS.org, Aachen, 14–18.Google ScholarGoogle Scholar
  1645. J. R. Trippas, D. Spina, M. Sanderson, and L. Cavedon. 2015a. Results presentation methods for a spoken conversational search system. In Proceedings of the First International Workshop on Novel Web Search Interfaces and Systems (NWSearch ’15). ACM, New York, NY, 13–15. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1646. J. R. Trippas, D. Spina, M. Sanderson, and L. Cavedon. 2015b. Towards understanding the impact of length in web search result summaries over a speech-only communication channel. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 991–994. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1647. J. R. Trippas, D. Spina, L. Cavedon, and M. Sanderson. 2017. How do people interact in conversational speech-only search tasks: A preliminary analysis. In Proceedings of Conference on Information Interaction and Retrieval (CHIIR ’17). ACM, New York, NY, 325–328. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1648. J. R. Trippas, D. Spina, L. Cavedon, H. Joho, and M. Sanderson. 2018. Informing the design of spoken conversational search: Perspective paper. In Proceedings of the 2018 Conference on Human Information Interaction & Retrieval. ACM, New York, NY, 32–41. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1649. J. R. Trippas, D. Spina, P. Thomas, M. Sanderson, H. Joho, and L. Cavedon. 2020a. Towards a model for spoken conversational search. Inf. Process. Manage. 57, 2, 102162. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1650. J. R. Trippas, P. Thomas, D. Spina, and H. Joho. 2020b. Third international workshop on conversational approaches to information retrieval (CAIR ’20): Full-day workshop at CHIIR 2020. In Proceedings of the 2020 Conference on Human Information Interaction and Retrieval (CHIIR ’20). ACM, New York, NY, 492–494. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1651. J. R. Trippas, D. Spina, M. Sanderson, and L. Cavedon. 2021. Accessing media via an audio-only communication channel: A log analysis. In Proceedings of the ACM International Conference on Conversational User Interfaces (CUI 2021). ACM, New York, NY, 1–6. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1652. A. Trotman, J. Degenhardt, and S. Kallumadi. 2017. The architecture of eBay search. In J. Degenhardt, S. Kallumadi, M. de Rijke, L. Si, A. Trotman, and Y. Xu (Eds.), Proceedings of the SIGIR 2017 Workshop on eCommerce co-located with the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, eCOM@SIGIR 2017, Tokyo, Japan, August 11, 2017. CEUR-WS.org.Google ScholarGoogle Scholar
  1653. M. Tsagkias, T. H. King, S. Kallumadi, V. Murdock, and M. de Rijke. 2020. Challenges and research opportunities in ecommerce search and recommendations. ACM SIGIR Forum, 54, 1–23. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1654. T. Tsikrika, A. Garcia Seco de Herrera, and H. Müller. 2011. Assessing the scholarly impact of ImageCLEF. In P. Forner, J. Gonzalo, J. Kekäläinen, M. Lalmas, and M. de Rijke (Eds.), Multilingual and Multimodal Information Access Evaluation, Proceedings of the 2nd International Conference of the Cross-Language Evaluation Forum (CLEF ’11), Vol. 6941: Lecture Notes in Computer Science. Springer, Heidelberg, 95–106. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1655. T. Tsikrika, B. Larsen, H. Müller, S. Endrullis, and E. Rahm. 2013. The scholarly impact of CLEF (2000–2009). In P. Forner, H. Müller, R. Paredes, P. Rosso, and B. Stein (Eds.), Information Access Evaluation Meets Multilinguality, Multimodality, and Visualization, Proceedings of the Fourth International Conference of the CLEF Initiative (CLEF ’13), Vol. 8138: Lecture Notes in Computer Science. Springer, Heidelberg, 1–12. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1656. T. Tu, A. Palepu, M. Schaekermann, K. Saab, J. Freyberg, R. Tanno, A. Wang, B. Li, M. Amin, N. Tomasev, S. Azizi, K. Singhal, Y. Cheng, L. Hou, A. Webson, K. Kulkarni, S. S. Mahdavi, C. Semturs, J. Gottweis, J. Barral, K. Chou, G. S. Corrado, Y. Matias, A. Karthikesalingam, and V. Natarajan. 2024. Towards conversational diagnostic AI. arXiv:2401.05654. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1657. J. W. Tukey. June. 1949. Comparing individual means in the analysis of variance. Biometrics 5, 2, 99–114. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1658. J. W. Tukey. February. 1991. The philosophy of multiple comparisons. Stat. Sci. 6, 1, 100–116. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1659. D. Tunkelang. 2009. Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, and Services, Vol. 1. Morgan & Claypool Publishers, Kentfield, CA.Google ScholarGoogle Scholar
  1660. F. Türe and E. Boschee. 2014. Learning to translate: A query-specific combination approach for cross-lingual information retrieval. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, Kerrville, TX, 589–599. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1661. F. Türe, J. Lin, and D. Oard. December. 2012. Combining statistical translation techniques for cross-language information retrieval. In Proceedings of COLING 2012, Mumbai, India. The COLING 2012 Organizing Committee, 2685–2702.Google ScholarGoogle Scholar
  1662. M. Turunen, J. Hakulinen, N. Rajput, and A. A. Nanavati. 2012. Evaluation of mobile and pervasive speech applications. In Speech in Mobile and Pervasive Environments. John Wiley & Sons, Hoboken, NJ, 219–262. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1663. A. Tversky and D. Kahneman. 1991. Loss aversion in riskless choice: A reference-dependent model. Q. J. Econ. 106, 4, 1039–1061. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1664. J. Urbanek, A. Fan, S. Karamcheti, S. Jain, S. Humeau, E. Dinan, T. Rocktäschel, D. Kiela, A. Szlam, and J. Weston. 2019. Learning to speak and act in a fantasy text adventure game. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China. Association for Computational Linguistics, 673–683. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1665. J. Urbano, M. Schedl, and X. Serra. 2013. Evaluation in music information retrieval. J. Intell. Inf. Syst. 41, 3, 345–369. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1666. J. Urbano, H. Lima, and A. Hanjalic. 2019. A new perspective on score standardization. In B. Piwowarski, M. Chevalier, E. Gaussier, Y. Maarek, J.-Y. Nie, and F. Scholer (Eds.), Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 1061–1064. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1667. U.S. National Library of Medicine. December. 2021. MEDLINE 2022 initiative: Transition to automated indexing. NLM Tech. Bull. 2021, 443, e5.Google ScholarGoogle Scholar
  1668. S. Vakulenko. 2019. Knowledge-based Conversational Search. Ph.D. thesis. TU Wien, Austria.Google ScholarGoogle Scholar
  1669. S. Vakulenko, K. Revoredo, C. Di Ciccio, and M. de Rijke. 2019. QRFA: A data-driven model of information-seeking dialogues. In Advances in Information Retrieval, Proceedings of the 41st European Conference on Information Retrieval (ECIR 2019), Vol. 11437: Lecture Notes in Computer Science. Springer, Berlin, 541–557. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1670. A. Vallin, B. Magnini, D. Giampiccolo, L. Aunimo, C. Ayache, P. Osenova, A. Peñas, M. de Rijke, B. Sacaleanu, D. Santos, and R. Sutcliffe. 2006. Overview of the CLEF 2005 multilingual question answering track. In C. Peters, F. C. Gey, J. Gonzalo, H. Müller, G. J. F. Jones, M. Kluck, B. Magnini, and M. de Rijke (Eds.), Accessing Multilingual Information Repositories, CLEF 2005, Vol. 4022: Lecture Notes in Computer Science. Springer, Berlin, 307–331. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1671. L. van Bulck and P. Moons. 2023. What if your patient switches from Dr. Google to Dr. ChatGPT? A vignette-based survey of the trustworthiness, value, and danger of ChatGPT-generated responses to health questions. Eur. J. Cardiovasc. Nurs. 23, 1, 95–98. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1672. B. van den Akker, I. Markov, and M. de Rijke. 2019. ViTOR: Learning to rank webpages based on visual features. In Proceedings of the World Web Conference (WWW ’2019). ACM, New York, NY, 3279–3285. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1673. A. van der Vegt, G. Zuccon, and B. Koopman. 2021. Do better search engines really equate to better clinical decisions? If not, why not? J. Assoc. Inform. Sci. Technol. 72, 12, 141–155. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1674. D. van Dijk, M. Ferrante, N. Ferro, and E. Kanoulas. 2019. A Markovian approach to evaluate session-based IR systems. In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra (Eds.), Advances in Information Retrieval, Proceedings of the 41st European Conference on IR Research, ECIR 2019, Part I, Cologne, Germany, April 14–18, 2019, Vol. 11437: Lecture Notes in Computer Science. Springer, Cham, 621–635. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1675. M. van Opijnen and C. Santos. March. 2017. On the concept of relevance in legal information retrieval. Artif. Intell. Law 25, 1, 65–87. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1676. C. J. van Rijsbergen. 1974. Foundations of evaluation. J. Doc. 30, 4, 365–373. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1677. C. J. van Rijsbergen. 1979. Information Retrieval (2nd. ed.). Butterworths, London.Google ScholarGoogle Scholar
  1678. C. J. van Rijsbergen. 1981. Retrieval effectiveness. In K. Spärck Jones (Ed.), Information Retrieval Experiment. Butterworths, London, 32–43.Google ScholarGoogle Scholar
  1679. V. N. Vapnik. 1998. Statistical Learning Theory. Wiley-Interscience, Hoboken, NJ.Google ScholarGoogle ScholarCross RefCross Ref
  1680. S. Vargas and P. Castells. 2011. Rank and relevance in novelty and diversity metrics for recommender systems. In Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys ’11). ACM, New York, NY, 109–116. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1681. S. Vargas and P. Castells. 2014. Improving sales diversity by recommending users to items. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14). ACM, New York, NY, 145–152. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1682. S. Vargas, P. Castells, and D. Vallet. 2011. Intent-oriented diversity in recommender systems. In Proceedings of the 34th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11). ACM, New York, NY, 1211–1212. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1683. S. Vargas, R. Blanco, and P. Mika. 2016. Term-by-term query auto-completion for mobile search. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining (WSDM ’16). ACM, New York, NY, 143–152. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1684. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS ’17). Curran Associates, Red Hook, NY, 6000–6010.Google ScholarGoogle Scholar
  1685. D. K. Vaughan. March 1968. Effectiveness of book-memory data for conventional catalog retrieval. In Requirements Study for Future Catalogs; Progress Report No. 2. Graduate Library School, University of Chicago, Chicago, IL, 53.Google ScholarGoogle Scholar
  1686. P. F. Velleman and L. Wilkinson. February. 1993. Nominal, ordinal, interval, and ratio typologies are misleading. Am. Stat. 47, 1, 65–72. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1687. A. Veloso, M. Ribeiro, A. Lacerda, E. Moura, I. Hata, and N. Ziviani. December. 2014. Multi-objective pareto-efficient approaches for recommender systems. Special issue on novelty and diversity in recommender systems. ACM Trans. Information Syst. Technol. 5, 4, 1–20. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1688. S. Verberne, M. Sappelli, and W. Kraaij. 2014. Query term suggestion in academic search. In Advance in Information Retrieval Proceedings of the 36th European Conference on IR Research, Vol. 8416: Lecture Notes in Computer Science. Springer, Berlin, 560–566. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1689. S. Verberne, M. Sappelli, K. Järvelin, and W. Kraaij. 2015a. User simulations for interactive search: Evaluating personalized query suggestion. In Advances in Information Retrieval: Proceedings of the 37th European Conference on IR Research, ECIR 2015, Vienna, Austria, March 29–April 2, 2015, Vol. 9022: Lecture Notes in Computer Science. Springer, Cham, 678–690. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1690. S. Verberne, T. Wabeke, and R. Kaptein. 2015b. QUINN. Query updates for news monitoring. In Proceedings of the 14th Dutch–Belgian Information Retrieval Workshop. DIR, Amsterdam, 30.Google ScholarGoogle Scholar
  1691. S. Verberne, L. Boves, and A. van den Bosch. 2016a. Information access in the art history domain: Evaluating a federated search engine for Rembrandt research. Digit. Human. Q. 10, 4, 69–87.Google ScholarGoogle Scholar
  1692. S. Verberne, M. Sappelli, D. Hiemstra, and W. Kraaij. 2016b. Evaluation and analysis of term scoring methods for term extraction. Inf. Retr. J. 19, 5, 510–545. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1693. S. Verberne, T. Wabeke, and R. Kaptein. 2016c. Boolean queries for news monitoring: Suggesting new query terms to expert users. In Proceedings of the 1st International Workshop on Recent Trends in News Information Retrieval, co-Located with 38th European Conference on Information Retrieval (ECIR 2016), Vol. 1568. CEUR-WS.org, Aachen, 3–8.Google ScholarGoogle Scholar
  1694. S. Verberne, R. van Leeuwen, G. Gerritsen, and L. Boves. 2017. RemBench: A digital workbench for Rembrandt research. In J. Odijk and A. van Hessen (Eds.), CLARIN in the Low Countries. Ubiquity Press, London, 337–350. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1695. S. Verberne, A. P. de Vries, and W. Kraaij. 2018a. Author-topic profiles for academic search. arXiv:1804.11131. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1696. S. Verberne, J. He, U. Kruschwitz, G. Wiggers, B. Larsen, T. Russell-Rose, and A. P. de Vries. 2018b. First international workshop on professional search. Proc. SIGIR Forum 52, 153–162. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1697. S. Verberne, J. He, G. Wiggers, T. Russell-Rose, U. Kruschwitz, and A. P. de Vries. 2019. Information search in a professional context—Exploring a collection of professional search tasks. arXiv:1905.04577. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1698. S. Verberne, E. Kanoulas, G. Wiggers, F. Piroi, and A. P. de Vries. 2023. ECIR 2023 Workshop: Legal information retrieval. In J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kruschwitz, and A. Caputo (Eds.), Advances in Information Retrieval, Proceedings of the European Conference on Information Retrieval 2023, Vol. 13982: Lecture Notes in Computer Science. Springer, Berlin, 412–419. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1699. P. Verma and R. W. Schafer. 2016. Frequency estimation from waveforms using multi-layered neural networks. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, September 08–12. International Speech Communication Association, San Francisco, CA, 2165–2169. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1700. M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. 2004. Identifying similarities, periodicities and bursts for online search queries. In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. ACM, New York, NY, 131–142. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1701. E. M. Voorhees. February. 2000. The TREC-8 question answering track report. In Proceedings of the Eighth Text REtrieval Conference (TREC-8), Special Publication 500-246. National Institute of Standards and Technology, Gaithersburg, MD, 77–82.Google ScholarGoogle ScholarCross RefCross Ref
  1702. E. M. Voorhees. 2002. The philosophy of information retrieval evaluation. In Evaluation of Cross-Language Information Retrieval Systems, Proceedings of the 2nd Workshop of the Cross-Language Evaluation Forum, Vol. 2406: Lecture Notes in Computer Science. Springer, Berlin, 355–370. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1703. E. M. Voorhees. February. 2005a. Overview of the TREC 2004 robust track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Thirteenth Text REtrieval Conference (TREC 2004), Special Publication 500-261. National Institute of Standards and Technology, Gaithersburg, MD, 70–73. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1704. E. M. Voorhees. June. 2005b. The TREC robust retrieval track. ACM SIGIR Forum, 39, 1, 11–20. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1705. E. M. Voorhees. February. 2006. Overview of the TREC 2005 robust retrieval track. In E. M. Voorhees and L. P. Buckland (Eds.), Proceedings of the Fourteenth Text REtrieval Conference (TREC 2005), Special Publication 500-266. National Institute of Standards and Technology, Gaithersburg, MD.Google ScholarGoogle Scholar
  1706. E. M. Voorhees. 2009. Topic set size redux. In J. Allan, J. Aslam, M. Sanderson, C. Zhai, and J. Zobel (Eds.), Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 806–807. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1707. E. M. Voorhees. September. 2013. The TREC medical records track. In Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics (BCB ’13). ACM, New York, NY, 239–246. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1708. E. M. Voorhees. 2018. On building fair and reusable test collections using bandit techniques. In A. Cuzzocrea, J. Allan, N. Paton, D. Srivastava, R. Agrawal, A. Broder, M. Zaki, S. Candan, A. Labrinidis, A. Schuster, and H. Wang (Eds.), Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, 407–416. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1709. E. M. Voorhees. 2019. The evolution of Cranfield. In N. Ferro and C. Peters (Eds.), Information Retrieval Evaluation in a Changing World. The Information Retrieval Series, Vol. 41. Springer, Cham, 45–69. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1710. E. M. Voorhees and C. Buckley. 2002. The effect of topic set size on retrieval experiment error. In K. Järvelin, M. Beaulieu, R. Baeza-Yates, and S. Hyon Myaeng (Eds.), Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’02). ACM, New York, NY, 316–323. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1711. E. M. Voorhees and D. K. Harman. February. 1999. Overview of the seventh text retrieval conference (TREC-7). In E. M. Voorhees and D. K. Harman (Eds.), The Seventh Text REtrieval Conference (TREC-7), Special Publication 500-242. National Institute of Standards and Technology, Washington, DC, 1–24.Google ScholarGoogle Scholar
  1712. E. M. Voorhees and D. Harman. January. 2000a. Overview of the Sixth Text REtrieval Conference (TREC-6). Inf. Process. Manag. 36, 1, 3–35. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1713. E. M. Voorhees and D. K. Harman. February. 2000b. Overview of the eight text retrieval conference (TREC-8). In E. M. Voorhees and D. K. Harman (Eds.), The Eighth Text REtrieval Conference (TREC-8), Special Publication 500-246. National Institute of Standards and Technology, Washington, DC, 1–24.Google ScholarGoogle ScholarCross RefCross Ref
  1714. E. M. Voorhees and D. K. Harman (Eds.). February. 2000c. In Proceedings of the Eighth Text REtrieval Conference (TREC-8), Gaithersburg, MD, November 17–19, 1999, Special Publication 500-246. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle ScholarCross RefCross Ref
  1715. E. M. Voorhees and D. K. Harman. 2005. TREC: Experiments and Evaluation in Information REtrieval, Vol. 63. MIT Press, Cambridge, MA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  1716. E. M. Voorhees and W. Hersh. 2012. Overview of the TREC 2012 medical records track. In Proceedings of the Twenty-First Text Retrieval Conference (TREC 2012). National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  1717. E. M. Voorhees, D. Samarov, and I. Soboroff. September. 2017. Using replicates in information retrieval evaluation. ACM Trans. Inf. Syst. 36, 2, 12:1–12:21. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1718. D. Vrandecic and M. Krötzsch. 2014. Wikidata: A free collaborative knowledgebase. ACM Commun. 57, 10, 78–85. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1719. A. Vtyurina. 2019. Towards non-visual web search. In Proceedings of the 2019 Conference on Human Information Interaction and Retrieval (CHIIR ’19). ACM, New York, NY, 429–432. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1720. A. Vtyurina, C. L. Clarke, E. Law, J. R. Trippas, and H. Bota. 2020. A mixed-method analysis of text and audio search interfaces with varying task complexity. In Proceedings of the 2020 ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR ’20). ACM, New York, NY, 61–68. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1721. I. Vulić and M.-F. Moens. 2015. Monolingual and cross-lingual information retrieval models based on (bilingual) word embeddings. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 363–372. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1722. I. Vulić, G. Glavaš, R. Reichart, and A. Korhonen. 2019. Do we really need fully unsupervised cross-lingual embeddings? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China. Association for Computational Linguistics, 4407–4418. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1723. W3C. March. 2013. SPARQL 1.1 Overview—W3C Recommendation 21 March 2013. Retrieved from https://www.w3.org/TR/sparql11-overview/.Google ScholarGoogle Scholar
  1724. W3C. February. 2014. RDF 1.1 Concepts and Abstract Syntax—W3C Recommendation 25 February 2014. Retrieved from https://www.w3.org/TR/rdf11-concepts/.Google ScholarGoogle Scholar
  1725. A. J. Walker. September. 1977. An efficient method for generating discrete random variables with general distributions. ACM Trans. Math. Softw. 3, 3, 253–256. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1726. M. A. Walker, D. J. Litman, C. A. Kamm, and A. Abella. 1997. PARADISE: A framework for evaluating spoken dialogue agents. In Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics, Madrid, Spain. Association for Computational Linguistics, 271–280. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1727. M. A. Walker, R. Passonneau, and J. E. Boland. 2001. Quantitative and qualitative evaluation of DARPA communicator spoken dialogue systems. In Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics (ACL ’01), Cambridge, MA. Association for Computational Linguistics, 515–522. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1728. J. Wallat, A. Jatowt, and A. Anand. 2024. Temporal blind spots in large language models. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining (WSDM ’24). ACM, New York, NY, 683–692. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1729. W. H. Walters and E. I. Wilder. 2023. Fabrication and errors in the bibliographic citations generated by ChatGPT. Sci. Rep. 13, 1, 14045. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1730. M. Wan, J. Ni, R. Misra, and J. McAuley. 2020. Addressing marketing bias in product recommendations. In Proceedings of the 13th International Conference on Web Search and Data Mining (WSDM ’20). ACM, New York, NY, 618–626. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1731. J. Wang, A. Jatowt, and M. Yoshikawa. 2022. TimeBERT: Enhancing pre-trained language representations with temporal information. arXiv:2204.13032. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1732. S. Wang, H. Scells, B. Koopman, and G. Zuccon. 2023. Can ChatGPT write a good Boolean query for systematic review literature search? In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval SIGIR ’23. ACM, New York, NY, 1426–1436. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1733. T. Wang and D. Wang. 2014. Why Amazon’s ratings might mislead you: The story of herding effects. Big Data 2, 4, 196–204. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1734. X. Wang, M. Bendersky, D. Metzler, and M. Najork. 2016. Learning to rank with selection bias in personal search. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, 115–124. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1735. X. Wang, N. Golbandi, M. Bendersky, D. Metzler, and M. Najork. 2018. Position bias estimation for unbiased learning to rank in personal search. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM ’18). ACM, New York, NY, 610–618. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1736. Y. Wang, B. Yang, L. Qu, M. Spaniol, and G. Weikum. 2011. Harvesting acts from textual web sources by constrained label propagation. In Proceedings of the 20th ACM Conference on Information and Knowledge Management (CIKM), Glasgow, Scotland, UK, October 24–28. ACM, New York, NY, 837–846. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1737. Y. Wang, M. Dylla, M. Spaniol, and G. Weikum. 2012. Coupling label propagation and constraints for temporal fact extraction. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Jeju, Republic of Korea, July 8–14, 2012. Association for Computational Linguistics, 233–237.Google ScholarGoogle Scholar
  1738. Y. Wang, H. Ouyang, H. Deng, and Y. Chang. 2017. Learning online trends for interactive query auto-completion. IEEE Trans. Knowl. Data Eng. 29, 11, 2442–2454. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1739. Y. Wang, H. Lu, Y. Xu, R. Goutam, Y. Song, and B. Yin. 2021. QUEEN: Neural query rewriting in e-commerce. In Proceedings of the Web Conference 2021 (WWW KMEcommerce’21). ACM, New York, NY.Google ScholarGoogle Scholar
  1740. Z. Wang, H. Wang, and Z. Hu. 2014. Head, modifier, and constraint detection in short texts. In Proceedings of the IEEE 30th International Conference on Data Engineering. IEEE, Chicago, IL, 280–291. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1741. Z. Wang, K. Zhao, H. Wang, X. Meng, and J.-R. Wen. 2015. Query understanding through knowledge-based conceptualization. In Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI ’15). AAAI Press, 3264–3270.Google ScholarGoogle ScholarDigital LibraryDigital Library
  1742. W. B. Ware and J. Benson. October/December. 1975. Appropriate statistics and measurement scales. Sci. Educ. 59, 4, 575–582. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1743. J. Wasilewski and N. Hurley. 2016. Intent-aware diversification using a constrained PLSA. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16). ACM, New York, NY, 39–42. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1744. J. Wattles, October. 2019. Amazon sues more than 1000 sellers of ‘fake’ product reviews. CNN. https://money.cnn.com/2015/10/18/technology/amazon-lawsuit-fake-reviews/index.html.Google ScholarGoogle Scholar
  1745. C. L. Wayne. May. 2000. Multilingual topic detection and tracking: Successful research enabled by corpora and evaluation. In Proceedings of the Second International Conference on Language Resources and Evaluation (LREC ’00), Athens, Greece. European Language Resources Association.Google ScholarGoogle Scholar
  1746. W. Webber and L. A. Park. 2009. Score adjustment for correction of pooling bias. In Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 444–451. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1747. W. Webber, A. Moffat, and J. Zobel. 2008. Score standardization for inter-collection comparison of retrieval systems. In T.-S. Chua, M.-K. Leong, S. H. Myaeng, D. W. Oard, and F. Sebastiani (Eds.), Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 51–58. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1748. I. Weber and C. Castillo. 2010. The demographics of web search. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 523–530. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1749. I. Weber, V. R. K. Garimella, and E. Borra. 2012. Mining web query logs to analyze political issues. In Proceedings of the 4th Annual ACM Web Science Conference (WebSci ’12). ACM, New York, NY, 330–334. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1750. J. Wei, B. Tag, J. R. Trippas, T. Dingler, and V. Kostakos. 2022. What could possibly go wrong when interacting with proactive smart speakers? A case study using an ESM application. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI ’22). ACM, New York, NY, 1–5. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1751. G. Weikum, N. Ntarmos, M. Spaniol, P. Triantafillou, A. Benczúr, S. Kirkpatrick, P. Rigaux, and M. Williamson. 2011. Longitudinal analytics on web archive data: It’s about time! In Fifth Biennial Conference on Innovative Data Systems Research (CIDR ’11), Asilomar, CA, USA, January 9–12, 2011 (Online Proceeding), Amsterdam, 199–202.Google ScholarGoogle Scholar
  1752. G. Weikum, J. Hoffart, N. Nakashole, M. Spaniol, F. M. Suchanek, and M. A. Yosef. September. 2012. Big data methods for computational linguistics. IEEE Data Eng. Bull. 35, 3, 46–55.Google ScholarGoogle Scholar
  1753. J. Weinberg, September. 2016. Cognitive Bias Codex. Retrieved from https://dailynous.com/2016/09/14/cognitive-bias-codex/.Google ScholarGoogle Scholar
  1754. C. H. Weiss. 1997. Evaluation: Methods for Studying Programs and Policies. Prentice Hall, Hoboken, NJ.Google ScholarGoogle Scholar
  1755. J. Weizenbaum. 1966. Eliza—A computer program for the study of natural language communication between man and machine. ACM Commun. 9, 1, 36–45. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1756. C. Welsh. 2018. Facebook may have knowingly inflated its video metrics for over a year. The Verge. https://tinyurl.com/5n6yn57e.Google ScholarGoogle Scholar
  1757. M. Wen, D. K. Vasthimal, A. Lu, T. Wang, and A. Guo. 2019. Building large-scale deep learning system for entity recognition in e-commerce search. In Proceedings of the 6th IEEE/ACM International Conference on Big Data Computing, Applications and Technologie (BDCAT ’19). ACM, New York, NY, 149–154. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1758. J. B. Wendt, M. Bendersky, L. Garcia-Pueyo, V. Josifovski, B. Miklos, I. Krka, A. Saikia, J. Yang, M.-A. Cartright, and S. Ravi. 2016. Hierarchical label propagation and discovery for machine generated email. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (WSDM ’16). ACM, New York, NY, 317–326. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1759. F. Weninger, F. Eyben, B. W. Schuller, M. Mortillaro, and K. R. Scherer. 2013. On the acoustics of emotion in audio: What speech, music, and sound have in common. Front. Psychol. 4, 292, 1–12. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1760. J. I. Westbrook, E. W. Coiera, and A. S. Gosling. June. 2005. Do online information retrieval systems help experienced clinicians answer clinical questions? J. Am. Med. Inform. Assoc. 12, 3, 315–321. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1761. R. White. 2013. Beliefs and biases in web search. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13). ACM, New York, NY, 3–12. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1762. R. W. White. 2016. Interactions with Search Systems. Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  1763. R. W. White, I. Ruthven, J. M. Jose, and C. J. van Rijsbergen. July. 2005. Evaluating implicit feedback models using searcher simulations. ACM Trans. Inf. Syst. 23, 3, 325–361. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1764. R. W. White, D. W. Oard, G. J. F. Jones, D. Soergel, and X. Huang. 2006. Overview of the CLEF-2005 cross-language speech retrieval track. In C. Peters, F. C. Gey, J. Gonzalo, H. Müller, G. J. F. Jones, M. Kluck, B. Magnini, and M. de Rijke (Eds.), Accessing Multilingual Information Repositories, 6th Workshop of the Cross-Language Evaluation Forum, CLEF 2005, Vienna, Austria, September 21–23, 2005, Revised Selected Papers, Vol. 4022: Lecture Notes in Computer Science. Springer, Berlin, 744–759. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1765. S. Whiting and J. M. Jose. 2014. Recent and robust query auto-completion. In Proceedings of the 23rd International Conference on World Wide Web (WWW ’14). ACM, New York, NY, 971–982. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1766. J. Whittaker, S. Looney, A. Reed, and F. Votta. 2021. Recommender systems and the amplification of extremist content. Internet Policy Rev. 10, 2, 1–29. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1767. S. Whittaker and C. Sidner. 1996. Email overload: Exploring personal information management of email. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New York, NY, 276–283. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1768. S. Whittaker, T. Matthews, J. Cerruti, H. Badenes, and J. Tang. 2011. Am I wasting my time organizing email? A study of email refinding. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11). ACM, New York, NY, 3449–3458. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1769. G. Wiggers and S. Verberne. 2019. Citation metrics for legal information retrieval systems. In Proceedings of the 8th International Workshop on Bibliometric-Enhanced Information Retrieval (BIR 2019) Co-Located with the 41st European Conference on Information Retrieval (ECIR 2019), Vol. 2345. CEUR-WS.org, Aachen, 39–50.Google ScholarGoogle Scholar
  1770. G. Wiggers and S. Verberne. 2020. Usage and citation metrics for ranking algorithms in legal information retrieval systems. In Proceedings of the 10th International Workshop on Bibliometric-Enhanced Information Retrieval, Co-Located with 42nd European Conference on Information Retrieval (ECIR 2020), Vol. 2591. CEUR-WS.org, Aachen, 42–52.Google ScholarGoogle Scholar
  1771. G. Wiggers, S. Verberne, and G.-J. Zwenne. 2018. Exploration of intrinsic relevance judgments by legal professionals in information retrieval systems. In Proceedings of the 17th Dutch–Belgian Information Retrieval Workshop, Leiden University, Leiden, 5–8.Google ScholarGoogle Scholar
  1772. G. Wiggers, S. Verberne, G.-J. Zwenne, and W. Van Loon. 2022. Exploration of domain relevance by legal professionals in information retrieval systems. Legal Inf. Manage. 22, 1, 49–67. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1773. G. Wiggers, S. Verberne, W. van Loon, and G.-J. Zwenne. 2023. Bibliometric-enhanced legal information retrieval: Combining usage and citations as flavors of impact relevance. J. Assoc. Inf. Sci. Technol. 74, 1010–1025. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1774. F. Wilcoxon. December. 1945. Individual comparisons by ranking methods. Biometr. Bull. 1, 6, 80–83. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1775. B. M. Wildemuth, R. de Bliek, C. P. Friedman, and D. D. File. 1995. Medical students’ personal knowledge, searching proficiency, and database use in problem solving. J. Am. Soc. Inf. Sci. 46, 8, 590–607. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1776. C. Wilkie and L. Azzopardi. 2015. Retrievability and retrieval bias: A comparison of inequality measures. In Advances in Information Retrieval, Proceedings of the 37th European Conference on Information Retrieval Research, ECIR 2015, Vol. 9022: Lecture Notes in Computer Science. Springer, Berlin, 209–214. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1777. J. Winawer, N. Witthoft, M. Frank, L. Wulund, A. Wade, and L. Boroditsky. June. 2007. The Russian blues reveal effects of language on color discrimination. Proc. Natl. Acad. Sci. U. S. A. 104, 19, 7780–7785. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1778. L. Wu and M. Grbovic. 2020. How Airbnb tells you will enjoy sunset sailing in Barcelona? Recommendation in a two-sided travel marketplace. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 2387–2396. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1779. Q. Wu, C. J. C. Burges, K. M. Svore, and J. Gao. June. 2010. Adapting boosting for information retrieval measures. Inf. Retr. 13, 3, 254–270. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1780. S. Wu, J. M. Hofman, W. A. Mason, and D. J. Watts. 2011. Who says what to whom on Twitter. In Proceedings of the 20th International Conference on World Wide Web (WWW ’11). ACM, New York, NY, 705–714. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1781. W. Wu, D. Kelly, A. Edwards, and J. Arguello. 2012. Grannies, tanning beds, tattoos and NASCAR: Evaluation of search tasks with varying levels of cognitive complexity. In Proceedings of the 4th Conference on Information Interaction in Context (IIiX). ACM, New York, NY, 254–257. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1782. Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Ł. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean. 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv:1609.08144. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1783. C. Wu, F. Wu, J. Liu, S. He, Y. Huang, and X. Xie. 2019. Neural demographic prediction using search query. In Proceedings of the 12th ACM International Conference on Web Search and Data Mining. ACM, New York, NY, 654–662. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1784. C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing. 2017a. Recurrent recommender networks. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM ’17). ACM, New York, NY, 495–503. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1785. H. Wu, Y. Zhang, C. Ma, F. Lyu, B. He, B. Mitra, and X. Liu. July. 2023. Result diversification in search and recommendation: A survey. arXiv:2212.14464. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1786. K. Wu, E. Wu, A. Cassasola, A. Zhang, K. Wei, T. Nguyen, S. Riantawan, P. S. Riantawan, D. E. Ho, and J. Zou. 2024. How well do LLMs cite relevant medical references? An evaluation framework and analyses. arXiv:2402.02008. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1787. L. Wu, X. He, X. Wang, K. Zhang, and M. Wang. 2022. A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation. IEEE Trans. Knowl. Data Eng. 35, 5, 4425–4445. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1788. Q. Wu, H. Wang, L. Hong, and Y. Shi. 2017b. Returning is believing: Optimizing long-term user engagement in recommender systems. In Proceedings of the 2017 ACM Conference on Information and Knowledge Management. ACM, New York, NY, 1927–1936. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1789. S. Wu, S. Liu, Y. Wang, T. Timmons, H. Uppili, S. Bedrick, W. Hersh, and H. Liu. 2017c. Intrainstitutional EHR collections for patient-level information retrieval. J. Assoc. Inf. Sci. Technol. 68, 11, 2636–2648. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1790. W. Wu, G. Liu, H. Ye, C. Zhang, T. Wu, D. Xiao, W. Lin, and X. Zhu. 2018. EENMF: An end-to-end neural matching framework for e-commerce sponsored search. arXiv:1812.01190. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1791. Y. Xian, T. Zhao, J. Li, J. Chan, A. Kan, J. Ma, X. L. Dong, C. Faloutsos, G. Karypis, S. Muthukrishnan, and Y. Zhang. 2021. EX3: Explainable attribute-aware item-set recommendations. In Proceedings of the 15th ACM Conference on Recommender Systems (RecSys ’21). ACM, New York, NY, 484–494. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1792. B. Xiao and I. Benbasat. 2007. E-commerce product recommendation agents: Use, characteristics, and impact. MIS Q. 31, 1, 137–209. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1793. C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda, and K. Sadakane. April. 2013. Efficient error-tolerant query autocompletion. Proc. VLDB. Endow. 6, 6, 373–384. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1794. X. Xin, A. Karatzoglou, I. Arapakis, and J. M. Jose. 2020. Self-supervised reinforcement learning for recommender systems (SIGIR ’20). In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 931–940. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1795. X. Xin, A. Karatzoglou, I. Arapakis, and J. M. Jose. 2022a. Supervised advantage actor-critic for recommender systems. In Proceedings of the 15th ACM International Conference on Web Search and Data Mining (WSDM 2022). ACM, New York, NY, 1186–1196. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1796. X. Xin, T. Pimentel, A. Karatzoglou, P. Ren, K. Christakopoulou, and Z. Ren. 2022b. Rethinking reinforcement learning for recommendation: A prompt perspective. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 1347–1357. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1797. E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. 2002. Distance metric learning, with application to clustering with side-information. In Proceedings of the 15th International Conference on Neural Information Processing Systems (NIPS 2022). MIT Press, Cambridge, MA, 521–528.Google ScholarGoogle Scholar
  1798. C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power. 2017. End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 55–64. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1799. L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. Bennett, J. Ahmed, and A. Overwijk. 2021. Approximate nearest neighbor negative contrastive learning for dense text retrieval. In Proceedings of the International Conference on Learning Representations (ICLR 2021), Appleton, WI.Google ScholarGoogle Scholar
  1800. W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke. 2018. The Microsoft 2017 conversational speech recognition system. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Piscataway, NJ, 5934–5938. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1801. J. Xu and R. Weischedel. October. 2000. Cross-lingual information retrieval using hidden Markov models. In Proceedings of the 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora held in conjunction with the 38th Annual Meeting of the Association for Computational Linguistics, Vol. 13, Hong Kong, China. Association for Computational Linguistics, 95–103. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1802. X. Xu, X. Chen, and D. Yang. 2018. Key-invariant convolutional neural network toward efficient cover song identification. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME ’18). IEEE, San Diego, CA, 1–6. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1803. X. Xu, A. H. Awadallah, S. T. Dumais, F. Omar, B. Popp, R. Rounthwaite, and F. Jahanbakhsh. 2020. Understanding user behavior for document recommendation. In Proceedings of the Web Conference 2020. ACM, New York, NY, 3012–3018. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1804. H. Yaman, E. Yavuz, A. Er, R. Vural, Y. Albayrak, A. Yardimci, and Ö. Asilkan. April. 2016. The use of mobile smart devices and medical apps in the family practice setting. J. Eval. Clin. Pract. 22, 2, 290–296. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1805. M. Yan, C. Li, C. Wu, B. Bi, W. Wang, J. Xia, and L. Si. February. 2020. IDST at TREC 2019 deep learning track: Deep cascade ranking with generation-based document expansion and pre-trained language modeling. In Proceedings of the Twenty-Eighth Text REtrieval Conference (TREC 2019), Special Publication 1250. National Institute of Standards and Technology, Washington, DC.Google ScholarGoogle Scholar
  1806. Y. Yang. 2018. Towards Practical Active Learning for Classification. Ph.D. thesis. TU Delft University, Netherlands.Google ScholarGoogle Scholar
  1807. E. Yang, S. Nair, R. Chandradevan, R. Iglesias-Flores, and D. W. Oard. 2022. C3: Continued pretraining with contrastive weak supervision for cross language ad-hoc retrieval. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, New York, NY, 2507–2512. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1808. F. Yang, A. Kale, Y. Bubnov, L. Stein, Q. Wang, H. Kiapour, and R. Piramuthu. 2017. Visual search at eBay. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, 2101–2110. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1809. H. Yang, P. Gupta, R. F. Galán, D. Bu, and D. Jia. 2021. Seasonal relevance in e-commerce search. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM2021). ACM, New York, NY, 4293–4301. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1810. K. Yang and J. Stoyanovich. 2017. Measuring fairness in ranked outputs. In A. Choudhary, K. Wu, and B. Dong (Eds.), Proceedings of the 29th International Conference on Scientific and Statistical Database Management (SSDBM 2017). ACM, New York, NY, 1–6. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1811. K. Yang, V. Gkatzelis, and J. Stoyanovich. 2019a. Balanced ranking with diversity constraints. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), Macao. IJCAI.org, 6035–6042.Google ScholarGoogle Scholar
  1812. L. Yang, Y. Cui, Y. Xuan, C. Wang, S. Belongie, and D. Estrin. 2018a. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY, 279–287. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1813. L. Yang, M. Qiu, C. Qu, J. Guo, Y. Zhang, W. B. Croft, J. Huang, and H. Chen. 2018b. Response ranking with deep matching networks and external knowledge in information-seeking conversation systems. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’18). ACM, New York, NY, 245–254. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1814. P. Yang, H. Fang, and J. Lin. October. 2018c. Anserini: Reproducible ranking baselines using Lucene. J. Data Inf. Qual. 10, 4, 1–20. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1815. X. Yang, Y. Dong, and J. Li. 2018d. Review of data features-based music emotion recognition methods. Multimed. Syst. 24, 4, 365–389. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1816. Y. Yang, N. Bansal, W. Dakka, P. Ipeirotis, N. Koudas, and D. Papadias. 2009. Query by document. In Proceedings of the Second ACM International Conference on Web Search and Data Mining (WSDM ’09). ACM, New York, NY, 34–43. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1817. Y. Yang, Y. Gong, and X. Chen. 2018e. Query tracking for e-commerce conversational search: A machine comprehension perspective. In Proceedings of International Conference on Information and Knowledge Management (CIKM ’18). ACM, New York, NY, 1755–1758. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1818. Y. Yang, D. Cer, A. Ahmad, M. Guo, J. Law, N. Constant, G. Hernandez Abrego, S. Yuan, C. Tar, Y.-h. Sung, B. Strope, and R. Kurzweil. July. 2020. Multilingual universal sentence encoder for semantic retrieval. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Online. Association for Computational Linguistics, 87–94. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1819. Y.-H. Yang and H. H. Chen. 2011. Music Emotion Recognition. CRC Press, Boca Raton, FL.Google ScholarGoogle Scholar
  1820. Y.-H. Yang and H. H. Chen. 2012. Machine recognition of music emotion: A review. In ACM Trans. Intell. Syst. Technol. 3, 3, 1–30. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1821. Y.-H. Yang, C.-C. Liu, and H. H. Chen. 2006. Music emotion classification: A fuzzy approach. In Proceedings of the 14th ACM International Conference on Multimedia (MM ’06). ACM, New York, NY, 81–84. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1822. Y.-H. Yang, Y.-F. Su, Y.-C. Lin, and H. H. Chen. 2007. Music emotion recognition: The role of individuality. In Proceedings of the International Workshop on Human-centered Multimedia. ACM, New York, NY, 13–22. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1823. Y.-H. Yang, Y.-C. Lin, Y.-F. Su, and H. H. Chen. 2008. A regression approach to music emotion recognition. IEEE Trans. Audio, Speech, Lang. Process. 16, 2, 448–457. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1824. Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. 2019b. XLNet: Generalized autoregressive pretraining for language understanding. In Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates, Red Hook, NY, 5753–5763.Google ScholarGoogle Scholar
  1825. N. Yankelovich, G. Levow, and M. Marx. 1995. Designing SpeechActs: Issues in speech user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’95). ACM Press/Addison-Wesley, 369–376. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1826. L. Yao, B. Yang, H. Zhang, W. Luo, and B. Chen. 2020. Exploiting neural query translation into cross lingual information retrieval. arXiv:2010.13659. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1827. S. Yao and B. Huang. 2017. Beyond parity: Fairness objectives for collaborative filtering. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Proceedings of the 31st International Conference on Neural Information Processing Systems, Vol. 30. Curran Associates, Red Hook, NY, 2925–2934.Google ScholarGoogle Scholar
  1828. Y. Yao and F. M. Harper. 2018. Judging similarity: A user-centric study of related item recommendations. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY, 288–296. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1829. M. Yarmohammadi, X. Ma, S. Hisamoto, M. Rahman, Y. Wang, H. Xu, D. Povey, P. Koehn, and K. Duh. August. 2019. Robust document representations for cross-lingual information retrieval in low-resource settings. In Proceedings of Machine Translation Summit XVII Volume 1: Research Track, Dublin, Ireland. European Association for Machine Translation, 12–20.Google ScholarGoogle Scholar
  1830. A. Yates, M. Banko, M. Broadhead, M. J. Cafarella, O. Etzioni, and S. Soderland. 2007. TextRunner: Open information extraction on the Web. In Proceedings of the Human Language Technologies: The Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT). Association for Computational Linguistics, 25–26.Google ScholarGoogle Scholar
  1831. J.-Y. Yeh and A. Harnly. 2006. Email thread reassembly using similarity matching. In Proceedings of the 3rd Conference on Email and Anti-Spam, Stanford, CA.Google ScholarGoogle Scholar
  1832. F. Yesiler, C. Tralie, A. Correya, D. F. Silva, P. Tovstogan, E. Gómez, and X. Serra. 2019. Da-TACOS: A dataset for cover song identification and understanding. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR). ISMIR, Delft, The Netherlands, 327–334. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1833. F. Yesiler, J. Serrà, and E. Gómez. 2020. Accurate and scalable version identification using musically-motivated embeddings. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020). IEEE, Barcelona, Spain, 21–25. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1834. J. Yi and F. Maghoul. 2011. Mobile search pattern evolution: The trend and the impact of voice queries. In Proceedings of the 20th International Conference Companion on World Wide Web (WWW ’11). ACM, New York, NY, 165–166. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1835. E. Yilmaz and J. A. Aslam. 2006. Estimating average precision with incomplete and imperfect judgments. In P. S. Yu, V. Tsotras, E. Fox, and B. Liu (Eds.), Proceedings of the 15th ACM International Conference on Information and Knowledge Management (CIKM ’06). ACM, New York, NY, 102–111. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1836. E. Yilmaz, M. Verma, N. Craswell, F. Radlinski, and P. Bailey. 2014. Relevance and effort: An analysis of document utility. In J. Li, X. Sean Wang, M. Garofalakis, I. Soboroff, T. Suel, and M. Wang (Eds.), Proceedings of the 23rd ACM International Conference on Information and Knowledge Management (CIKM ’14). ACM, New York, NY, 91–100. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1837. Z. A. Yilmaz, W. Yang, H. Zhang, and J. Lin. 2019. Cross-domain modeling of sentence-level evidence for document retrieval. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics, 3490–3496. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1838. R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. 2018. Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’18). ACM, New York, NY, 974–983. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1839. E. Yom-Tov. 2019. Demographic differences in search engine use with implications for cohort selection. Inf. Retr. J. 22, 6, 570–580. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1840. M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol, and G. Weikum. 2011. AIDA: An online tool for accurate disambiguation of named entities in text and tables. Proc. VLDB Endow. 4, 12, 1450–1453. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1841. B. Yu and J. Tagliabue. 2020. Blending search and discovery: Tag-based query refinement with contextual reinforcement learning. In Proceedings of the Workshop on e-Commerce and NLP 2020, Seattle, WA.Google ScholarGoogle Scholar
  1842. J. Yu, S. Mohan, D. P. Putthividhya, and W.-K. Wong. 2014. Latent Dirichlet allocation based diversified retrieval for e-commerce search. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining (WSDM ’14). ACM, New York, NY, 463–472. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1843. P. Yu and J. Allan. 2020. A study of neural matching models for cross-lingual IR. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1637–1640. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1844. P. Yu, H. Fei, and P. Li. 2021. Cross-lingual language model pretraining for retrieval. In Proceedings of the Web Conference 2021. ACM, New York, NY, 1029–1039. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1845. Z. Yu, X. Xu, X. Chen, and D. Yang. 2019. Temporal pyramid pooling convolutional neural network for cover song identification. In Proceedings of the Twenty-Eight International Joint Conference on Artificial Intelligence (IJCAI), Main Track. IJCAI, Macao, 4846–4852. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1846. F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He. 2019. A simple convolutional generative network for next item recommendation. In Proceedings of the 12th ACM International Conference on Web Search and Data Mining (WSDM 2019). ACM, New York, NY, 582–590. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1847. Y. Yue, R. Patel, and H. Roehrig. 2010. Beyond position bias: Examining result attractiveness as a source of presentation bias in clickthrough data. In Proceedings of the 19th International Conference on World Wide Web (WWW ’10). ACM, New York, NY, 1011–1018. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1848. N. Zalmout, C. Zhang, X. Li, Y. Liang, and X. L. Dong. 2021. All you need to know to build a product knowledge graph. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’21). ACM, New York, NY, 4090–4091. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1849. H. Zamani and N. Craswell. 2020. Macaw: An extensible conversational information seeking platform. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 2193–2196. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1850. H. Zamani, M. Dehghani, W. B. Croft, E. Learned-Miller, and J. Kamps. 2018. From neural re-ranking to neural ranking: Learning a sparse representation for inverted indexing. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management. ACM, New York, NY, 497–506. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1851. H. Zamani, S. T. Dumais, N. Craswell, P. N. Bennett, and G. Lueck. 2020a. Generating clarifying questions for information retrieval. In Proceedings of the Web Conference 2020 (WWW ’20). ACM, New York, NY, 418–428. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1852. H. Zamani, B. Mitra, E. Chen, G. Lueck, F. Diaz, P. N. Bennet, N. Craswell, and S. T. Dumais. 2020b. Analyzing and learning from user interactions for search clarification. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20). ACM, New York, NY, 1181–1190. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1853. H. Zamani, J. R. Trippas, J. Dalton, and F. Radlinski. 2023. Conversational information seeking. Found. Trends Inf. Retr. 17, 3–4, 244–456. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1854. E. Zangerle and C. Bauer. December. 2022. Evaluating recommender systems: Survey and framework. ACM Comput. Surv. 55, 8, 1–38. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1855. M. Zanker, L. Rook, and D. Jannach. 2019. Measuring the impact of online personalisation: Past, present and future. Int. J. Hum. Comput. Stud. 131, 160–168. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1856. J. R. Zapata, M. E. P. Davies, and E. Gómez. 2014. Multi-feature beat tracking. IEEE/ACM Trans. Audio, Speech Lang. Process. 22, 4, 816–825. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1857. H. Zaragoza, B. Cambazoglu, and R. Baeza-Yates. October. 2010. Web search solved?: All result rankings the same? In Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM 2010). ACM, New York, NY, 529–538. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1858. D. A. Zarin, K. M. Fain, H. D. Dobbins, T. Tse, and R. J. Williams. November. 2019. 10-Year update on study results submitted to ClinicalTrials.gov. N. Engl. J. Med. 381, 20, 1966–1974. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1859. I. Zavorin, A. Bills, C. Corey, M. Morrison, A. Tong, and R. Tong. 2020. Corpora for cross-language information retrieval in six less-resourced languages. In Proceedings of the Workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS2020). European Language Resources Association, Marseille, France, 7–13.Google ScholarGoogle Scholar
  1860. J. Zawinski. 2002. Message Threading. Retrieved from https://www.jwz.org/doc/threading.html.Google ScholarGoogle Scholar
  1861. R. Zbib, L. Zhao, D. G. Karakos, W. Hartmann, J. DeYoung, Z. Huang, Z. Jiang, N. Rivkin, L. Zhang, R. M. Schwartz, and J. Makhoul. 2019. Neural-network lexical translation for cross-lingual IR from text and speech. In B. Piwowarski, M. Chevalier, É. Gaussier, Y. Maarek, J. Nie, and F. Scholer (Eds.), Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19), Paris, France, July 21–25, 2019. ACM, New York, NY, 645–654. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1862. M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. Baeza-Yates. 2017. FA*IR: A fair top-k ranking algorithm. In Proceedings of the 2017 ACM Conference on Information and Knowledge Management. ACM, New York, NY, 1569–1578. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1863. M. Zehlike, K. Yang, and J. Stoyanovich. June. 2023a. Fairness in ranking, Part I: Score-based ranking. ACM Comput. Surv. 55, 6, 118:1–118:36. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1864. M. Zehlike, K. Yang, and J. Stoyanovich. June. 2023b. Fairness in ranking, Part II: Learning-to-rank and recommender systems. ACM Comput. Surv. 55, 6, 117:1–117:41. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1865. R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. 2019. HellaSwag: Can a machine really finish your sentence? In A. Korhonen, D. Traum, and L. Màrquez (Eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019). Association for Computational Linguistics, 4791–4800.Google ScholarGoogle Scholar
  1866. M. Zentner, D. Grandjean, and K. R. Scherer. 2008. Emotions evoked by the sound of music: Characterization, classification, and measurement. Emotion 8, 4, 494–521. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1867. V. Zenz and A. Rauber. 2007. Automatic chord detection incorporating beat and key detection. In Proceedings of the 2007 IEEE International Conference on Signal Processing and Communications. IEEE, Dubai, UAE, 1175–1178. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1868. S. Zerr, S. Siersdorfer, J. Hare, and E. Demidova. 2012. Privacy-aware image classification and search. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 35–44. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1869. C. X. Zhai, W. W. Cohen, and J. Lafferty. 2003. Beyond independent relevance: Methods and evaluation metrics for subtopic retrieval. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’03). ACM, New York, NY, 10–17. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1870. J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma. 2021a. Jointly optimizing query encoder and product quantization to improve retrieval performance. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM ’21). ACM, New York, NY, 2487–2496. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1871. J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma. 2021b. Optimizing dense retrieval model training with hard negatives. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 1503–1512. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1872. J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma. 2022. Learning discrete representations via constrained clustering for effective and efficient dense retrieval. In Proceedings of the 15th ACM International Conference on Web Search and Data Mining (WSDM ’22). ACM, New York, NY, 1328–1336. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1873. A. Zhang, A. Goyal, W. Kong, H. Deng, A. Dong, Y. Chang, C. A. Gunter, and J. Han. 2015. adaQAC: Adaptive query auto-completion via implicit negative feedback. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’15). ACM, New York, NY, 143–152. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1874. H. Zhang, H. Shen, Y. Qiu, Y. Jiang, S. Wang, S. Xu, Y. Xiao, B. Long, and W.-Y. Yang. 2021a. Joint learning of deep retrieval model and product quantization based embedding index. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 1718–1722. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1875. J. Zhang, G. Adomavicius, A. Gupta, and W. Ketter. 2020a. Consumption and performance: Understanding longitudinal dynamics of recommender systems via an agent-based simulation framework. Inf. Syst. Res. 31, 1, 76–101. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1876. L. Zhang and X. Zhao. 2020. An overview of cross-language information retrieval. In X. Sun, J. Wang, and E. Bertino (Eds.), In Artificial Intelligence and Security, Proceedings of the 6th International Conference, ICAIS 2020, Part I, New York, NY, USA, July 26–28, 2019, Vol. 12239: Lecture Notes in Computer Science. Springer, Cham, 26–37. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1877. L. Zhang, D. Karakos, W. Hartmann, M. Srivastava, L. Tarlin, D. Akodes, S. K. Gouda, N. Bathool, L. Zhao, R. S. Zhuolin Jiang, and J. Makhoul. 2020b. The 2019 BBN cross-lingual information retrieval system. In Proceedings of the Workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS2020). European Language Resources Association, Paris, 44–51.Google ScholarGoogle Scholar
  1878. P. Zhang, L. Plettenberg, J. L. Klavans, D. W. Oard, and D. Soergel. 2007. Task-based interaction with an integrated multilingual, multimedia information system: A formative evaluation. In E. M. Rasmussen, R. R. Larson, E. G. Toms, and S. Sugimoto (Eds.), Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL 2007, Vancouver, BC, Canada, June 18–23, 2007. ACM, New York, NY, 117–126. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1879. R. Zhang, C. Westerfield, S. Shim, G. Bingham, A. Fabbri, W. Hu, N. Verma, and D. Radev. July. 2019. Improving low-resource cross-lingual document retrieval by reranking with deep bilingual representations. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy. Association for Computational Linguistics, 3173–3179. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1880. S. Zhang, H. Yang, and L. Singh. 2016. Anonymizing query logs by differential privacy. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 753–756. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1881. S. Zhang, Y. Tay, L. Yao, A. Sun, and C. Zhang. 2022. Deep learning for recommender systems. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender Systems Handbook (3rd. ed.). Springer, New York, NY, 173–210. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1882. Y. Zhang, F. Feng, X. He, T. Wei, C. Song, G. Ling, and Y. Zhang. 2021b. Causal intervention for leveraging popularity bias in recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, New York, NY, 11–20. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1883. Y. Zhang, M. Lu, S. Indrakanti, M. R. Kannadasan, and A. Bagherjeiran. 2021c. Conditional sequential slate optimization. In Proceedings of the ECOM ’21. CEUR-WS.org, Aachen.Google ScholarGoogle Scholar
  1884. L. Zhao. 2012. Modeling and Solving Term Mismatch for Full-Text Retrieval. Ph.D. thesis. Carnegie Mellon University.Google ScholarGoogle Scholar
  1885. W. Zhong, R. Cui, Y. Guo, Y. Liang, S. Lu, Y. Wang, A. Saied, W. Chen, and N. Duan. September. 2023. AGIEval: A human-centric benchmark for evaluating foundation models. arXiv:2304.06364. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1886. X. Zhong and E. Cambria. 2023. Time expression recognition and normalization: A survey. Artif. Intell. Rev. 56, 9, 9115–9140. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1887. D. Zhou, M. Truran, T. Brailsford, V. Wade, and H. Ashman. December. 2012. Translation techniques in cross-language information retrieval. ACM Comput. Surv. 45, 1, 1–44. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1888. S. Zhuang and G. Zuccon. 2021a. TILDE: Term independent likelihood moDEl for passage re-ranking. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 1483–1492. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1889. S. Zhuang and G. Zuccon. 2021b. Fast passage re-ranking with contextualized exact term matching and efficient passage expansion. arXiv:2108.08513. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1890. C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. 2005. Improving recommendation lists through topic diversification. In Proceedings of the 14th International Conference on World Wide Web (WWW 2005). ACM, New York, NY, 22–32. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1891. S. Zimmerman, A. Thorpe, C. Fox, and U. Kruschwitz. 2019a. Investigating the interplay between searchers’ privacy concerns and their search behavior. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’19). ACM, New York, NY, 953–956. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1892. S. Zimmerman, A. Thorpe, C. Fox, and U. Kruschwitz. 2019b. Privacy nudging in search: Investigating potential impacts. In Proceedings of the 2019 Conference on Human Information Interaction and Retrieval. ACM, New York, NY, 283–287. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1893. S. Zimmerman, A. Thorpe, J. Chamberlain, and U. Kruschwitz. 2020. Towards search strategies for better privacy and information. In Proceedings of the 2020 Conference on Human Information Interaction and Retrieval. ACM, New York, NY, 124–134. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1894. G. K. Zipf. 1949. Human Behavior and the Principle of Least Effort. Addison-Wesley Press, Boston.Google ScholarGoogle Scholar
  1895. J. Zobel. 1998. How reliable are the results of large-scale information retrieval experiments. In W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel (Eds.), Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’98). ACM, New York, NY, 307–314. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  1896. K. Zoubi, A. J. Sharon, E. Nitzany, and A. Baram-Tsabari. 2022. Science, Maddá, and ‘Ilm: The language divide in scientific information available to Internet users. Public Understand. Sci. 31, 1, 2–18. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  1897. S. Zuboff. 2023. The age of surveillance capitalism. In Social Theory Re-Wired. Routledge, London, UK, 203–213.Google ScholarGoogle Scholar
  1898. G. Zuccon. 2016. Understandability biased evaluation for information retrieval. In N. Ferro, F. Crestani, M.-F. Moens, J. Mothe, F. Silvestri, G. M. Di Nunzio, C. Hauff, and G. Silvello (Eds.), Advances in Information Retrieval, Proceedings of the 38th European Conference on IR Research (ECIR 2016), Vol. 9626: Lecture Notes in Computer Science. Springer, Heidelberg, 280–292.Google ScholarGoogle ScholarCross RefCross Ref
  1899. M. Zuckerberg. 2021. A blueprint for content governance and enforcement. Retrieved from the Facebook Newsroom website: https://www.facebook.com/notes/751449002072082/.Google ScholarGoogle Scholar
Contributors
  • Amazon.com, Inc.
  • Pompeu Fabra University Barcelona
Index terms have been assigned to the content through auto-classification.

Recommendations