life
「life」とは、生命・生活・人生のことを意味する英語表現である。
「life」とは・「life」の意味
「life」は、生命・生活・人生のほかに、命・寿命・生物・元気・実物・本物などの意味を持つ名詞である。「life」は使われる意味によって「可算名詞」にも、「不可算名詞」にもなる。集合的な意味での生物・生活などの意味で使用する場合は「不可算名詞」になるが、ひとりひとりの「寿命」「命」「人生」などの意味で使用する場合は「可算名詞」になる。「life」の複数形は、「lives」である。「life」の発音・読み方
「life」の発音記号は「láif」で、カタカナ読みは「ライフ」である。複数形の「lives」の発音記号は「láivz」で、カタカナ読みは「ライブズ」である。なお、動詞の「live(住む・生きる)」の3人称単数現在は「life」の複数形と同じ「lives」であるが、発音記号は「lɪvz」で、カタカナ読みは「リブズ」と読み方が異なる。「life」の語源・由来
印欧語根の「leyp-(粘着する)」が、ゲルマン祖語の「libana(残る)」・「liba(生命体)」、古期英語の「lif(生命体)」を経て、英語の「life」となった。「life」の核となる語源は、ゲルマン祖語の「liba(生命体)」。英語の「alive(生きている)」と同じ語源である。「life」を含む英熟語・英語表現
「in life」とは
「(否定文で)決して~ない」「生存中に」「生前」という意味である。
「for life」とは
「一生の」「終身の」という意味である。
「take one's life」とは
「自らの命を絶つ」という意味である。「one」は人のことで、「one’s」は「your / my / his / her / their」など人称代名詞の所有格や固有名詞が入る。
「have the time of one's life」とは
「今までにないくらい楽しく過ごす」という意味である。
「in one's life」とは
「生まれてから現在まで」という意味である。
「lay down one's life」
「(人・国などのために)命を捨てる」という意味である。
「true to life」とは
「現実そのまま」「真に迫った」という意味である。
「come to life」とは
「生き返る」「正気付く」「活気づく」「盛り上がる」という意味である。
「upon my life」とは
「命にかけて」「誓って」という意味である。
「live life to the full」とは
「人生をとことん楽しむ」という意味である。
「larger than life」とは
「誇張された」「人目を引いている」という意味である。
「life annuity」とは
「終身年金」のことである。
「life belt」とは
「救命帯」のことである。
「life net」とは
「(消防用の)救助ネット」のことである。
「life jacket」とは
「救命胴衣」のことである。
「life preserver」とは
「救命具」のことである。
「life raft」とは
「救命いかだ」のことである。単に「raft」ともいう。
「life expectancy」とは
「平均寿命」のことである。
「life imprisonment」とは
「終身懲役」のことである。
「life sentence」とは
「終身刑」のことである。
「life insurance」とは
「生命保険」のことである。
「life peer」とは
「(英国の)一代貴族」のことである。
「life」の使い方・例文
They saved my life.:彼らは私の命を救ってくれた。Five lives were lost in the accident.:この事故で5人の命が失われた。
She wanted to live her own life without interference from others.:彼女は他人の干渉を受けない生活を望んでいた。
Your words will remain in my mind for the rest of my life.:あなたの言葉は死ぬまで私の心に残るでしょう。
There is no life on Jupiter.:木星には生物はいない。
May was beautiful and full of life.:メイは美しく元気いっぱいだった。
Life isn't all sweet.:人生は楽しいことばかりとは限らない。
He remained single all his life.:彼は生涯独身だった。
What's the average life of a table clock.:置時計の平均寿命はどれくらいですか?
For you it's a matter of life and death.:あなたにとってそれは死活問題です。
That painting is true to life.:その絵は実物にそっくりです。
I am sure that a cup of water will bring her to life.:私は彼女が1杯の水を飲めば必ず元気になると確信しています。
She was given the title of honorary citizen for life.:彼女は生涯名誉市民の称号を与えられました。
He dedicated his life to helping others.:彼は他人を助けることに一生をささげました。
ライフ
■主要諸元
タイプ | DIVA/ DIVA・ スペシャル | DIVA Turbo | F/ F・ハッピー スペシャル | F Turbo | C/ C・コンフォート スペシャル/ C・ファイン スペシャル | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
駆動 方式 | FF | 4WD | FF | 4WD | FF | 4WD | FF | 4WD | FF | 4WD | ||
車名・型式 | ホンダ・DBA-JB5 | ホンダ・CBA-JB6 | ホンダ・DBA-JB7 | ホンダ・CBA-JB8 | ホンダ・DBA-JB5 | ホンダ・CBA-JB6 | ホンダ・DBA-JB7 | ホンダ・CBA-JB8 | ホンダ・DBA-JB5 | ホンダ・CBA-JB6 | ||
トランスミッション | 電子制御4速オートマチック(プロスマテック/ロックアップ機構付) | |||||||||||
寸法 ・ 重量 ・ 乗車 定員 | 全長(m)/全幅(m) | 3.395/1.475 | ||||||||||
全高(m) | 1.580 | 1.595 | 1.580 | 1.595 | 1.575 | 1.590 | 1.575 | 1.590 | 1.575 | 1.590 | ||
ホイールベース(m) | 2.420 | |||||||||||
トレッド(m)前/後 | 1.295/1.290 | 1.305/1.300 | ||||||||||
最低地上高(m) | 0.155 | |||||||||||
車両重量(kg) | 870 | 940 | 880 | 950 | 860 | 930 | 870 | 950 | 840 | 910 | ||
乗車定員(名) | 4 | |||||||||||
客室内寸法(m) 長さ/幅/高さ | 1.805/1.275/1.285 | |||||||||||
エン ジン | エンジン型式 | P07A | ||||||||||
エンジン種類・シリンダー数及び配置 | 水冷直列3気筒横置 | |||||||||||
弁機構 | SOHC ベルト駆動 吸気1 排気1 | |||||||||||
総排気量(cm3) | 658 | |||||||||||
内径×行程(mm) | 71.0×55.4 | |||||||||||
圧縮比 | 11.2 | 8.5 | 11.2 | 8.5 | 11.2 | |||||||
燃料供給装置形式 | 電子制御燃料噴射式(ホンダPGM-FI) | |||||||||||
使用燃料種類 | 無鉛レギュラーガソリン | |||||||||||
燃料タンク容量(L) | 35 | 31 | 35 | 31 | 35 | 31 | 35 | 31 | 35 | 31 | ||
性能 | 最高出力 (kW[PS]/rpm)* | 38[52]/6,700 | 47[64]/6,000 | 38[52]/6,700 | 47[64]/6,000 | 38[52]/6,700 | ||||||
最大トルク (N・m[kg・m]/rpm)* | 61[6.2]/3,800 | 93[9.5]/4,000 | 61[6.2]/3,800 | 93[9.5]/4,000 | 61[6.2]/3,800 | |||||||
燃料消費率(km/L) 10・15モード走行(国土交通省審査値) | 19.0 | 17.8 | 18.2 | 16.4 | 20.0 | 18.6 | 18.8 | 17.0 | 20.0 〈19.6〉 | 18.6 〈18.2〉 | ||
主要燃費向上対策 | 電動パワーステアリング | |||||||||||
最小回転半径(m) | 4.7 | 4.5 | ||||||||||
動力 伝達 ・ 走行 装置 | 変速比 | 1速 | 3.130 | 3.131 | 3.130 | 3.131 | 3.130 | |||||
2速 | 1.738 | 1.793 | 1.738 | 1.793 | 1.738 | |||||||
3速 | 1.097 | 1.150 | 1.097 | 1.150 | 1.097 | |||||||
4速 | 0.833 | 0.812 | 0.833 | 0.812 | 0.833 | |||||||
後退 | 2.047 | |||||||||||
減速比 | 4.882 | 前4.882/後3.272 | 4.294 | 前4.294/後3.272 | 4.882 | 前4.882/後3.272 | 4.294 | 前4.294/後3.272 | 4.882 | 前4.882/後3.272 | ||
ステアリング 装置形式 | ラック・ピニオン式 (パワーステアリング仕様) | |||||||||||
タイヤ(前・後) | 165/55R14 72V | 155/65R13 73S | ||||||||||
主ブレーキの種類・形式 | 前 | 油圧式ディスク | ||||||||||
後 | 油圧式リーディング・トレーリング | |||||||||||
サスペンション方式 | 前 | マクファーソン式 | ||||||||||
後 | 車軸式 | ド・ディオン式 | 車軸式 | ド・ディオン式 | 車軸式 | ド・ディオン式 | 車軸式 | ド・ディオン式 | 車軸式 | ド・ディオン式 | ||
スタビライザー形式 | 前 | トーション・バー式 |
■*はネット値です。「ネット」とはエンジンを車両に搭載した状態とほぼ同条件で測定したものです。 ■新単位として、出力は「PS」から「kW」に、トルクは「kg・m」から「N・m」に切り替わっています。 ■燃料消費率は定められた試験条件での値です。お客様の使用環境(気象、渋滞等)や運転方法(急発進、エアコン使用等)に応じて燃料消費率は異なります。 ■主要諸元は道路運送車両法による型式指定申請書数値。 ■LIFE、DIVA、アレルフリー、G-CON、i-DSI、PGM-FI、プロスマテックは本田技研工業株式会社の登録商標です。
■製造事業者:本田技研工業株式会社
ライフ
ライフとは、家庭の延長として、ゆったりした生活空間を提供できるファミリーカーであり、毎日の幸せな生活を送るというコンセプトから生まれた車名。71年6月発売、NⅢ360と併売した。2ドアと4ドアがあった。エンジンは新設計のEA型・356ccで水冷、最高出力は30psのほかバルブタイミングの変更と圧縮比を下げて21psにした2チューンを用意。AT仕様もあった。初期型の東京店頭渡し価格は34万6000円~44万3000円。
71年10月、2ドアワゴン発売。これもNの時代にはなかったこと。72年5月には、スポーティなツーリングシリーズを出した。再び36psエンジンを積むSSとGSが現れた。価格は38万9000円と44万9000円。2ドアだった。
72年6月、ツーリングシリーズを除きマイナーチェンジ。タウン2ドアは廃止。9月には4ドアのツインを発売し、73年8月にもマイナーチェンジしたが、74年10月には生産を終えた。
ライフというモデル名のクルマが再び登場したのは97年4月。その名前だけとると、2代目となるが、ホンダでは、新しい時代のライフスタイルにピッタリ合ったクルマでありたいと願って付けたもので、関連性はないという。48ps・660ccエンジンを搭載し、既存のトゥデイのコンポーネントを利用した、背の高いクルマで4ドアのみ。駆動方式はFF。
98年10月、新規格に合わせた軽乗用車をいっせいに発売、代替わりした。スタイリングは旧型とよく似ていたが、フロントバンパーに一対の突起があることと、テールライトが天井にまで達していないことが新型の識別ポイントだった。駆動方式はFFと4WDがあった。
2000年5月、最上級グレードのLタイプを追加。12月には戦力アップをはかるべく強力なバリエーション、ターボバージョンのタンクというモデルを投入した。顔つきが精悍でシャープに変わった。エンジンは横置きで、ターボにはセラミック・ボールベアリングを採用、大型の空冷インタークーラーも装備し、最高出力47kW(64ps)/6000rpm、最大トルク93Nm(9.5kg-m)/4000rpmを発生。構造はSOHC・3気筒・12バルブ。
駆動方式はFFと、リアルタイムと呼ぶビスカスカップリングを用いた4WDがあった。ミッションはコラムセレクターの3速AT。高トルクに対応して、フロントのドライブシャフトには、ハーフシャフトを採用した。ステアリングのパワーアシストは電動。グレードはTS、TRの2種。
2001年5月、NAモデルをマイナーチェンジ。マルチリフレクターヘッドランプの採用など内外装を一新、装備の充実をはかったうえで全タイプ1~2万円の値下げを実施。特別仕様車メヌエットを通常モデルに移行。
2002年8月、タンクも含めてマイナーチェンジ。NAモデルでは、メヌエットとGタイプを中心にシート表皮の上質化など装備を充実したうえで、再び値下げを行った。タンクはヘッドランプのブルーコーティングなど質感の向上をはかると同時に、フロントエアインテークなど、各部をボディ同色にした専用の外観をもつDiva(ディーバ)を追加した。2003年9月、フルモデルチェンジ、新型登場。
Life
LIFE!/ライフ
LIFE!/ライフ | |
---|---|
The Secret Life of Walter Mitty | |
監督 | ベン・スティラー |
脚本 | スティーヴ・コンラッド |
原案 | スティーヴ・コンラッド |
原作 | ジェームズ・サーバー 『ウォルター・ミティの秘密の生活』 |
製作 | サミュエル・ゴールドウィン・Jr ジョン・ゴールドウィン スチュアート・コーンフェルド ベン・スティラー |
製作総指揮 | ゴア・ヴァービンスキー マイヤー・ゴットリーブ G・マック・ブラウン |
出演者 | ベン・スティラー クリステン・ウィグ シャーリー・マクレーン アダム・スコット キャスリン・ハーン パットン・オズワルト エイドリアン・マルティネス オラフル・ダッリ・オラフソン ショーン・ペン |
音楽 | セオドア・シャピロ ホセ・ゴンザレス ローグ・ウェーブ |
撮影 | スチュアート・ドライバーグ |
編集 | グレッグ・ハイデン |
製作会社 | サミュエル・ゴールドウィン・フィルムズ レッド・アワー・プロダクションズ |
配給 | 20世紀フォックス |
公開 | 2013年10月5日(ニューヨーク映画祭) 2013年12月25日 2014年3月19日 |
上映時間 | 115分 |
製作国 | アメリカ合衆国 |
言語 | 英語 |
製作費 | $90,000,000 |
興行収入 | $58,236,838[1] $188,133,322[2] 10.1億円[3] |
『LIFE!/ライフ』(原題: The Secret Life of Walter Mitty)は、2013年のアメリカのアドベンチャー・コメディ・ドラマ映画。監督・共同製作・主演をベン・スティラー、脚本はスティーヴ・コンラッドが務め、クリステン・ウィグ、シャーリー・マクレーン、アダム・スコットらが出演する。
1939年のジェームズ・サーバーの短編小説『ウォルター・ミティの秘密の生活』を原作とし、『虹を掴む男』[4](1947年)に続く2度目の映画化作品である。
ストーリー
「世界を見よう、危険でも立ち向かおう。それが人生の目的だから」というスローガンを掲げる伝統的フォトグラフ雑誌『LIFE』編集部で、ネガフィルムの管理者として真面目に働くウォルター(ベン・スティラー)は、地味で平凡な人生を送る冴えない男。密かに恋い焦がれる同僚のシェリル(クリステン・ウィグ)に直接声を掛ける勇気もなく、彼女がパートナー探しのウェブサイトに登録していることを知れば、自身も登録してみるものの、体験談のひとつさえ書くことができない。しかし空想の世界では、時にアクションヒーロー、時に勇敢な冒険者となり、シェリルに対して情熱的な台詞を言うことも出来た。
ある日出社したウォルターは、突然のライフ社の事業再編と『LIFE』誌の廃刊を知らされる。事業再編を担当する新しいボスであるテッド(アダム・スコット)は、社内の視察時に給湯スペースで空想に浸っていたウォルターを見て嘲笑する。
LIFE誌を代表するフォト・ジャーナリストである冒険家のショーン(ショーン・ペン)は、いち早く事業再編による廃刊を知っていた。ショーンはウォルターに、手紙とLIFE誌の最終号のための撮影フィルム、そしてウォルターの仕事ぶりに感謝を込めた革財布の贈り物を届けていた。しかし、ショーンが手紙のなかで「自身の最高傑作ゆえに、最終号の表紙に相応しい」と記す「25番目のフィルム」は撮影フィルムから欠けていた。
テッドによる容赦ないリストラクチャリングが始まり、ライフ社内は混乱に陥る。同時にテッドは、最終号の表紙を飾る予定の、25番目のフィルムの早急な提出をウォルターに求める。
25番目のフィルムの在処はショーンしか知らないと考えたウォルターは、残りのフィルムに写っている手がかりを元に、シェリルの協力も得ながらショーンの所在を推理する。それはニューヨークから遠く離れたグリーンランドであった。
気がつけばウォルターはオフィスを飛び出し、ショーンを見つけるべく、エア・グリーンランドのヌーク行きの飛行機に飛び乗っていた。この瞬間からウォルターの現実世界での冒険がはじまる。
写真に写っていた指の持主である酔っぱらい男に殴られかけ、彼が操縦するヘリから海に飛び降りて船に乗り、今度はアイスランドに向かう。アイスランドでは、現地で手に入れたスケートボードで道路を滑走して、飛行機に乗るというショーンを追う。しかし間一髪のところで間に合わず、直後に火山が噴火し、助けに来た車に乗せられ、窮地を脱した。
同僚からのメールに促されアメリカに戻ると、ネガがないことを理由にLIFE社を解雇されてしまう。シェリルの家に息子への贈り物として、アイスランドで手に入れたスケートボードを持って行くと、そこにはシェリルを「ハニー」と呼ぶ男がいた。ウォルターは何も言わずにスケートボードを置いてその場を去る。
帰宅したウォルターはショーンへの腹立ちから、プレゼントの財布をごみ箱に捨てる。その直後、手掛かりの写真の一つが父の形見のピアノの一部であることに気づく。ウォルターが母のエドナに「この家にショーン・オコンネルが来た?」と尋ねると、エドナは事もなげに「来たわよ」と答える。聞けばショーンがこの家にやって来てウォルターのことを母に尋ね、ウォルターの仕事ぶりを褒めていたのだという。
母との会話で、手がかりの一つであった「WARLOCKS」という言葉が実は「WARLORDS(部族軍長)」であり、ショーンがアフガニスタンに向かっていたことがわかる。ウォルターは今度はアフガニスタンの高山に向かう。現地で雇った案内人と極地で別れ、ついにユキヒョウにカメラを向けているショーンを見つけるが、ネガはサプライズで財布に入れておいたのだといわれる。がっかりしたウォルターをショーンはサッカーに誘い、二人は現地の人々とともにサッカーのゲームをする。
ロサンゼルスの空港での入国審査は、アフガニスタン帰りであることを理由に困難をきわめる。本人確認が必要となったために、ウォルターはパートナー探しのウェブサイトの担当者トッドを指名する。トッドはウォルターを助け、空港でおすすめのシナボンを食べさせる。
なんとか帰宅したウォルターは、自分が捨てたはずの財布を母がごみ箱から拾っていたことを知る。ウォルターはネガをLIFE社に届け、会社のスローガンさえ言えないテッドに「くそったれの振りなんてしなくていい」と助言する。シェリルとも再会し、スケートボードを届けたときにいたのは冷蔵庫を直しに来た元夫であり、すでに縁が切れていることを知る。売店に並んだLIFEの最終号の表紙には、「これを作った人々に捧げる」という言葉とともに、会社の前の噴水に腰掛けて熱心にネガを確認するウォルターの姿が写っていた。
登場人物・キャスト
- ウォルター・ミティ
- 演 - ベン・スティラー
- 本作の主人公。雑誌LIFE編集部に16年勤めるベテラン社員。42歳。幼少期に父を失ってからは、若くしてピザ屋で働きその後も一家の大黒柱役を担い、現在は高齢にさしかかる母エドナと、いつまでも幼さの残る妹オデッサの生活を支えながら、つつましく地味に生きている。職場での存在感も薄いが、仕事ぶりにおいてはショーンや部下からの信頼は厚く、本人もその点を決して軽んじてはいない。空想癖があり、どこに居ても、誰と一緒にいても、深い空想の世界に入り込んでしまうことがある。幼い頃にスケートボードが得意で、大会で賞を受賞したこともある。そのテクニックは、今もさほど衰えている様子はない。その頃の髪型はモヒカンであり、父親がカットしてくれていた。
- シェリル・メルホフ
- 演 - クリステン・ウィグ
- 雑誌LIFEの女性社員で、ウォルターの同僚。36歳。ウォルターが密かに想いを寄せる相手。離婚し、シングルマザーとなって、スケートボードに夢中な12歳の息子を一人手で育てている。LIFE社のスローガンに共感し、LIFE編集部へ転職してからまだ1ヶ月。
- ショーン・オコンネル
- 演 - ショーン・ペン
- 命を顧みない冒険家であり、フォトジャーナリスト。デジタルワークフローが主流となった現代においても、銀塩フィルムカメラ「Nikon F3/T」を愛用している。いつも世界中を飛び回っており、その所在は常に不明であり、携帯電話も所有していないため容易に連絡も取り合えない。ウォルターとは電話で話したことはあるが、まだ面識はない。しかし、誠実で質の高い仕事ぶりから、ウォルターのことを高く評価している。
- エドナ・ミティ
- 演 - シャーリー・マクレーン
- ウォルターの母。穏やで寛容な人柄。機転も利く。夫の形見であるグランド・ピアノを大切にしている。得意料理の一つは、とても美味しいオレンジのケーキ。ウォルターのことを自慢の息子として、誇りに思っている。
- テッド・ヘンドリックス
- 演 - アダム・スコット
- ウォルターの新しいボス。上層部からの命を受けて、LIFE事業再編の責任者として、ウォルターらの前に現れる。LIFE最終号発売の統括責任を負っており、陣頭指揮を取りつつ、表紙を飾るショーンのフィルムNo.25を探す。歴史ある雑誌の編集部を指揮するマネージャとしては未熟な発言や行動が目に付くが、再編事業そのものに関しては真面目に取り組んでいる他、ウォルターの言葉を受けて最終号の表紙に添えた一文など、時に実直な一面も垣間見える。
- オデッサ・ミティ
- 演 - キャスリン・ハーン
- ウォルターの妹[5][6]。あどけない女性。大切な父の形見のピアノを路上に放置してきたり、すぐにウォルターと口喧嘩を始めるなど、短絡的でかっとなりやすい一面も持つ。女優を夢見て、舞台のオーディションを受け続けている。
- トッド・マハール
- 演 - パットン・オズワルト
- パートナー探しのウェブサイト『eHarmony』の顧客サービス責任者。ロサンゼルス在住。気のいい楽観主義者。ウォルターからのシステムトラブルの電話を受けたあと、ウォルターのことを気に掛け、本人に代わってプロフィールを書き上げようと、時折電話を掛けてくる。好物はシナボン。ウォルターが終盤イエメン経由でアフガニスタンからアメリカに帰国した際に警備員に怪しまれて拘束されたため、身元保証人になり入国を手助けした。
日本語吹替
役名 | 俳優 | 日本語吹替 | |
---|---|---|---|
劇場公開版[7] | ザ・シネマ版[8][9] | ||
ウォルター・ミティ | ベン・スティラー | 岡村隆史[10][脚注 1] | 堀内賢雄 |
シェリル・メルホフ | クリステン・ウィグ | 三石琴乃 | 安藤麻吹 |
ショーン・オコンネル | ショーン・ペン | 山路和弘 | |
エドナ・ミティ | シャーリー・マクレーン | 沢田敏子 | 谷育子 |
テッド・ヘンドリックス | アダム・スコット | 花輪英司 | 小原雅人 |
オデッサ・ミティ | キャスリン・ハーン | 鯨エマ | 小松由佳 |
トッド・マハール | パットン・オズワルト | 吉見一豊 | 駒谷昌男 |
ヘルナンド | エイドリアン・マルティネス | 石住昭彦 | かぬか光明 |
ヘリコプターのパイロット | オラフル・ダッリ・オラフソン | 菅原正志 | 北村謙次 |
リッチ・メルホフ | マーカス・アントゥーリ | 山本和臣 | 千種春樹 |
ティム・ノートン | ジョナサン・C・デイリー | 井上悟 | 早川毅 |
ゲリー・マンハイム | テレンス・バーニー・ハインズ | 尾花かんじ | |
ドン[脚注 2]・プロクター | ポール・フィッツジェラルド | 関俊彦 | 白熊寛嗣 |
フィル・メルホフ | カイ・レノックス | 前田一世 | |
シェリルの同僚 | グレイス・レックス | 行成とあ | |
トナー社員 | 阪口周平 | 藤高智大 | |
漁船の船長 | 佐々木梅治 | 伊藤和晃 | |
ホテル管理人 | をはり万造 | 山岸治雄 | |
ホーム管理人 | 樫井笙人 | 長谷川敦央 | |
その他 | 太田淑子 村治学 米田基裕 慶長佑香 佐竹海莉 | さくま雪乃 | |
演出 | 杉本理子 | 清水洋史 | |
翻訳 | 松崎広幸 | 埜畑みづき | |
制作 | ACクリエイト | 東北新社 | |
初回放送 | 2019年2月24日 21:00-23:00 ノーカット放送[11] |
評価
レビュー・アグリゲーターのRotten Tomatoesでは198件のレビューで支持率は52%、平均点は6.00/10となった[12]。Metacriticでは39件のレビューを基に加重平均値が54/100となった[13]。
関連項目
脚注
注釈
出典
- ^ “The Secret Life of Walter Mitty”. Box Office Mojo. 2014年8月3日閲覧。
- ^ “The Secret Life of Walter Mitty”. 2014年8月3日閲覧。
- ^ “2015年記者発表資料(2014年度統計)” (PDF). 日本映画製作者連盟 (2014年1月27日). 2014年1月27日閲覧。
- ^ “Ben Stiller, At Tribeca, Talks 'Secret Life Of Walter Mitty': 'I Don't Sing & Dance'”. Huffingtonpost.com (2013年4月21日). 2013年5月5日閲覧。
- ^ Arbeiter, Michael (5 April 2012). “KATHRYN HAHN JOINS BEN STILLER, KRISTEN WIIG IN 'SECRET LIFE OF WALTER MITTY'”. Hollywood.com. 8 October 2013閲覧。
- ^ Fleming, Jr., Mike (4 April 2012). “Kathryn Hahn And Josh Charles Join ‘The Secret Life Of Walter Mitty'”. Deadline.com. PMC. 8 October 2013閲覧。
- ^ “LIFE! / ライフ”. 吹替キングダム (2014年3月19日). 2014年3月19日閲覧。
- ^ “飯森盛良のふきカエ考古学 今度はベン・スティラー『LIFE!』の番だぜ!ザ・シネマ新録吹き替え計画、この場にて堂々発表!の巻”. ふきカエル大作戦‼︎ (2019年1月1日). 2023年8月8日閲覧。
- ^ “LIFE! / ライフ [ザ・シネマ新録版]”. 吹替キングダム (2019年2月20日). 2019年2月20日閲覧。
- ^ “岡村隆史、ベン・スティラーのハリウッド作で吹き替え声優に初挑戦”. 映画.com (2013年12月18日). 2013年12月18日閲覧。
- ^ “(吹)LIFE!/ライフ[ザ・シネマ新録版]”. ザ・シネマ. 2019年1月1日閲覧。
- ^ “The Secret Life of Walter Mitty (2013)”. Rotten Tomatoes. Fandango Media. 2022年6月30日閲覧。
- ^ “The Secret Life of Walter Mitty Reviews”. Metacritic. CBS Interactive. 2022年6月30日閲覧。
外部サイト
ライフ
企業・団体・店舗・商品名
- 企業・団体・店舗
- ライフカード – クレジット会社。
- ライフコーポレーション – スーパーマーケット・チェーン「ライフ」を運営する企業。
- 相鉄ライフ – 相鉄ビルマネジメントが相鉄線沿線で展開している駅併設のショッピングセンター。
- ライフバス – 埼玉県で路線バスを運行する企業。
- ライフ – 文具メーカー。
- ライフ – 過去に存在したホーム・センター。
- ライフ (F1) – 1990年に存在したF1のコンストラクター。
- ライフプロモーション – 日本の芸能プロダクション。略称はライフ。
- 商品名
- ホンダ・ライフ – 本田技研工業の自動車のブランドの一つ。
グループ名
- Life (バンド) – 名古屋出身のバンド。
作品名
音楽
- アルバム
- ライフ (スライ&ザ・ファミリー・ストーンのアルバム) – スライ&ザ・ファミリー・ストーンのアルバム(1968年)。表題曲を収録。
- LIFE (大沢誉志幸のアルバム) – 大沢誉志幸のアルバム(1986年)。
- ライフ (ニール・ヤングのアルバム)
- LIFE (小沢健二のアルバム) – 小沢健二のアルバム(1994年)。
- ライフ (カーディガンズのアルバム) – スウェーデンのバンド、カーディガンズのアルバム(1995年)。
- life (藤重政孝のアルバム) – 藤重政孝のアルバム(1996年)。表題曲を収録。
- LIFE (吉田拓郎のアルバム) – 吉田拓郎のアルバム(1996年)。
- LIFE (加山雄三のアルバム) – 加山雄三のアルバム(1997年)。
- LIFE (ブラックビスケッツのアルバム) – ブラックビスケッツのアルバム(1999年)。
- LIFE (X.Y.Z.→Aのアルバム) – X.Y.Z.→Aのアルバム(2002年)。
- ライフ (エレファントカシマシのアルバム) – エレファントカシマシのアルバム(2002年)。
- LIFE (本田美奈子.のアルバム) – 本田美奈子.のアルバム(2005年)
- LIFE (LITTLEのアルバム) – 日本のラッパー、LITTLEのアルバム(2005年)。
- LIFE (ACIDMANのアルバム) – ACIDMANのアルバム(2008年)。
- LIFE (アンジェラ・アキのアルバム) - アンジェラ・アキのアルバム(2010年)。表題曲を収録。日本生命『みらいサポート』CMソング。
- LIFE - source of energy – Fried Prideのアルバム(2012年)。
- Life (河村隆一のアルバム) – 河村隆一のアルバム(2013年)。表題曲を収録。
- LIFE (フジファブリックのアルバム) – フジファブリックのアルバム(2014年)。後述シングルを収録。
- LIFE (山崎まさよしのアルバム) – 山崎まさよしのアルバム(2016年)。
- LIFE (ET-KINGのアルバム) – ET-KINGのアルバム(2018年)。
- ライフ (ボーイ・ジョージ&カルチャー・クラブのアルバム)
- LIFE (山﨑彩音のアルバム) – 山﨑彩音のアルバム(2019年)。
- シングル
- Life (岩崎宏美の曲) – 岩崎宏美の楽曲(1993年、当時は益田宏美)。
- LIFE (FANATIC◇CRISISの曲) – FANATIC◇CRISISの楽曲(2000年)。
- Life (池田綾子の曲) – 池田綾子の楽曲(2002年)。TBS系 金曜ドラマ『愛なんていらねえよ、夏』主題歌。
- LIFE (YUIの曲) – 歌手、YUIの楽曲(2005年)。テレビ東京系アニメ『BLEACH』EDテーマ。
- LIFE (郷ひろみの曲) – 郷ひろみの楽曲(2006年)。
- LIFE (中島美嘉の曲) – 中島美嘉の楽曲(2007年)。後述ドラマ『ライフ〜壮絶なイジメと闘う少女の物語〜』主題歌。
- LIFE (キマグレンの曲) – キマグレンの楽曲(2008年)。au『au Smart Sports』CMソング。
- LIFE〜目の前の向こうへ〜 – 関ジャニ∞の楽曲(2010年)。TBS系 日曜劇場『GM〜踊れドクター』主題歌。
- LIFE (Salyuの曲) – Salyuの楽曲(2010年)。
- ライフ (トーキング・ヘッズの曲) - トーキング・ヘッズの楽曲(1979年)。
- Life (Ms.OOJAの曲) – Ms.OOJAの楽曲(2011年)。日本テレビ系『iCon』EDテーマ。
- LIFE (フジファブリックの曲) – フジファブリックの楽曲(2014年)。フジテレビ系 ノイタミナ『銀の匙 Silver Spoon』第2期OPテーマ。
- LIFE (AAAの曲) – AAAの楽曲(2017年)。フジテレビ系 月9ドラマ『民衆の敵〜世の中、おかしくないですか!?〜』主題歌。
映画
- Life (映画) – 佐々木紳監督、綾野剛主演の映画(2007年、日本)。
- Life 天国で君に逢えたら - 飯島夏樹の小説を原作とし、実話を元とした新城毅彦監督、大沢たかお主演の映画(2007年、日本)。
- ライフ -いのちをつなぐ物語- - BBCのドキュメンタリー番組『One Life』を再編集した映画(2011年、イギリス)。
- LIFE!/ライフ - ベン・スティラー監督・主演の叙事詩的コメディ・ドラマ・ファンタジー映画(2013年、アメリカ)
- ライフ - ダニエル・エスピノーサ監督、ジェイク・ジレンホール主演のSF映画(2017年、アメリカ)。
テレビ番組
- LIFE〜夢のカタチ〜 – 朝日放送(ABCテレビ)のドキュメンタリー番組(2011年 - )。
- LIFE!〜人生に捧げるコント〜 - NHKのコント番組(2012年 - )。
- ライフ (韓国のテレビドラマ) - 大韓民国のテレビドラマ(2018年)。
ラジオ番組
- 文化系トークラジオ Life – TBSラジオの番組(2006年 –)。
- life - エフエム滋賀(e-radio)の番組(2018年 - )。
その他
- ライフ (雑誌) – 世界初の写真雑誌(1936年 – 2007年)。
- ライフ (1883年創刊の雑誌) – 上記雑誌の前身であるアメリカの大衆向け週刊総合雑誌(1883年 – 1936年)
- LIFE a ryuichi sakamoto opera 1999 – 坂本龍一が1999年に発表したパフォーマンス。
- ライフ (漫画) – すえのぶけいこによる少女漫画(2006年)、およびそれを原作としたテレビドラマ「ライフ〜壮絶なイジメと闘う少女の物語〜」(2007年)。
- Life 線上の僕ら - インターネットドラマ(2020年)[1]。
その他
- ライフ (コンピュータゲーム) – コンピュータゲームにおいて、自機の体力やオンライン上の生活等を表したもの。
- LiFe – リン酸鉄リチウムイオン電池。リチウムフェライトバッテリー。
関連項目
脚注
- ^ Life 線上の僕ら(ネットドラマ)ドラマ詳細データ テレビドラマデータベース、2024年12月16日閲覧
生命
生命 Life |
---|
生息年代: 3770–0 Ma 太古代 – 現在 (冥王代起源の可能性あり) |
サンゴ礁の多様な生物形態 |
分類 |
|
ドメインとスーパーグループ |
地球の生命: |
生命(せいめい、英: life)とは、シグナル伝達や自立過程などの生物学的現象を持つ物質を、そうでない物質と区別する性質であり、恒常性、組織化、代謝、成長、適応、刺激に対する反応、および生殖の能力によって記述的に定義される。自己組織化系など、生体系の多くの哲学的定義が提案されている。ウイルスは特に、宿主細胞内でのみ複製するため定義が困難である。生命は大気、水、土壌など、地球上のあらゆる場所に存在し、多くの生態系が生物圏を形成している。これらの中には、極限環境微生物だけが生息する過酷な環境もある。
生命は古代から研究されており、エンペドクレスは唯物論で、生命は永遠の四元素から構成されていると主張し、アリストテレスは質料形相論で、生物には魂があり、形と物質の両方を体現していると主張した。生命は少なくとも35億年前に誕生し、その結果、普遍的な共通祖先へとつながった。これが、多くの絶滅種を経て、現存するすべての種へと進化し、その一部は化石として痕跡を残している。また、生物を分類する試みもアリストテレスから始まった。現代の分類は、1740年代のカール・リンネによる二名法から始まった。
生物は生化学的な分子で構成されており、主に少数の核となる化学元素から形成されている。すべての生物には、タンパク質と核酸という2種類の大きな分子が含まれており、後者は通常、DNAとRNAの両方がある。核酸は、各種のタンパク質を作るための命令など、それぞれの生物種に必要な情報を伝達する役割がある。タンパク質も同様に、生命の多くの化学的過程を遂行する機械としての役割を果たす。細胞は生命の構造的および機能的な単位である。原核生物(細菌や古細菌)を含む微小な生物は、小さな単細胞で構成されている。より大きな生物、主に真核生物は、単細胞からなることもあれば、より複雑な構造を持つ多細胞である場合もある。生命は地球上でしか存在が確認されていないが、地球外生命体の存在はありうると考えられている。人工生命は科学者や技術者によってシミュレートされ、研究されている。
定義
課題
生命の定義は、科学者や哲学者にとって長年の課題であった[2][3][4]。その理由の一つは、生命は物質ではなく過程(プロセス)であるためである[5][6][7]。さらに、地球外で発生した可能性のある生命体の特徴(もしあるとすれば)が分からないことも、この問題を複雑にしている[8][9]。生命の哲学的な定義も提唱されているが、生物と非生物を区別する上で同様の困難を抱えている[10]。法的な生命の定義については議論がなされているが、主に人間の死を宣告するための決定と、その決定がもたらす法的影響に焦点が当てられている[11]。少なくとも123の生命の定義がまとめられている[12]。
記述的
生命の定義について総意が得られないため、生物学における現在の定義のほとんどは記述的なものになっている。生命とは、与えられた環境においてその存在を維持、促進、または強化するものの特性であると考えられている。これは、次の特性のすべて、またはほとんどを意味する[4][13][14][15][16][17]。
- 恒常性:一定の状態を維持するための内部環境の調節。たとえば、体温を下げるための発汗など。
- 組織化:生命の基本単位である1つまたは複数の細胞から構造的に構成されていること。
- 代謝:化学物質を細胞成分に変換したり(同化作用)、有機物を分解したりするために(異化作用)使用されるエネルギーの変換。生物は恒常性の維持やその他の活動のためにエネルギーを必要とする。
- 成長:異化よりも同化の割合が高い状態を維持すること。成長する生物はサイズと構造が増大する。
- 適応:生物がその生息環境でよりよく生きられるようになる進化の過程のこと[18][19][20]。
- 刺激に対する反応:単細胞生物が外部の化学物質から遠ざかるときの収縮、多細胞生物のあらゆる感覚を伴う複雑な反応、あるいは植物の葉が太陽の方を向く運動(屈光性)、走化性など。
- 生殖:1つの親生物から無性生殖で、または2つの親生物から有性生殖で、新しい個体を生み出す能力のこと。
物理学
物理学の観点から見ると、生物は組織化された分子構造を持つ熱力学系であり、生存の必要に応じて自己複製し進化することができる[21][22]。また、熱力学的には、生命は周囲の勾配を利用してそれ自身の不完全なコピーを作り出す開放系と説明されている。これを別の言い方にすれば、生命を「ダーウィン的進化を遂げることができる自立した化学系」と定義することもできる[23]。この定義は、カール・セーガンの提案に基づいて、宇宙生物学の目的のために生命を定義しようとするNASAの委員会によって採用された[24][25]。しかし、この定義によれば、単一の有性生殖個体はそれ自体で進化することができないため、生きているとは言えないとして、広く批判されている[26]。この潜在的な欠陥の理由は、「NASAの定義」が生命を生きた個体ではなく、現象としての生命に言及していることによる不完全さにある[27]。一方、現象としての生命と生きている個体としての生命という概念に基づく定義もあり、それぞれ自己維持可能な情報の連続体と、この連続体の別個の要素として提案されている。この考え方の大きな強みは、生物学的な語彙(ごい)を避け、数学と物理学の観点から生命を定義していることである[27]。
生体系
分子化学に必ずしも依存しない生体系理論(英: living systems)の視点に立つ人もいる。生命の体系的な定義の一つは、生物は自己組織化し、オートポイエティック(自己生産的)であるとするものである。これの変種として、スチュアート・カウフマンによる『自律的エージェント、または自己複製が可能で、少なくとも1つの熱力学的作業サイクルを完了できるマルチエージェント系』という定義もある[28]。この定義は、時間の経過に伴う、新奇な機能の進化によって拡張されている[29]。
死
死とは、生物または細胞におけるすべての生体機能や生命現象が停止することである[30][31]。死を定義する上での課題の一つに死と生の区別があげられる。死とは、生命が終わる瞬間、あるいは生命に続く状態が始まる時のどちらかを指すと考えられる[31]。しかし、生命機能の停止は臓器系をまたいで同時に起こることは少なく、いつ死が起こったかを判断するのは困難である[32]。そのため、こうした決定には、生と死の間に概念的な境界線を引く必要がある。生命をどのように定義するかについての総意はほとんどないことから、これは未解決の問題である。何千年もの間、死の本質は世界の宗教的伝統や哲学的探求の中心的な関心事であった。多くの宗教では、死後の世界や魂の転生、あるいは後日の肉体の復活を信仰している[33]。
「生命の縁」ウイルス
ウイルスが生きていると見なすべきかどうかは議論の分かれるところである[34][35]。ウイルスは生命の形態というよりも、遺伝子をコードする複製装置に過ぎないと見なされることも多い[36]。ウイルスは遺伝子を持ち、自然選択によって進化し[37][38]、自己組織化によって自分自身のコピーを複数作成することで複製することから、「生命の縁にいる生物」と表現されている[39]。しかし、ウイルスは代謝しないため、新しい産物を作るには宿主細胞が必要である。宿主細胞内でのウイルスの自己組織化は、生命が自己組織化した有機分子として始まったという仮説を裏付ける可能性があるため、生命の起源を研究する上で重要な意味を持つ[40][41]。
研究の歴史
唯物論
初期の生命に関する理論の中には、存在するものはすべて物質であり、生命は物質の複雑な形態や配列に過ぎないという唯物論的なものがある。エンペドクレス(紀元前430年)は、宇宙に存在するすべてのものは、土、水、空気、火という永遠の「四つの元素」または「万物の根源」の組み合わせでできていると主張した。すべての変化は、これらの4つの元素の配置と再配置によって説明される。生命のさまざまな形態は、元素の適切な混合によって引き起こされる[42]。デモクリトス(紀元前460年)は原子論者であり、生命の本質的な特徴は「魂(プシュケー)」を持つことであり、魂は他のすべてのものと同様に、火のような原子から構成されていると考えた。彼は、生命と熱の間に明らかな関係があり、火が動くことから、火について詳しく説明した[43]。これに対してプラトンは、世界は不完全に物質に反映された永続的な「形(イデア)」によって組織されていると考え、「形」は方向性や知性を与え、世界で観察される規則性を説明すると主張した[44]。古代ギリシャに端を発した機械論唯物論(機械論)は、フランスの哲学者ルネ・デカルト(1596-1650)によって復活して修正され、彼は動物や人間は共に機械として機能する部品の集合体であると主張した。この考えは、ジュリアン・オフレ・ド・ラ・メトリー(1709-1750)の著書『L'Homme Machine(人間機械論)』の中でさらに発展することとなった[45]。19世紀には、生物学における細胞理論の進歩がこの考え方を後押しした。チャールズ・ダーウィンの進化論(1859年)は、自然選択による種の起源について機械論的に説明したものである[46]。20世紀初頭、ステファン・ルデュック(Stéphane Leduc)(1853-1939)は、生物学的な過程は物理学と化学の観点から理解することができ、その成長はケイ酸ナトリウム溶液に浸した無機結晶の成長に似ているという考えを推進した。彼の著書『La biologie synthétique(合成生物学)』[47]で述べられた彼の考えは、存命中はほとんど否定されていたものの、後年のラッセルやバルジらの研究によって再び関心を集めるようになった[48]。
質料形相論
質料形相論は、ギリシャの哲学者アリストテレス(紀元前322年)によって最初に定式化された理論である。質料形相論の生物学への応用はアリストテレスにとって重要であり、現存する彼の著作では生物学が広く論じられている。この見解では、物質的宇宙に存在するすべてのものは物質と「形」の両方を持っており、生物の「形」はその魂(ギリシャ語のプシュケー、ラテン語のアニマ)であるという。魂には次の3種類がある。植物の植物的魂(vegetative soul)は、植物を成長させ、腐敗させ、栄養を与えるが、運動や感覚を引き起こさない。動物的魂(animal soul)は、動物に動きと感覚を与える。そして、理知的魂(rational soul)は意識と理性の源であり、アリストテレスは人間だけにあると考えた[49]。それぞれの高次の魂は、低次の魂のすべての性質を備えている。アリストテレスは、物質は「形」がなくても存在できるが、「形」は物質なしでは存在できず、したがって魂は肉体なしでは存在できないと考えた[50]。
この説明は、目的あるいは目標指向性という観点から現象を説明する生命の目的論的説明と矛盾しない。たとえば、ホッキョクグマの毛皮の白さは、カモフラージュ(偽装)という目的によって説明される。因果関係の方向(未来から過去へ)は、結果を事前原因という観点から説明する自然選択の科学的証拠と矛盾する。生物学的特徴は、将来の最適な結果を見ることで説明されるのではなく、問題の特徴の自然選択につながった種の過去の進化の歴史を見ることによって説明される[51]。
自然発生
自然発生とは、生物は類似の生物からの系統を経ずに形成されるという考え方であった。典型的には、ノミのような特定の種の形態が、塵のような無生物から発生したり、あるいはネズミや昆虫が泥やゴミから季節的に発生するという考えであった[52]。
自然発生説はアリストテレスによって提唱された[53]。アリストテレスは、それ以前の自然哲学者の著作や、生物の外観に関する古代のさまざまな説明を統合し、発展させた。この説は2千年にわたって最良の説明と考えられていた。しかしこの考えは、フランチェスコ・レディなどの先人の研究を発展させた、1859年のルイ・パスツールの実験によって決定的に覆された[54][55]。自然発生説という伝統的な考え方の否定は、生物学者の間ではもはや議論の余地はない[56][57][58]。
生気論
生気論(バイタリズム)とは、非物質的な生命原理が存在するという信念である。これはゲオルク・エルンスト・シュタール(17世紀)に端を発し、19世紀半ばまで流行した[59]。そして、アンリ・ベルクソン、フリードリヒ・ニーチェ、ヴィルヘルム・ディルタイなどの哲学者、グザヴィエ・ビシャのような解剖学者、ユストゥス・フォン・リービッヒなどの化学者たちの支持を受けた[60]。生気論には、有機物と無機物の間には本質的な違いが存在するという考えや、有機物は生物からのみ作られるという信念が含まれていた。この考え方は、1828年、フリードリヒ・ヴェーラーが無機物から尿素を合成したことで否定された[61]。このヴェーラー合成は現代有機化学の出発点と考えられている。有機化合物が初めて無機反応によって生成された、歴史的にも意義のあることであった[60]。
1850年代、ヘルマン・フォン・ヘルムホルツは、ユリウス・ロベルト・フォン・マイヤーによって予想された筋肉運動ではエネルギーが失われないことを実証し、筋肉を動かすのに必要な「生命力(英: vital forces)」が存在しないことを示唆した[62]。これらの結果は、特にエドゥアルト・ブフナーが酵母の無細胞抽出液中でアルコール発酵が起こることを証明した後、生気論に対する科学的関心の放棄につながった[63]。それにもかかわらず、疾病や病気が仮説上の生命力の障害によって引き起こされると解釈するホメオパシーのような疑似科学理論への信仰は根強く残っている[64]。
発生
生命の起源
地球の年齢は約45億4000万年である[65]。地球上の生命は少なくとも35億年前から存在しており[66][67][68][69]、最古の生命の物理的な痕跡は37億年前にさかのぼる[70][71]。TimeTree公開データベースにまとめられている分子時計からの推定では、生命の起源は約40億年前とされている[72]。生命の起源に関する仮説は、単純な有機分子から前細胞生命を経て、原始細胞や代謝に至る普遍的な共通祖先の形成を説明しようとするものである[73]。2016年、最後の普遍的共通祖先(LUCA)の355個の遺伝子セットが暫定的に同定された[74]。
生物圏は、生命の起源から少なくとも約35億年前に発達したと考えられている[75]。地球上の生命が存在した最古の証拠として、西グリーンランドの37億年前の変堆積岩から発見された生物起源のグラファイトや[70]、西オーストラリアの34億8000万年前の砂岩から発見された微生物マットの化石があげられる[71]。さらに最近では、2015年に西オーストラリア州の41億年前の岩石から「生物学的生命の遺跡」が発見された[66]。2017年には、カナダ・ケベック州のヌブアギトゥク帯の熱水噴出孔の析出物から、地球最古の生命記録である42億8000万年前の微生物(または微化石)と推定される化石が発見されたと発表され、44億年前の海洋形成後、45億4000万年前の地球形成から間もない時期に「ほぼ瞬時に生命が出現した」ことが示唆された[76]。
進化
進化とは、生物集団の遺伝的な形質が、世代を重ねるごとに変化することである。その結果、新しい種が出現し、しばしば古い種が消滅する[77][78]。進化は、自然選択(性選択を含む)や遺伝的浮動などの進化過程が遺伝的変異に作用し、その結果、世代を重ねるごとに集団内での特定の形質の頻度が増加または減少することで起こる[79]。進化の過程は、生物学的な組織のあらゆるレベルで生物多様性をもたらした[80][81]。
化石
化石とは、古代に生息していた動物や植物、その他の生物の遺骸または痕跡が保存されたものである。発見された化石と未発見の化石の総体、および堆積岩の層(地層)におけるそれらの配置は、化石記録(英: fossil record)として知られている。保存された標本が1万年前の任意の年代よりも古い場合に化石と呼ばれる[82]。したがって化石の年代は、完新世の初期の最も若いものから、太古代の最も古いもの、34億年前のものまで幅広くある[83][84]。
絶滅
絶滅とは、ある種のすべての個体が死に絶える過程のことである[85]。その種の最後の個体が死ぬときに絶滅の瞬間が訪れる。種の潜在的な生息範囲は非常に広い可能性があるため、この瞬間を決定するのは難しく、通常は明らかに不在の期間があった後に遡及的に行われる。種が絶滅するのは、生息環境の変化の中で、あるいは優れた競争相手に直面し、生き残ることができなくなったときに起こる。これまでに存在した種の99%以上が絶滅している[86][87][88][89]。大量絶滅によって、新しい生物群が多様化する機会がもたらされ、進化を加速させた可能性がある[90]。
環境条件
地球上の生物の多様性は、遺伝的機会、代謝能力、環境的課題[91]、および共生[92][93][94]が動的に相互作用した結果である。地球上で生存可能な環境は、そのほとんどの期間は微生物によって支配され、その代謝と進化の影響を受けてきた。こうした微生物の活動の結果、地球上の物理化学的な環境は地質学的な時間尺度で変化し、その後の生命の進化の道筋に影響を与えてきた[91]。たとえば、シアノバクテリアが光合成の副産物として酸素分子を放出したことで、地球規模で環境変化が引き起こされた。酸素は当時の地球上のほとんどの生物にとって有毒であったため、酸素の増加は新たな進化的課題をもたらし、やがて地球の主要な動植物種の形成につながった。このような生物と環境の相互作用は、生体系に固有の特徴である[91]。
生物圏
生物圏とは、すべての生態系の総体である。それらは「地球上の生活圏」とも呼ばれ、(太陽や宇宙からの放射線と地球内部からの熱を除いて)閉鎖系であり、大部分は自己調節されている[96]。生物は、土壌、熱水泉、地下19 km (12 mi)以上の岩石内部、海洋の最深部、そして大気圏上空64 km (40 mi)以上など、生物圏のあらゆる場所に存在する[97][98][99]。たとえば、アスペルギルス・ニゲル(Aspergillus niger)の胞子は、高度48-77 kmの中間圏で検出されている[100]。実験室的な条件下では、生命体は無重力に近い宇宙空間で繁栄し[101][102]、真空の宇宙空間でも生存することが観察されている[103][104]。生命体は、深いマリアナ海溝や[105]、米国北西部沖の水深2,590 m (8,500 ft; 1.61 mi)の海底下580 m (1,900 ft; 0.36 mi)以上の岩石中[106][107]、あるいは日本沖合の海底2,400 m (7,900 ft; 1.5 mi)でも繁栄している[108]。2014年には、南極大陸の氷の下800 m (2,600 ft; 0.50 mi)に生息する生命体が発見された[109][110]。国際海洋発見プログラムによる探検で、南海トラフの沈み込み帯の海底下1.2 kmの120 ℃の堆積物から単細胞生物が発見された[111]。ある研究者は、「微生物はどこにでも生息している。条件への適応性が極めて高く、どこにいても生き延びることができる」と述べている[106]。
耐性域
生態系を構成する不活性要素は、生命維持に必要な物理的および化学的要素、すなわちエネルギー(太陽光や化学エネルギー)、水、熱、大気、重力、栄養素、太陽紫外線からの防御などである[112]。ほとんどの生態系では、条件は一日を通じて、また季節ごとに変化する。したがって、ほとんどの生態系で生きてゆくためには、生物は「耐性域」と呼ばれるさまざまな条件に耐えなければならない[113]。その外側には「生理的ストレス域」があり、そこでは生存と繁殖は可能だが最適とはいえない。これらの領域を超えると「不耐性域」となり、そこでは生物の生存と繁殖はありえないか、不可能となる。耐性域が広い生物は、耐性域が狭い生物よりも広く分布している[113]。
極限環境微生物
いくつかの微生物は生き残るために、寒冷、完全な乾燥、飢餓、高レベルの放射線、その他の物理的または化学的な条件に耐えられるように進化してきた。これらの極限環境微生物は、そうした環境下に長期間さらされ続けても生き延びることができる[91][114]。さらに、通常とは異なるエネルギー源を利用することにも秀でている。このような極限環境における微生物群集の構造や代謝多様性などの特性の解明が進行中である[115]。
分類
古代
最初の生物の分類は、ギリシアの哲学者アリストテレス(紀元前384-322年)によって行われ、主に動く能力に基づいて生物を植物または動物に分類した。彼は、脊椎動物と無脊椎動物という概念のように有血動物と無血動物を区別し、有血動物を、胎生四足動物(哺乳類)、卵生四足動物(爬虫類と両生類)、鳥類、魚類、鯨の5つのグループに分けた。無血動物は、頭足類、甲殻類、昆虫類(クモ、サソリ、ムカデを含む)、有殻類(大部分の軟体動物や棘皮動物)、植虫類(植物に似た動物)の5つのグループに分けた。この理論は1千年以上にわたって支配的であった[116]。
リンネ体系
1740年代後半、カール・リンネは、種を分類するために「二名法(二命名法)」を導入した。リンネは、不必要な修辞を廃止し、新しい記述用語を導入し、その意味を正確に定義することによって、それまでの名称の語数の多い構成を改善し、長さを短縮しようとした[117]。
真菌類はもともと植物として扱われていた。リンネは一時期、真菌類を動物界(Animalia)の蠕虫綱(Vermes)に分類していたが、後に植物界(Plantae)に戻した。ハーバート・コープランドは真菌類を原生生物(Protoctista)に分類し、単細胞生物に含めることで問題を部分的に回避しているが、真菌類に特別な地位を認めた[118]。この問題は最終的に、ロバート・ホイッタカーによる五界説で、菌類に独自の界(菌界)を与えて解決された。進化の歴史は、真菌類が植物よりも動物に近縁であることを示している[119]。
顕微鏡法の進歩によって細胞や微生物の詳細な研究が可能になるにつれ、新たな生物群が明らかになり、細胞生物学や微生物学の分野が創設された。これらの新しい生物は、当初は動物として原生動物門(Protozoa)と、植物として原生植物門/葉状植物門に分けて記載されていたが、エルンスト・ヘッケルによって原生生物界(Protista)に統合された、その後、原核生物はモネラ界(Monera)に分割され、最終的には細菌と古細菌の2つのグループに分けられた。これが六界説につながり、ついに進化的関係に基づく現在の3ドメイン説に至った[120]。しかし、真核生物、特に原生生物の分類については、いまでも議論が続いている[121]。
微生物学が発展するにつれて、細胞ではないウイルスが発見された。これらを生物と見なすかどうかについては議論が分かれている。ウイルスには、細胞膜、代謝、増殖や環境への対応能力といった生命の特徴を欠いている。ウイルスはその遺伝学的な性質に基づいて「種(species)」に分類されてきたが、そのような分類の多くの側面で論争が続いている[122]。
元々のリンネ分類法は、次のように何度も変更されてきた。
リンネ 1735[123] | ヘッケル 1866[124] | シャットン 1925[125] | コープランド 1938[126] | ホイッタカー 1969[127] | ウーズら 1990[120] | キャバリエ=スミス 1998,[128] 2015[129] |
---|---|---|---|---|---|---|
二界 | 三界 | 二帝 | 四界 | 五界 | 3ドメイン | 二帝, 六/七界 |
扱いなし | 原生生物界 Protista | 原核生物帝 Prokaryota | モネラ界 Monera | モネラ界 Monera | 細菌 Bacteria | 細菌界 Bacteria |
古細菌 Archaea | 古細菌 Archaea (2015) | |||||
真核生物帝 Eukaryota | 原生生物界 Protoctista | 原生生物界 Protoctista | 真核生物 Eucarya | 原生動物界 "Protozoa" | ||
クロミスタ界 "Chromista" | ||||||
植物界 Vegetabilia | 植物界 Plantae | 植物界 Plantae | 植物界 Plantae | 植物界 Plantae | ||
菌界 Fungi | 菌界 Fungi | |||||
動物界 Animalia | 動物界 Animalia | 動物界 Animalia | 動物界 Animalia | 動物界 Animalia |
真核生物を少数の界に組織化しようとする試みには異論がある。原生動物はクレード(分岐群)や自然的な分類を形成しておらず[130]、クロミスタ(Chromalveolata)も同様である[131]。
メタゲノム
多数の完全なゲノムの配列決定が可能となったことで、生物学者は系統樹全体の系統発生をメタゲノム的に捉えることができるようになった。これにより、生物の大部分は細菌であり、すべての起源は共通していることが明らかになった[120][132]。
構成
化学元素
すべての生命体は、その生化学的な機能を果たすために核となる特定の化学元素を必要とする。具体的には、炭素、水素、窒素、酸素、リン、硫黄など、すべての生物にとって必須の多量栄養素があげられる[133]。これらの元素が組み合わさって、生物体の大部分を占める核酸、タンパク質、脂質、そして複合多糖を構成する。これら6つの元素のうち5つはDNAの化学成分を構成するが、硫黄は例外である。硫黄はアミノ酸のシステインとメチオニンの構成要素である。これらの元素のうち生物に最も多く含まれているのは炭素であり、炭素は複数の安定した共有結合を形成するという望ましい特性を持っている。これにより、炭素を主成分とする(有機)分子は、有機化学で説明される多様な化学配列を形成することができるようになる[134]。これらの元素の1つまたは複数を省いたり、一覧にない元素に置き換えたり、必要なキラリティーやその他の化学的性質を変更したりする、代替生化学の仮説が提案されている[135][136]。
DNA
デオキシリボ核酸(DNA)は、すべての既知の生物と多くのウイルスの発生、機能、成長、および生殖に使われる遺伝的命令の大部分を伝達する分子である。DNAとリボ核酸(RNA)はどちらも核酸であり、タンパク質、脂質、複合多糖と並んで、すべての既知の生命体にとって不可欠な四大生体高分子の一つである。ほとんどのDNA分子は、2本の高分子鎖が互いに巻きついて二重らせんを形成している。DNAの二本鎖は、ヌクレオチドと呼ばれるより単純な単位から構成されていることから、ポリヌクレオチドと呼ばれる[137]。各ヌクレオチドは、4つの含有核酸塩基(シトシン: C、グアニン: G、アデニン: A、チミン: T)のうちの1つ、デオキシリボースと呼ばれる糖、およびリン酸基で構成されている。あるヌクレオチドの糖と、次のヌクレオチドのリン酸が共有結合によって鎖状に結合し、糖-リン酸が交互に繰り返される主鎖が形成される。二本のポリヌクレオチド鎖の窒素塩基は、塩基対合則(AとT、CとG)に従って水素結合で結合し、二本鎖DNAを形成する。これには、それぞれの鎖にもう一方の鎖を再作成するために必要なすべての情報が含まれているという重要な性質があり、生殖や細胞分裂の際に情報を保存することができる[138]。細胞では、DNAは染色体と呼ばれる長い構造体に組織化されている。これらの染色体は、細胞分裂の前にDNA複製の過程で複製され、それぞれの娘細胞に完全な染色体の集合を提供する。真核生物は、DNAの大部分を細胞核内に保存し、一部をミトコンドリア内あるいは葉緑体内に保存している[139]。
細胞
細胞はあらゆる生物の構造の基本単位であり、すべての細胞は既存の細胞から分裂して形成される[140][141]。細胞理論は、19世紀初頭にアンリ・デュトロシェ、テオドール・シュワン、ルドルフ・フィルヒョウらによって提唱され、その後広く受け入れられるようになった[142]。生物の活動は細胞の全ての活性に依存し、細胞内および細胞間でエネルギーの流れが起こる。それぞれの細胞に遺伝情報が含まれ、細胞分裂の時に遺伝暗号として受け継がれる[143]。
進化的な起源を反映して、細胞には2つの主要な種類がある。原核生物の細胞(すなわち細菌と古細菌)は環状DNAとリボソームを持っている、核と膜結合細胞小器官を欠いている。もうひとつの主要な種類は真核生物の細胞で、核膜に囲まれた明確な核と、ミトコンドリア、葉緑体、リソソーム、粗面小胞体、滑面小胞体、液胞など、膜結合細胞小器官を備えている。さらに、それらのDNAは染色体に組織化されている。動物、植物、真菌類などの大型の複合生物はすべて真核生物であるが、多様な微生物である原生生物も含まれている[144]。従来の進化モデルは、真核生物は原核生物から進化し、真核生物の主要な細胞小器官は細菌と真核前駆細胞との共生によって形成されたというものである[145]。
細胞生物学における分子機構はタンパク質に基づいている。ほとんどのタンパク質は、タンパク質生合成と呼ばれる酵素触媒過程を経て、リボソームという酵素によって合成される。細胞内の核酸の遺伝子発現に基づいてアミノ酸が配列・相互に結合してタンパク質が組み立てられる[146]。真核細胞では、これらのタンパク質はゴルジ装置を介して輸送および処理され、目的地へ送られる[147]。
細胞は、親細胞が2つ以上の娘細胞に分裂する細胞分裂によって増殖する。原核生物の細胞分裂では、DNAが複製され、2つの複製が細胞膜の対極に付着して分裂が起こる。一方、真核生物では、より複雑な有糸分裂と呼ばれる過程によって細胞分裂が起こる。ただしいずれも結果は同じで、複製された娘細胞は元の親細胞と互いに同一であり(変異を除く)、両者とも間期の期間を経てさらに分裂することができる[148]。
多細胞構造
多細胞生物は、初めは同一細胞が群体を形成することで進化した可能性がある。これらの細胞は、細胞接着によって生物群集を形成することができる。群体に含まれる個々の細胞は、単独で生き残ることができるが、真の多細胞生物の細胞は特殊化を発達させていて、生存のために残りの生物に依存している。このような生物はクローン的に形成されるか、あるいは成体生物を構成するさまざまな特殊化した細胞を作り出せる単一の生殖細胞から形成される。この特殊化により、多細胞生物は単細胞生物よりも効率的に資源を利用できるようになる[149]。約8億年前、GK-PID (en:GK-PID) という酵素分子に生じた小さな遺伝的変化により、生物は単細胞生物から多細胞生物の一つに進化した可能性がある[150]。
細胞は微小環境を感知してそれに応答する方法を進化させ、それによって適応性を高めてきた。細胞シグナル伝達は細胞活動を調整し、ここから多細胞生物における基本機能を制御している。細胞間のシグナル伝達には、ジャクスタクリン・シグナル伝達のように直接的な細胞間接触を通して起こるものもあれば、内分泌系のように物質の交換を通じて間接的に起こるものもある。より複雑な生物では、活動の調整は専用の神経系を通して行われることがある[151]。
地球外生命
生命は地球上でのみ確認されているが、多くの人は、地球外生命体の存在はありうるだけでなく、確実あるいは不可避と考えている[152][153]。かつて、太陽系や他の惑星系にある惑星や衛星に対して、単純な生命が育まれていた証拠がないか調査されており、SETIプロジェクトなどでは、可能性のある地球外文明からの電波を検出しようとしている。太陽系内で微生物が生息している可能性のある場所には、火星の表面下、金星の高層大気[154]、巨大惑星のいくつかの衛星の内部海などがある[155][156]。
地球上の生命の執着性と多様性を研究し[114]、一部の生物がそのような極限状態を生き抜くために利用する分子システムを理解することは、地球外生命体を探索する上で重要である[91]。たとえば、地衣類は火星の模擬環境で1ヶ月生存することができる[157][158]。
太陽系を超えて、地球に似た惑星上に地球型の生命を維持できる可能性のある他の主系列星の周囲にある領域は、ハビタブルゾーンとして知られている。このゾーンの内側と外側の半径は、恒星の光度によって変化し、ゾーンが存続する時間間隔も同様に変化する。太陽より質量の大きい恒星はより広いハビタブルゾーンを持つが、太陽のように恒星進化の「主系列」にとどまる期間は短くなる。小型の赤色矮星は、ハビタブルゾーンが狭く、より高いレベルの磁気活動や、近接する軌道からの潮汐ロックの影響を受けやすいという逆の問題を抱えている。したがって、太陽のような中程度の質量を持つ恒星は、地球のような生命が誕生する可能性が高い可能性がある[159]。銀河系内における恒星の位置も、生命形成の可能性に影響するかもしれない。惑星を形成しうる重い元素がより多く存在する領域にある恒星は、生息地を脅かす可能性のある超新星爆発の発生率が低いことと相まって、複雑な生命を持つ惑星が存在する確率が高いと予測されている[160]。ドレイクの方程式の変数を操作して、広い不確実性の範囲内で、文明が存在する可能性が最も高い惑星系の条件が議論されている[161]。地球外に生命が存在する証拠を報告するための「生命検出の信頼性(Confidence of Life Detection、CoLD)」という指標が提案されている[162][163]。
人工生命
人工生命(英: artificial life)とは、コンピュータ、ロボット工学、生化学などを通じて、生命のあらゆる側面のシミュレーションである[164]。合成生物学(英: synthetic biology)は、科学と生物工学を組み合わせたバイオテクノロジーの新しい分野である。共通の目標は、自然界には存在しない新しい生物学的機能やシステムの設計と構築である。合成生物学は、バイオテクノロジーの幅広い再定義と拡張を伴うもので、究極の目標は、情報を処理し、化学物質を操作し、材料や構造物を生産し、エネルギーを生成し、食糧を供給し、人間の健康と環境を維持および向上させる工学的な生物学的システムを設計し、構築できるようにすることである[165]。
参照項目
- 生物学 - 生命の科学的研究
- 生命存在指標 - 過去または現在の生命を科学的に証明する物質
- 炭素系生命体 - 炭素原子を主成分とした生命
- セントラルドグマ - 生物系における遺伝情報の流れ
- 生命の歴史 - 地球上の生命の歴史
- 個体数別生物の一覧 - 生物の個体数
- 生存可能システム理論 - 生体系など動的システムの発生や進化のプロセスに関する人工頭脳学の理論
- 生物学上の未解決問題
注釈
脚注
- ^ International Committee on Taxonomy of Viruses Executive Committee (May 2020). “The New Scope of Virus Taxonomy: Partitioning the Virosphere Into 15 Hierarchical Ranks”. Nature Microbiology 5 (5): 668–674. doi:10.1038/s41564-020-0709-x. PMC 7186216. PMID 32341570 .
- ^ Tsokolov, Serhiy A. (May 2009). “Why Is the Definition of Life So Elusive? Epistemological Considerations”. Astrobiology 9 (4): 401–412. Bibcode: 2009AsBio...9..401T. doi:10.1089/ast.2007.0201. PMID 19519215.
- ^ “Defining Life, Explaining Emergence”. Niels Bohr Institute (1997年). 2012年3月14日時点のオリジナルよりアーカイブ。2012年5月25日閲覧。
- ^ a b McKay, Chris P. (14 September 2004). “What Is Life—and How Do We Search for It in Other Worlds?”. PLOS Biology 2 (9): 302. doi:10.1371/journal.pbio.0020302. PMC 516796. PMID 15367939 .
- ^ Mautner, Michael N. (1997). “Directed panspermia. 3. Strategies and motivation for seeding star-forming clouds”. Journal of the British Interplanetary Society 50: 93–102. Bibcode: 1997JBIS...50...93M. オリジナルの2 November 2012時点におけるアーカイブ。 .
- ^ Mautner, Michael N. (2000). Seeding the Universe with Life: Securing Our Cosmological Future. Washington D.C.. ISBN 978-0-476-00330-9. オリジナルの2 November 2012時点におけるアーカイブ。
- ^ McKay, Chris (18 September 2014). “What is life? It's a Tricky, Often Confusing Question”. Astrobiology Magazine.
- ^ Nealson, K.H.; Conrad, P.G. (December 1999). “Life: past, present and future”. Philosophical Transactions of the Royal Society of London B 354 (1392): 1923–1939. doi:10.1098/rstb.1999.0532. PMC 1692713. PMID 10670014. オリジナルの3 January 2016時点におけるアーカイブ。 .
- ^ Mautner, Michael N. (2009). “Life-centered ethics, and the human future in space”. Bioethics 23 (8): 433–440. doi:10.1111/j.1467-8519.2008.00688.x. PMID 19077128. オリジナルの2 November 2012時点におけるアーカイブ。 .
- ^ Jeuken M (1975). “The biological and philosophical defitions of life”. Acta Biotheoretica 24 (1–2): 14–21. doi:10.1007/BF01556737. PMID 811024.
- ^ Capron AM (1978). “Legal definition of death”. Annals of the New York Academy of Sciences 315 (1): 349–362. Bibcode: 1978NYASA.315..349C. doi:10.1111/j.1749-6632.1978.tb50352.x. PMID 284746.
- ^ Trifonov, Edward N. (17 March 2011). “Vocabulary of Definitions of Life Suggests a Definition”. Journal of Biomolecular Structure and Dynamics 29 (2): 259–266. doi:10.1080/073911011010524992. PMID 21875147.
- ^ Koshland, Daniel E. Jr. (22 March 2002). “The Seven Pillars of Life”. Science 295 (5563): 2215–2216. doi:10.1126/science.1068489. PMID 11910092.
- ^ “life”. The American Heritage Dictionary of the English Language (4th ed.). Houghton Mifflin. (2006). ISBN 978-0-618-70173-5
- ^ “Life”. Merriam-Webster Dictionary. 2021年12月13日時点のオリジナルよりアーカイブ。2022年7月25日閲覧。
- ^ “Habitability and Biology: What are the Properties of Life?”. Phoenix Mars Mission. The University of Arizona. 2014年4月16日時点のオリジナルよりアーカイブ。2013年6月6日閲覧。
- ^ Trifonov, Edward N. (2012). “Definition of Life: Navigation through Uncertainties”. Journal of Biomolecular Structure & Dynamics 29 (4): 647–650. doi:10.1080/073911012010525017. PMID 22208269.
- ^ Dobzhansky, Theodosius (1968). “On Some Fundamental Concepts of Darwinian Biology”. Evolutionary Biology. Boston, MA: Springer US. pp. 1–34. doi:10.1007/978-1-4684-8094-8_1. ISBN 978-1-4684-8096-2. オリジナルの30 July 2022時点におけるアーカイブ。 2022年7月23日閲覧。
- ^ Wang, Guanyu (2014). Analysis of complex diseases : a mathematical perspective. Boca Raton. ISBN 978-1-4665-7223-2. OCLC 868928102. オリジナルの30 July 2022時点におけるアーカイブ。 2022年7月23日閲覧。
- ^ Climate change impact on livestock : adaptation and mitigation. New Delhi. (2015). ISBN 978-81-322-2265-1. OCLC 906025831. オリジナルの30 July 2022時点におけるアーカイブ。 2022年7月23日閲覧。
- ^ “ASTR-1020: Astronomy II Course Lecture Notes Section XII”. East Tennessee State University. 2012年3月22日時点のオリジナルよりアーカイブ。2011年8月28日閲覧。
- ^ “Physics 2028: Great Ideas in Science: The Exobiology Module”. East Tennessee State University (Spring 2008). 2012年3月22日時点のオリジナルよりアーカイブ。2011年8月28日閲覧。
- ^ Lammer, H.; Bredehöft, J.H.; Coustenis, A.; Khodachenko, M.L.; etal (2009). “What makes a planet habitable?”. The Astronomy and Astrophysics Review 17 (2): 181–249. Bibcode: 2009A&ARv..17..181L. doi:10.1007/s00159-009-0019-z. オリジナルの2 June 2016時点におけるアーカイブ。 2016年5月3日閲覧. "Life as we know it has been described as a (thermodynamically) open system (Prigogine et al. 1972), which makes use of gradients in its surroundings to create imperfect copies of itself."
- ^ Benner, Steven A. (December 2010). “Defining Life”. Astrobiology 10 (10): 1021–1030. Bibcode: 2010AsBio..10.1021B. doi:10.1089/ast.2010.0524. PMC 3005285. PMID 21162682 .
- ^ Joyce, Gerald F. (1995). “The RNA World: Life before DNA and Protein”. Extraterrestrials. Cambridge University Press. pp. 139–151. doi:10.1017/CBO9780511564970.017. hdl:2060/19980211165. ISBN 978-0-511-56497-0
- ^ Benner, Steven A. (December 2010). “Defining Life”. Astrobiology 10 (10): 1021–1030. Bibcode: 2010AsBio..10.1021B. doi:10.1089/ast.2010.0524. PMC 3005285. PMID 21162682 .
- ^ a b Piast, Radosław W. (June 2019). “Shannon's information, Bernal's biopoiesis and Bernoulli distribution as pillars for building a definition of life”. Journal of Theoretical Biology 470: 101–107. Bibcode: 2019JThBi.470..101P. doi:10.1016/j.jtbi.2019.03.009. PMID 30876803.
- ^ Kaufmann, Stuart (2004). “Autonomous agents”. In Barrow, John D.; Davies, P.C.W.; Harper, Jr., C.L.. Science and Ultimate Reality. pp. 654–666. doi:10.1017/CBO9780511814990.032. ISBN 978-0-521-83113-0. オリジナルの5 November 2023時点におけるアーカイブ。 2023年8月10日閲覧。
- ^ Longo, Giuseppe; Montévil, Maël; Kauffman, Stuart (1 January 2012). “No entailing laws, but enablement in the evolution of the biosphere”. Proceedings of the 14th annual conference companion on Genetic and evolutionary computation. GECCO '12. pp. 1379–1392. arXiv:1201.2069. Bibcode: 2012arXiv1201.2069L. doi:10.1145/2330784.2330946. ISBN 978-1-4503-1178-6. オリジナルの11 May 2017時点におけるアーカイブ。
- ^ Definition of death. 2009年11月3日時点のオリジナルよりアーカイブ。
- ^ a b “Definition of death”. Encyclopedia of Death and Dying. Advameg, Inc.. 2007年2月3日時点のオリジナルよりアーカイブ。2012年5月25日閲覧。
- ^ Henig, Robin Marantz (April 2016). “Crossing Over: How Science Is Redefining Life and Death”. National Geographic. オリジナルの1 November 2017時点におけるアーカイブ。 2017年10月23日閲覧。.
- ^ “How the Major Religions View the Afterlife”. Encyclopedia.com. 2022年2月4日時点のオリジナルよりアーカイブ。2022年2月4日閲覧。
- ^ “Virus”. Genome.gov. 2022年5月11日時点のオリジナルよりアーカイブ。2022年7月25日閲覧。
- ^ “Are Viruses Alive?”. Yellowstone Thermal Viruses. 2022年6月14日時点のオリジナルよりアーカイブ。2022年7月25日閲覧。
- ^ Koonin, E.V.; Starokadomskyy, P. (7 March 2016). “Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question”. Studies in the History and Philosophy of Biology and Biomedical Science 59: 125–134. doi:10.1016/j.shpsc.2016.02.016. PMC 5406846. PMID 26965225 .
- ^ Holmes, E.C. (October 2007). “Viral evolution in the genomic age”. PLOS Biol. 5 (10): e278. doi:10.1371/journal.pbio.0050278. PMC 1994994. PMID 17914905 .
- ^ Forterre, Patrick (3 March 2010). “Defining Life: The Virus Viewpoint”. Orig Life Evol Biosph 40 (2): 151–160. Bibcode: 2010OLEB...40..151F. doi:10.1007/s11084-010-9194-1. PMC 2837877. PMID 20198436 .
- ^ Rybicki, EP (1990). “The classification of organisms at the edge of life, or problems with virus systematics”. S Afr J Sci 86: 182–186. オリジナルの21 September 2021時点におけるアーカイブ。 2023年11月5日閲覧。.
- ^ Koonin, E.V.; Senkevich, T.G.; Dolja, V.V. (2006). “The ancient Virus World and evolution of cells”. Biology Direct 1: 29. doi:10.1186/1745-6150-1-29. PMC 1594570. PMID 16984643 .
- ^ Rybicki, Ed (1997年11月). “Origins of Viruses”. 2009年5月9日時点のオリジナルよりアーカイブ。2009年4月12日閲覧。
- ^ “Empedocles”. Stanford Encyclopedia of Philosophy (2005年3月4日). 2012年5月13日時点のオリジナルよりアーカイブ。2012年5月25日閲覧。
- ^ “Democritus”. Stanford Encyclopedia of Philosophy (2010年8月25日). 2006年8月30日時点のオリジナルよりアーカイブ。2012年5月25日閲覧。
- ^ Hankinson, R.J. (1997). Cause and Explanation in Ancient Greek Thought. Oxford University Press. p. 125. ISBN 978-0-19-924656-4. オリジナルの13 April 2023時点におけるアーカイブ。 2023年8月10日閲覧。
- ^ de la Mettrie, J.J.O. (1748). L'Homme Machine [Man a machine]. Leyden: Elie Luzac
- ^ Thagard, Paul (2012). The Cognitive Science of Science: Explanation, Discovery, and Conceptual Change. MIT Press. pp. 204–205. ISBN 978-0-262-01728-2. オリジナルの13 April 2023時点におけるアーカイブ。 2023年8月10日閲覧。
- ^ Leduc, Stéphane (1912). La Biologie Synthétique [Synthetic Biology]. Paris: Poinat
- ^ Russell, Michael J.; Barge, Laura M.; Bhartia, Rohit et al. (2014). “The Drive to Life on Wet and Icy Worlds”. Astrobiology 14 (4): 308–343. Bibcode: 2014AsBio..14..308R. doi:10.1089/ast.2013.1110. PMC 3995032. PMID 24697642 .
- ^ Aristotle. On the Soul. pp. Book II
- ^ Marietta, Don (1998). Introduction to ancient philosophy. M.E. Sharpe. p. 104. ISBN 978-0-7656-0216-9. オリジナルの13 April 2023時点におけるアーカイブ。 2020年8月25日閲覧。
- ^ Stewart-Williams, Steve (2010). Darwin, God and the meaning of life: how evolutionary theory undermines everything you thought you knew of life. Cambridge University Press. pp. 193–194. ISBN 978-0-521-76278-6. オリジナルの13 April 2023時点におけるアーカイブ。 2023年8月10日閲覧。
- ^ Stillingfleet, Edward (1697). Origines Sacrae. Cambridge University Press
- ^ André Brack (1998). “Introduction”. In André Brack. The Molecular Origins of Life. Cambridge University Press. p. 1. ISBN 978-0-521-56475-5 2009年1月7日閲覧。
- ^ “The Slow Death of Spontaneous Generation (1668–1859)”. North Carolina State University. National Health Museum. 2015年10月9日時点のオリジナルよりアーカイブ。2016年2月6日閲覧。
- ^ Tyndall, John (1905). Fragments of Science. 2. New York: P.F. Collier. pp. Chapters IV, XII, and XIII
- ^ Bernal, J.D. (1967). The Origin of Life. The Weidenfeld and Nicolson Natural History. Translation of Oparin by Ann Synge. London: Weidenfeld & Nicolson. LCCN 67-98482
- ^ Zubay, Geoffrey (2000). Origins of Life: On Earth and in the Cosmos (2nd ed.). Academic Press. ISBN 978-0-12-781910-5
- ^ Smith, John Maynard; Szathmary, Eors (1997). The Major Transitions in Evolution. Oxford Oxfordshire: Oxford University Press. ISBN 978-0-19-850294-4
- ^ Schwartz, Sanford (2009). C.S. Lewis on the Final Frontier: Science and the Supernatural in the Space Trilogy. Oxford University Press. p. 56. ISBN 978-0-19-988839-9. オリジナルの13 April 2023時点におけるアーカイブ。 2023年8月10日閲覧。
- ^ a b Wilkinson, Ian (1998). “History of Clinical Chemistry – Wöhler & the Birth of Clinical Chemistry”. The Journal of the International Federation of Clinical Chemistry and Laboratory Medicine 13 (4). オリジナルの5 January 2016時点におけるアーカイブ。 2015年12月27日閲覧。.
- ^ Friedrich Wöhler (1828). “Ueber künstliche Bildung des Harnstoffs”. Annalen der Physik und Chemie 88 (2): 253–256. Bibcode: 1828AnP....88..253W. doi:10.1002/andp.18280880206. オリジナルの10 January 2012時点におけるアーカイブ。 .
- ^ Rabinbach, Anson (1992). The Human Motor: Energy, Fatigue, and the Origins of Modernity. University of California Press. pp. 124–125. ISBN 978-0-520-07827-7. オリジナルの13 April 2023時点におけるアーカイブ。 2023年8月10日閲覧。
- ^ Cornish-Bowden Athel, ed (1997). New Beer in an Old Bottle. Eduard Buchner and the Growth of Biochemical Knowledge. Valencia, Spain: Universitat de València. ISBN 978-8437-033280
- ^ “NCAHF Position Paper on Homeopathy”. National Council Against Health Fraud (1994年2月). 2018年12月25日時点のオリジナルよりアーカイブ。2012年6月12日閲覧。
- ^ Dalrymple, G. Brent (2001). “The age of the Earth in the twentieth century: a problem (mostly) solved”. Special Publications, Geological Society of London 190 (1): 205–221. Bibcode: 2001GSLSP.190..205D. doi:10.1144/GSL.SP.2001.190.01.14.
- ^ a b Bell, Elizabeth A.; Boehnike, Patrick; Harrison, T. Mark et al. (19 October 2015). “Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon”. PNAS 112 (47): 14518–14521. Bibcode: 2015PNAS..11214518B. doi:10.1073/pnas.1517557112. PMC 4664351. PMID 26483481. オリジナルの6 November 2015時点におけるアーカイブ。 .
- ^ Schopf, J.W. (June 2006). “Fossil evidence of Archaean life”. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361 (1470): 869–885. doi:10.1098/rstb.2006.1834. PMC 1578735. PMID 16754604 .
- ^ Hamilton Raven, Peter; Brooks Johnson, George (2002). Biology. McGraw-Hill Education. p. 68. ISBN 978-0-07-112261-0 2013年7月7日閲覧。
- ^ Milsom, Clare; Rigby, Sue (2009). Fossils at a Glance (2nd ed.). John Wiley & Sons. p. 134. ISBN 978-1-4051-9336-8. オリジナルの13 April 2023時点におけるアーカイブ。 2023年8月10日閲覧。
- ^ a b Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi; Nagase, Toshiro; Rosing, Minik T. (8 December 2013). “Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks”. Nature Geoscience 7 (1): 25–28. Bibcode: 2014NatGe...7...25O. doi:10.1038/ngeo2025.
- ^ a b Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M. (8 November 2013). “Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia”. Astrobiology 13 (12): 1103–1124. Bibcode: 2013AsBio..13.1103N. doi:10.1089/ast.2013.1030. PMC 3870916. PMID 24205812 .
- ^ Hedges, S. B. Hedges (2009). “Life”. In S. B. Hedges; S. Kumar. The Timetree of Life. Oxford University Press. pp. 89–98. ISBN 978-0-1995-3503-3
- ^ “Habitability and Biology: What are the Properties of Life?”. Phoenix Mars Mission. The University of Arizona. 2014年4月17日時点のオリジナルよりアーカイブ。2013年6月6日閲覧。
- ^ Wade, Nicholas (2016年7月25日). “Meet Luca, the Ancestor of All Living Things”. The New York Times. オリジナルの2016年7月28日時点におけるアーカイブ。 2016年7月25日閲覧。
- ^ Campbell, Neil A.; Brad Williamson; Robin J. Heyden (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. ISBN 978-0-13-250882-7. オリジナルの2 November 2014時点におけるアーカイブ。 2016年6月15日閲覧。
- ^ Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor et al. (1 March 2017). “Evidence for early life in Earth's oldest hydrothermal vent precipitates”. Nature 543 (7643): 60–64. Bibcode: 2017Natur.543...60D. doi:10.1038/nature21377. PMID 28252057. オリジナルの8 September 2017時点におけるアーカイブ。 2017年3月2日閲覧。.
- ^ Hall, Brian K.; Hallgrímsson, Benedikt (2008). Strickberger's Evolution (4th ed.). Sudbury, Massachusetts: Jones and Bartlett Publishers. pp. 4–6. ISBN 978-0-7637-0066-9. LCCN 2007-8981. OCLC 85814089
- ^ “Evolution Resources”. Washington, DC: National Academies of Sciences, Engineering, and Medicine (2016年). 2016年6月3日時点のオリジナルよりアーカイブ。2023年9月20日閲覧。
- ^ Scott-Phillips, Thomas C.; Laland, Kevin N.; Shuker, David M. et al. (May 2014). “The Niche Construction Perspective: A Critical Appraisal”. Evolution 68 (5): 1231–1243. doi:10.1111/evo.12332. PMC 4261998. PMID 24325256 . "Evolutionary processes are generally thought of as processes by which these changes occur. Four such processes are widely recognized: natural selection (in the broad sense, to include sexual selection), genetic drift, mutation, and migration (Fisher 1930; Haldane 1932). The latter two generate variation; the first two sort it."
- ^ Hall & Hallgrímsson 2008, pp. 3–5
- ^ Voet, Donald; Voet, Judith G.; Pratt, Charlotte W. (2016). Fundamentals of Biochemistry: Life at the Molecular Level (Fifth ed.). Hoboken, New Jersey: John Wiley & Sons. Chapter 1: Introduction to the Chemistry of Life, pp. 1–22. ISBN 978-1-118-91840-1. LCCN 2016-2847. OCLC 939245154
- ^ “Frequently Asked Questions”. San Diego Natural History Museum. 2012年5月10日時点のオリジナルよりアーカイブ。2012年5月25日閲覧。
- ^ Vastag, Brian (2011年8月21日). “Oldest 'microfossils' raise hopes for life on Mars”. The Washington Post. オリジナルの2011年10月19日時点におけるアーカイブ。 2011年8月21日閲覧。
- ^ Wade, Nicholas (2011年8月21日). “Geological Team Lays Claim to Oldest Known Fossils”. The New York Times. オリジナルの2013年5月1日時点におけるアーカイブ。 2011年8月21日閲覧。
- ^ Extinction – definition. 2009年9月26日時点のオリジナルよりアーカイブ。
- ^ “What is an extinction?”. Late Triassic. Bristol University. 2012年9月1日時点のオリジナルよりアーカイブ。2012年6月27日閲覧。
- ^ McKinney, Michael L. (1996). “How do rare species avoid extinction? A paleontological view”. In Kunin, W.E.; Gaston, Kevin. The Biology of Rarity: Causes and consequences of rare—common differences. Springer. ISBN 978-0-412-63380-5. オリジナルの3 February 2023時点におけるアーカイブ。 2015年5月26日閲覧。
- ^ Stearns, Beverly Peterson; Stearns, Stephen C. (2000). Watching, from the Edge of Extinction. Yale University Press. p. x. ISBN 978-0-300-08469-6. オリジナルの5 November 2023時点におけるアーカイブ。 2017年5月30日閲覧。
- ^ Novacek, Michael J. (2014年11月8日). “Prehistory's Brilliant Future”. The New York Times. オリジナルの2014年12月29日時点におけるアーカイブ。 2014年12月25日閲覧。
- ^ Van Valkenburgh, B. (1999). “Major patterns in the history of carnivorous mammals”. Annual Review of Earth and Planetary Sciences 27: 463–493. Bibcode: 1999AREPS..27..463V. doi:10.1146/annurev.earth.27.1.463. オリジナルの29 February 2020時点におけるアーカイブ。 2019年6月29日閲覧。.
- ^ a b c d e Rothschild, Lynn (2003年9月). “Understand the evolutionary mechanisms and environmental limits of life”. NASA. 2012年3月29日時点のオリジナルよりアーカイブ。2009年7月13日閲覧。
- ^ King, G.A.M. (April 1977). “Symbiosis and the origin of life”. Origins of Life and Evolution of Biospheres 8 (1): 39–53. Bibcode: 1977OrLi....8...39K. doi:10.1007/BF00930938. PMID 896191.
- ^ Margulis, Lynn (2001). The Symbiotic Planet: A New Look at Evolution. London: Orion Books. ISBN 978-0-7538-0785-9
- ^ Futuyma, D.J.; Janis Antonovics (1992). Oxford surveys in evolutionary biology: Symbiosis in evolution. 8. London, England: Oxford University Press. pp. 347–374. ISBN 978-0-19-507623-3
- ^ Liedert, Christina; Peltola, Minna; Bernhardt, Jörg; Neubauer, Peter; Salkinoja-Salonen, Mirja (2012-03-15). “Physiology of Resistant Deinococcus geothermalis Bacterium Aerobically Cultivated in Low-Manganese Medium” (英語). Journal of Bacteriology 194 (6): 1552–1561. doi:10.1128/JB.06429-11. PMC 3294853. PMID 22228732 .
- ^ "Biosphere". The Columbia Encyclopedia (6th ed.). Columbia University Press. 2004. 2011年10月27日時点のオリジナルよりアーカイブ。
- ^ University of Georgia (1998年8月25日). “First-Ever Scientific Estimate Of Total Bacteria On Earth Shows Far Greater Numbers Than Ever Known Before”. Science Daily. 2014年11月10日時点のオリジナルよりアーカイブ。2014年11月10日閲覧。
- ^ Hadhazy, Adam (2015年1月12日). “Life Might Thrive a Dozen Miles Beneath Earth's Surface”. Astrobiology Magazine. 2017年3月12日時点のオリジナルよりアーカイブ。2017年3月11日閲覧。
- ^ Fox-Skelly, Jasmin (2015年11月24日). “The Strange Beasts That Live in Solid Rock Deep Underground”. BBC online. 2016年11月25日時点のオリジナルよりアーカイブ。2017年3月11日閲覧。
- ^ Imshenetsky, AA; Lysenko, SV; Kazakov, GA (June 1978). “Upper boundary of the biosphere”. Applied and Environmental Microbiology 35 (1): 1–5. Bibcode: 1978ApEnM..35....1I. doi:10.1128/aem.35.1.1-5.1978. PMC 242768. PMID 623455 .
- ^ Dvorsky, George (2017年9月13日). “Alarming Study Indicates Why Certain Bacteria Are More Resistant to Drugs in Space”. Gizmodo. 2017年9月14日時点のオリジナルよりアーカイブ。2017年9月14日閲覧。
- ^ Caspermeyer, Joe (2007年9月23日). “Space flight shown to alter ability of bacteria to cause disease”. Arizona State University. 2017年9月14日時点のオリジナルよりアーカイブ。2017年9月14日閲覧。
- ^ Dose, K.; Bieger-Dose, A.; Dillmann, R. et al. (1995). “ERA-experiment "space biochemistry"”. Advances in Space Research 16 (8): 119–129. Bibcode: 1995AdSpR..16h.119D. doi:10.1016/0273-1177(95)00280-R. PMID 11542696.
- ^ Horneck G.; Eschweiler, U.; Reitz, G.; Wehner, J.; Willimek, R.; Strauch, K. (1995). “Biological responses to space: results of the experiment "Exobiological Unit" of ERA on EURECA I”. Adv. Space Res. 16 (8): 105–118. Bibcode: 1995AdSpR..16h.105H. doi:10.1016/0273-1177(95)00279-N. PMID 11542695.
- ^ Glud, Ronnie; Wenzhöfer, Frank; Middelboe, Mathias et al. (17 March 2013). “High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth”. Nature Geoscience 6 (4): 284–288. Bibcode: 2013NatGe...6..284G. doi:10.1038/ngeo1773.
- ^ a b Choi, Charles Q. (2013年3月17日). “Microbes Thrive in Deepest Spot on Earth”. LiveScience. 2013年4月2日時点のオリジナルよりアーカイブ。2013年3月17日閲覧。
- ^ Oskin, Becky (2013年3月14日). “Intraterrestrials: Life Thrives in Ocean Floor”. LiveScience. 2013年4月2日時点のオリジナルよりアーカイブ。2013年3月17日閲覧。
- ^ Morelle, Rebecca (2014年12月15日). “Microbes discovered by deepest marine drill analysed”. BBC News. オリジナルの2014年12月16日時点におけるアーカイブ。 2014年12月15日閲覧。
- ^ Fox, Douglas (20 August 2014). “Lakes under the ice: Antarctica's secret garden”. Nature 512 (7514): 244–246. Bibcode: 2014Natur.512..244F. doi:10.1038/512244a. PMID 25143097.
- ^ Mack, Eric (2014年8月20日). “Life Confirmed Under Antarctic Ice; Is Space Next?”. Forbes. 2014年8月22日時点のオリジナルよりアーカイブ。2014年8月21日閲覧。
- ^ Heuer, Verena B.; Inagaki, Fumio; Morono, Yuki et al. (4 December 2020). “Temperature limits to deep subseafloor life in the Nankai Trough subduction zone”. Science 370 (6521): 1230–1234. Bibcode: 2020Sci...370.1230H. doi:10.1126/science.abd7934. hdl:2164/15700. PMID 33273103. オリジナルの26 September 2022時点におけるアーカイブ。 2023年11月5日閲覧。.
- ^ “Essential requirements for life”. CMEX-NASA. 2009年8月17日時点のオリジナルよりアーカイブ。2009年7月14日閲覧。
- ^ a b Chiras, Daniel C. (2001). Environmental Science – Creating a Sustainable Future (6th ed.). Sudbury, MA : Jones and Bartlett. ISBN 978-0-7637-1316-4
- ^ a b Chang, Kenneth (2016年9月12日). “Visions of Life on Mars in Earth's Depths”. The New York Times. オリジナルの2016年9月12日時点におけるアーカイブ。 2016年9月12日閲覧。
- ^ Rampelotto, Pabulo Henrique (2010). “Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology”. Sustainability 2 (6): 1602–1623. Bibcode: 2010Sust....2.1602R. doi:10.3390/su2061602 .
- ^ “Aristotle”. University of California Museum of Paleontology. 2016年11月20日時点のオリジナルよりアーカイブ。2016年11月15日閲覧。
- ^ “Stability or stasis in the names of organisms: the evolving codes of nomenclature”. Philosophical Transactions of the Royal Society of London B 359 (1444): 611–622. (April 2004). doi:10.1098/rstb.2003.1445. PMC 1693349. PMID 15253348 .
- ^ Copeland, Herbert F. (1938). “The Kingdoms of Organisms”. Quarterly Review of Biology 13 (4): 383. doi:10.1086/394568.
- ^ Whittaker, R.H. (January 1969). “New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms”. Science 163 (3863): 150–160. Bibcode: 1969Sci...163..150W. doi:10.1126/science.163.3863.150. PMID 5762760.
- ^ a b c d Woese, C.; Kandler, O.; Wheelis, M. (1990). “Towards a natural system of organisms:proposal for the domains Archaea, Bacteria, and Eucarya.”. Proceedings of the National Academy of Sciences of the United States of America 87 (12): 4576–9. Bibcode: 1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC 54159. PMID 2112744 .
- ^ Adl, S.M.; Simpson, A.G.; Farmer, M.A.; etal (2005). “The new higher level classification of eukaryotes with emphasis on the taxonomy of protists”. Journal of Eukaryotic Microbiology 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873.
- ^ Van Regenmortel, M.H. (January 2007). “Virus species and virus identification: past and current controversies”. Infection, Genetics and Evolution 7 (1): 133–144. doi:10.1016/j.meegid.2006.04.002. PMID 16713373.
- ^ Linnaeus, C. (1735). Systemae Naturae, sive regna tria naturae, systematics proposita per classes, ordines, genera & species
- ^ Haeckel, E. (1866). Generelle Morphologie der Organismen. Reimer, Berlin
- ^ Chatton, É. (1925). “Pansporella perplexa. Réflexions sur la biologie et la phylogénie des protozoaires”. Annales des Sciences Naturelles - Zoologie et Biologie Animale 10-VII: 1–84.
- ^ Copeland, H. (1938). “The kingdoms of organisms”. Quarterly Review of Biology 13 (4): 383–420. doi:10.1086/394568.
- ^ Whittaker, R. H. (January 1969). “New concepts of kingdoms of organisms”. Science 163 (3863): 150–60. Bibcode: 1969Sci...163..150W. doi:10.1126/science.163.3863.150. PMID 5762760.
- ^ Cavalier-Smith, T. (1998). “A revised six-kingdom system of life”. Biological Reviews 73 (3): 203–66. doi:10.1111/j.1469-185X.1998.tb00030.x. PMID 9809012 .
- ^ Ruggiero, Michael A.; Gordon, Dennis P.; Orrell, Thomas M.; Bailly, Nicolas; Bourgoin, Thierry; Brusca, Richard C.; Cavalier-Smith, Thomas; Guiry, Michael D. et al. (2015). “A higher level classification of all living organisms”. PLOS ONE 10 (4): e0119248. Bibcode: 2015PLoSO..1019248R. doi:10.1371/journal.pone.0119248. PMC 4418965. PMID 25923521 .
- ^ Simpson, Alastair G.B.; Roger, Andrew J. (2004). “The real 'kingdoms' of eukaryotes”. Current Biology 14 (17): R693–R696. doi:10.1016/j.cub.2004.08.038. PMID 15341755.
- ^ Harper, J.T.; Waanders, E.; Keeling, P.J. (2005). “On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes”. International Journal of Systematic and Evolutionary Microbiology 55 (Pt 1): 487–496. doi:10.1099/ijs.0.63216-0. PMID 15653923.
- ^ a b Hug, Laura A.; Baker, Brett J.; Anantharaman, Karthik; Brown, Christopher T.; Probst, Alexander J. et al. (11 April 2016). “A new view of the tree of life”. Nature Microbiology 1 (5): 16048. doi:10.1038/nmicrobiol.2016.48. PMID 27572647.
- ^ Hotz, Robert Lee (2010年12月3日). “New link in chain of life”. The Wall Street Journal (Dow Jones & Company). オリジナルの2017年8月17日時点におけるアーカイブ。 . "Until now, however, they were all thought to share the same biochemistry, based on the Big Six, to build proteins, fats and DNA."
- ^ Lipkus, Alan H.; Yuan, Qiong; Lucas, Karen A. et al. (2008). “Structural Diversity of Organic Chemistry. A Scaffold Analysis of the CAS Registry”. The Journal of Organic Chemistry (American Chemical Society (ACS)) 73 (12): 4443–4451. doi:10.1021/jo8001276. PMID 18505297.
- ^ Committee on the Limits of Organic Life in Planetary Systems; Committee on the Origins and Evolution of Life; National Research Council (2007). The Limits of Organic Life in Planetary Systems. National Academy of Sciences. ISBN 978-0-309-66906-1. オリジナルの10 May 2012時点におけるアーカイブ。 2012年6月3日閲覧。
- ^ Benner, Steven A.; Ricardo, Alonso; Carrigan, Matthew A. (December 2004). “Is there a common chemical model for life in the universe?”. Current Opinion in Chemical Biology 8 (6): 672–689. doi:10.1016/j.cbpa.2004.10.003. PMID 15556414. オリジナルの16 October 2012時点におけるアーカイブ。 2012年6月3日閲覧。.
- ^ “DNA”. Basic Biology (2016年2月5日). 2017年1月5日時点のオリジナルよりアーカイブ。2016年11月15日閲覧。
- ^ Nuwer, Rachel (2015年7月18日). “Counting All the DNA on Earth”. The New York Times (New York). オリジナルの2015年7月18日時点におけるアーカイブ。 2015年7月18日閲覧。
- ^ Russell, Peter (2001). iGenetics. New York: Benjamin Cummings. ISBN 978-0-8053-4553-7
- ^ “2.2: The Basic Structural and Functional Unit of Life: The Cell”. LibreTexts (2019年6月2日). 2020年3月29日時点のオリジナルよりアーカイブ。2020年3月29日閲覧。
- ^ Bose, Debopriya (2019年5月14日). “Six Main Cell Functions”. Leaf Group Ltd./Leaf Group Media. 2020年3月29日時点のオリジナルよりアーカイブ。2020年3月29日閲覧。
- ^ Sapp, Jan (2003). Genesis: The Evolution of Biology. Oxford University Press. pp. 75–78. ISBN 978-0-19-515619-5
- ^ Lintilhac, P.M. (Jan 1999). “Thinking of biology: toward a theory of cellularity—speculations on the nature of the living cell”. BioScience 49 (1): 59–68. doi:10.2307/1313494. JSTOR 1313494. PMID 11543344. オリジナルの6 April 2013時点におけるアーカイブ。 2012年6月2日閲覧。.
- ^ Whitman, W.; Coleman, D.; Wiebe, W. (1998). “Prokaryotes: The unseen majority”. Proceedings of the National Academy of Sciences of the United States of America 95 (12): 6578–6583. Bibcode: 1998PNAS...95.6578W. doi:10.1073/pnas.95.12.6578. PMC 33863. PMID 9618454 .
- ^ Pace, Norman R. (18 May 2006). “Concept Time for a change”. Nature 441 (7091): 289. Bibcode: 2006Natur.441..289P. doi:10.1038/441289a. PMID 16710401. オリジナルの16 October 2012時点におけるアーカイブ。 2012年6月2日閲覧。.
- ^ “Scientific background”. The Nobel Prize in Chemistry 2009. Royal Swedish Academy of Sciences. 2012年4月2日時点のオリジナルよりアーカイブ。2012年6月10日閲覧。
- ^ Nakano, A.; Luini, A. (2010). “Passage through the Golgi”. Current Opinion in Cell Biology 22 (4): 471–478. doi:10.1016/j.ceb.2010.05.003. PMID 20605430.
- ^ Panno, Joseph (2004). The Cell. Facts on File science library. Infobase Publishing. pp. 60–70. ISBN 978-0-8160-6736-7. オリジナルの13 April 2023時点におけるアーカイブ。 2023年8月10日閲覧。
- ^ Alberts, Bruce et al. (1994). “From Single Cells to Multicellular Organisms”. Molecular Biology of the Cell (3rd ed.). New York: Garland Science. ISBN 978-0-8153-1620-6 2012年6月12日閲覧。
- ^ Zimmer, Carl (2016年1月7日). “Genetic Flip Helped Organisms Go From One Cell to Many”. The New York Times. オリジナルの2016年1月7日時点におけるアーカイブ。 2016年1月7日閲覧。
- ^ Alberts, Bruce et al. (2002). “General Principles of Cell Communication”. Molecular Biology of the Cell. New York: Garland Science. ISBN 978-0-8153-3218-3. オリジナルの4 September 2015時点におけるアーカイブ。 2012年6月12日閲覧。
- ^ Race, Margaret S.; Randolph, Richard O. (2002). “The need for operating guidelines and a decision making framework applicable to the discovery of non-intelligent extraterrestrial life”. Advances in Space Research 30 (6): 1583–1591. Bibcode: 2002AdSpR..30.1583R. doi:10.1016/S0273-1177(02)00478-7. "There is growing scientific confidence that the discovery of extraterrestrial life in some form is nearly inevitable"
- ^ Cantor, Matt (2009年2月15日). “Alien Life 'Inevitable': Astronomer”. Newser. オリジナルの2013年5月23日時点におけるアーカイブ。 2013年5月3日閲覧. "Scientists now believe there could be as many habitable planets in the cosmos as there are stars, and that makes life's existence elsewhere "inevitable" over billions of years, says one."
- ^ Schulze-Makuch, Dirk; Dohm, James M.; Fairén, Alberto G. et al. (December 2005). “Venus, Mars, and the Ices on Mercury and the Moon: Astrobiological Implications and Proposed Mission Designs”. Astrobiology 5 (6): 778–795. Bibcode: 2005AsBio...5..778S. doi:10.1089/ast.2005.5.778. PMID 16379531.
- ^ Woo, Marcus (27 January 2015). “Why We're Looking for Alien Life on Moons, Not Just Planets”. Wired. オリジナルの27 January 2015時点におけるアーカイブ。 2015年1月27日閲覧。.
- ^ “Icy moons of Saturn and Jupiter may have conditions needed for life”. The University of Santa Cruz (2009年12月14日). 2012年12月31日時点のオリジナルよりアーカイブ。2012年7月4日閲覧。
- ^ Baldwin, Emily (2012年4月26日). “Lichen survives harsh Mars environment”. Skymania News. 2012年5月28日時点のオリジナルよりアーカイブ。2012年4月27日閲覧。
- ^ de Vera, J.-P.; Kohler, Ulrich (26 April 2012). “The adaptation potential of extremophiles to Martian surface conditions and its implication for the habitability of Mars”. EGU General Assembly Conference Abstracts 14: 2113. Bibcode: 2012EGUGA..14.2113D. オリジナルの4 May 2012時点におけるアーカイブ。 2012年4月27日閲覧。.
- ^ Selis, Frank (2006). “Habitability: the point of view of an astronomer”. In Gargaud, Muriel; Martin, Hervé; Claeys, Philippe. Lectures in Astrobiology. 2. Springer. pp. 210–214. ISBN 978-3-540-33692-1. オリジナルの5 November 2023時点におけるアーカイブ。 2023年8月10日閲覧。
- ^ Lineweaver, Charles H.; Fenner, Yeshe; Gibson, Brad K. (January 2004). “The Galactic Habitable Zone and the age distribution of complex life in the Milky Way”. Science 303 (5654): 59–62. arXiv:astro-ph/0401024. Bibcode: 2004Sci...303...59L. doi:10.1126/science.1092322. PMID 14704421. オリジナルの31 May 2020時点におけるアーカイブ。 2018年8月30日閲覧。.
- ^ Vakoch, Douglas A.; Harrison, Albert A. (2011). Civilizations beyond Earth: extraterrestrial life and society. Berghahn Series. Berghahn Books. pp. 37–41. ISBN 978-0-85745-211-5. オリジナルの13 April 2023時点におけるアーカイブ。 2020年8月25日閲覧。
- ^ Green, James; Hoehler, Tori; Neveu, Marc; Domagal-Goldman, Shawn; Scalice, Daniella; Voytek, Mary (27 October 2021). “Call for a framework for reporting evidence for life beyond Earth”. Nature 598 (7882): 575–579. arXiv:2107.10975. Bibcode: 2021Natur.598..575G. doi:10.1038/s41586-021-03804-9. PMID 34707302. オリジナルの1 November 2021時点におけるアーカイブ。 2021年11月1日閲覧。.
- ^ Fuge, Lauren (2021年10月30日). “NASA proposes playbook for communicating the discovery of alien life – Sensationalising aliens is so 20th century, according to NASA scientists.”. Cosmos. オリジナルの2021年10月31日時点におけるアーカイブ。 2021年11月1日閲覧。
- ^ “Artificial life”. Dictionary.com. 2016年11月16日時点のオリジナルよりアーカイブ。2016年11月15日閲覧。
- ^ Chopra, Paras; Akhil Kamma. “Engineering life through Synthetic Biology”. In Silico Biology 6. オリジナルの5 August 2008時点におけるアーカイブ。 2008年6月9日閲覧。.
関連文献
- 山口裕之『ひとは生命をどのように理解してきたか』講談社、2011年10月12日。
- 野田春彦、丸山工作、日高敏隆『新しい生物学 - 生命のナゾはどこまで解けたか』(第3版)講談社〈ブルーバックス〉、1999年。ISBN 978-4-06-257241-5。
- 大島泰郎『宇宙生物学とET探査』(第1刷)朝日新聞社、1994年。ISBN 4-02-260798-X。
外部リンク
- Life (英語) - スタンフォード哲学百科事典「生命」の項目。
- 『生命』 - コトバンク
- Wikispecies - ウィキスピーシーズは、全生物の分類を収録したウィキメディア財団のプロジェクト
- Clade Biota - Project The Taxonomicon
- Stanford Encyclopedia of Philosophy - スタンフォード哲学百科事典
LIFE
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/08/03 08:45 UTC 版)
「Hellsinker.」の記事における「LIFE」の解説
残機数をアイコンの数で表現している。上限はオプションで5~7個に設定が可能(初期値は6)。
※この「LIFE」の解説は、「Hellsinker.」の解説の一部です。
「LIFE」を含む「Hellsinker.」の記事については、「Hellsinker.」の概要を参照ください。
「life」の例文・使い方・用例・文例
固有名詞の分類
「LIFE」に関係したコラム
-
株365の銘柄の価格は、株価指数に採用されている銘柄の価格をもとにして算出されます。株価指数に採用されている銘柄はその国を代表するような優良企業であることが多く、また、取引高も多く市場から注目されてい...
- LIFEのページへのリンク