「バンド」を含む日記 RSS

はてなキーワード: バンドとは

2025-02-19

anond:20250218162609

観客を煽る性能が著しく低いので、バンドキーボードは要らん。キーボードが入ると、リズムグルーヴが出にくくなる。

anond:20250219141527

金の音でパフォーマンスでもするのか?

チャリチャリンか?それとも札束スラップか?

表に出ないならバンドメンバーじゃないぞ

anond:20250218162609

ラブライブスーパースターというアイドルアニメライブまでに新曲を作らなければいけないけれど曲作りで悩んで時間がないというシーンがあって、曲ができたとしてもオケはどうすんの?と思って見ていたらPCDAW開いてちゃちゃっと打ち込んでいて吹いた

と同時に今どきはこうなんだと感心した

ギターYouTuberさんでもギターだけ生であとはボカロと打ち込みみたいだし今は何でもできるよな

でもバンドではないか

anond:20250218162609

バンド楽器持ってるのって、アイドルが踊るのと同じで、見た目の問題でしょ?

音を出すためではない

2025-02-18

登録者10万人YouTuber

を見ている。

真剣に好き!とかではなく、作業用BGMとして動画をずっと流してる感じ。

複数人組だけど編集は1人がずっとやっているらしい。

おそらく編集担当は専業で、他メンバーは別でメインの仕事がある。

そのためフルでメンバー揃うことはあまりない。


10万人くらいで食べていけることを知らなかったのでちょっとびっくり。

10万人到達も相当大変なんだとは思うけど。

再生回数ショート動画かにもよるのかな。

結構な頻度で動画上げててすごい。

休みほぼなしでずっと編集してるみたいで大変だな〜と思いながら流し見してる。

ずっと見てるとメンバーキャラクター関係性が見えてきて好きになってくる。


メンバー全員アラサー前後だと思う。

10年後、この人たちはこのコンテンツを続けているのだろうか?

続けていて欲しいけど。

視聴者の年齢層も上がっていくだろうな。そうなると、今やってるような企画はやらなくなるんだろうか。

10時間配信で延々会話し続けてるの見ると体力すごいなと思う。

そういうのは無くなりそう。

誰かが結婚してしまうとガラリと空気が変わりそうだな。


10年前にテレビに出ていた芸能人で、現在テレビに出ているタレントは本当に稀だ。

すごく売れていた人でも気がついたらいなくなっている。

人気のあったバンド解散していなくなってしまう。

アイドルなども、年齢が上がるとファン熱量はあからさまに落ちる。

全盛期の売り上げは絶対に続かない。


YouTuber10年後、本当に分からない。

YouTube自体があるかも分からない。

一般社会で働いてる普通人間10年後はもはやどうなっているかからない時代だけど。

バンドってベースいらないよね?ギタードラムもいらんよね?

キーボードボーカルだけでよくないか

理由ギターの音やベースドラムの音もキーボードで出せるから

キーボード3人とボーカルでいいのでは

高校生が闇バンドなんてダメだよ〜。「弾いてるフリしてればいいから」なんて甘い言葉にだまされるとワンボックスに押し込まれて長期遠征で帰ってこれなくなるから

男には分からない女同士の隠されたバトルを説明するよ

男には分からない女同士の隠されたバトルを説明するよ

これは男同士でも行われてるけどやり方が若干違うから気づかない男も多い

男同士だと綺麗な女の人と結婚したりするとトロフィーワイフと言って自慢できるよね

これは女にもあるよ

女の場合社会的地位の高い男の人と結婚するとトロフィーハズバンドと言って自慢できる

「こんなかわいい女が俺の妻なんだぜ!」の女バージョンだね

「こんなすごい男が私の旦那なんだよ!」っていうのが女バージョンだね

医者弁護士上場企業社員とかと結婚するといっぱいマウントできるよ

でも結婚できない女の人が増えてきた最近ではこれが流行るとやめちゃう女の人も多いか制限しようと言う動きもあるよ

その一つが夫婦別姓だね

田村アンダーソン梨菜」みたいに日本人なのに真ん中にイギリス姓が入ってたりすると名前マウントできるから

イギリスみたいに夫婦別姓名前変える必要ないのにわざわざ変えてマウンティングしている女の人も多いね

女同士だとそう言うの気づいてピキッってすると思うんだけど不思議だねー

ツイッターフェミアカウントは男が多いのかなー

電子工作スキルなさそうな人のラズパイ制作アイテム見たら

ガムテープと結束バンド使ってて草

いやまぁこれならワイでもできそうだけどデカいと意味ないのよね

日常使い用途でもプラグアンドプレイで押し通せるキットと関連パーツあるかな・・・

ゲームをちょうどいいところでやめられずやりすぎてしま

ゲームのやりすぎで人生大事なところでいつもしくじっている気がする。

私の場合シミュレーション系のゲームを延々とやり続けてしまう。最初プレステ三國志4だった。その次はウイイレマスターリーグ、その次はエイジオブエンパイアをやりこんだ。エイジオブエンパイアはやりすぎて大学単位が危なくなったのゲームディスク自分で捨てた。

いまはパワプロの栄冠ナインを35年やり続けている。ゲーム以外では、職場の積み残しの仕事はあるし、「自己学習課題もやんなくちゃいけないし、バンド練習はしなくちゃいけないし、息子の学校父母会仕事もあるけど、全部ほっといてパワプロやってる。

ヤバすぎるので、これを書き終わって投稿したら、セーブデータします。こんな自分嫌だ。

2025-02-17

大学四年間で自分が「モテない男」だってことがやっとわかった。

とうとう童貞喪失のないまま大学卒業となってしまった。

大学入学当初はこんなことになるとは思っておらず、

まさか自分が「モテない男」の側に所属しているとは考えてもみなかった。

 

俺は入学から一人暮らし彼女を捕まえて、

性的にだらしない生活を送ろうと決心していて、

実際、女性と知り合うたびに「実家暮らしですか?」とそれとなく聞いては、

「そうだよ」と返事があると秘かに恋愛対象から除外していたものだ。

 

高校時代女性とは縁がなかったのだが、それはそれ、努力していなかったからで、

俺も人並みの努力をすれば、性の営みを行えるものだと考えていたのだ。

最初はビクビクしていたものだが、「女性に話しかける」というのも案外と容易なもので、

連絡先も聞きさえすれば教えてくれるので「これはイケるぞ」と確信を深めた。

 

だが、本当に難しいのはここからだった。

連絡先の交換はできる、デートもしてくれる、しかし、セックスはしてくれないのだ。

女性と知り合い、デートを重ね、さてセックスをさせてくださいという段になると、

途端に相手の態度が冷淡になり、そして連絡がつかなくなる、ということが繰り返された。

 

一人の女など、俺と指を絡ませて歩き、一つのアイスクリームを二人で食べたりした。

デート終わり、ではキスをしようと背中に腕を回すと「嫌だ」と拒否をする。

いろいろと理由を言われたが連呼したのは「人が見ているから」だった。

しかし、そこは屋外というだけで、周囲にこっちを見ている人などいなかった。

その後、メールの返信が次第に遅くなり、しばらくして返事が途絶えた。

 

かにも家にまで呼んでおきながら、俺が求めると拒否する女もいた。

その女があるバンドライブDVDを持っていると言うので、

「俺もそのバンド好きだよ」と(嘘を)言うと、じゃあ遊びに来なよ、と言う。

俺は部屋に入れてくれるということは、OKだということだと理解し、期待をした。

それで女の家に行き、ベッドに並んで座りながら、DVDを見ていた。

実は俺は音楽ライブの楽しみ方がわからず、現場に入れば身体を揺らすなどして、

身体的に楽しむこともできようが、家で見る、となるとどうすればいいかからなかった。

から、黙ってみていたのだが、これがおそらく良くなかった。

15分ほどして「そろそろいいかな」と思い、女に抱きつくと、女の態度がおかしい。

俺の身体を強引に引き離し、ふぅふぅと息を荒げている。そして冷たく「帰って」と言い放った。

帰り道、「ごめん」とメールを送るも、音沙汰がなく、以降連絡はとれない。

これは今でも思い出す度にとても悲しくなる。

黒髪ロングの目鼻立ちがはっきりした美人で、あとちょっとだった。

 

一番上手くいっている女とは今でも連絡を取り合っていて、一緒に酒も飲む。

その女は7歳は年上なのだが、童顔で、頭が少し弱く、可愛い

彼女は優しくて、俺がどんな話をしてもニコニコと聞いてくれるし、

酔った勢い(のフリ)でよく抱きついたり、お尻を触ったりしているのだが、怒らない。

しかし、彼女の腕を掴んで「セックスがしたい」と懇願しても「ダメ」と一蹴される。

だが、これは仕方のないことでもあり、というのも、彼女には夫がいるのだ。

俺は彼氏持ちや既婚者の女とは仲良くなりやすいのだが、セックスはさせてくれない。

 

最初は失敗しても「自分の誘い方がマズかったのだろう」とか

「次はもっと上手くやろう」やらと反省したものだが、

何度もそれが重なり、ついにはセックスできないまま大学卒業となり、

「ああ、自分女性に好かれる要素がないのだな」とやっと思い至った。

 

これを認めるのは本当に苦しいが、事実なのだからしょうがない。

俺はモテない男であり、異性交友のセンスが甚だしく欠如しているのだ。

街中でカップルを見ると、「なぜあいつはセックスできて俺はできんのだ」と悲しくなる。

特に女が妊娠していたりすると「こいつは中出しをされたのか」と凝視してしまう。

俺を拒んだ女たちが「モテる男」から誘われたのなら、

セックスさせてあげるのだろうと想像すると、怨めし気持ちが湧いてくる。

 

もう女性に期待するのはやめて、嫉妬の念も何とか抑えて、慎ましく生きていこうと思う。

簡単セックスできる男たちは、俺に怨まれても大目に見てくれ。

俺はもう十分努力したし、努力してもどうにもならないとわかったのだ。

anond:20250217193242

周波数多重化を使用する場合は、事前にだれがどの周波数使用するか決める必要があるのではないでしょうか?

周波数多重化(FDM)では事前に周波数を決める必要があるのか?

はい、その通りです! 周波数多重化(FDM: Frequency Division Multiplexing)を使用する場合、事前に「どの通信がどの周波数を使うか」を決める必要があります

そうしないと、異なる通信が同じ周波数を使ってしまい、「混信(干渉)」が発生してしまからです。

以下、詳しく解説します。

1. 周波数多重化(FDM)の基本原理

FDMは、1本の電線複数の異なる周波数信号を流し、それぞれを個別に送受信する技術です。

📌 例:3つの通信をFDMで同時に送る場合

[通信1] → 500Hz
[通信2] → 800Hz
[通信3] → 1000Hz

送信側は 異なる周波数信号送信 する。

受信側は フィルターを使って周波数ごとに分離 し、それぞれの通信復元する。


2. なぜ周波数を事前に決める必要があるのか?

周波数を決めずに無秩序通信を行うと、以下の問題が発生します。

(1) 周波数の重複(混信)

もし 2つの通信が同じ周波数を使うと、信号が混ざってしまい、正しく受信できなくなる。

これは「周波数の競合」と呼ばれる問題

[通信A] → 800Hz
[通信B] → 800Hz
(受信側) → 800HzにAとBの信号が混ざり、正しく判別できない


(2) ノイズ干渉

周波数が近すぎると、互いの信号干渉し、受信品質悪化する。

これを防ぐため、適切な「周波数の間隔(ガードバンド)」を設ける必要がある。

[通信A] → 500Hz
[ガードバンド](空き周波数)
[通信B] → 800Hz

ガードバンド(無信号の帯域)を入れることで、通信Aと通信Bが干渉しにくくなる。

3. どのように周波数を決めるのか?

(1) 固定割り当て方式

通信ごとに固定の周波数を割り当てる方式

事前にどの通信がどの周波数を使うかを決めておく。

[通信A] → 500Hz (専用)
[通信B] → 800Hz (専用)
[通信C] → 1000Hz(専用)

長所: 混信が発生せず、安定した通信可能

短所: 周波数が固定されるため、使っていない周波数無駄になることがある。

(2) 動的割り当て方式

必要に応じて、利用可能周波数を動的に割り当てる方式

空いている周波数リアルタイムに決めるため、効率的に利用できる。

[現在通信]
[通信A] → 500Hz
[通信B] → 800Hz
(通信Bが終了)
[新しい通信C] → 800Hz(Bが空いたので再利用

長所: 周波数効率よく使える。

短所: 送信側と受信側が「どの周波数を使うか」をリアルタイムで同期する必要がある。

(3) 周波数ホッピング方式軍事セキュリティ用)

通信中に周波数を高速で切り替える方式(例: 軍事無線Bluetooth)。

盗聴や妨害を防ぐ目的で使われる。

0.1秒ごとに使用周波数が変化

[通信A] → 500Hz → 800Hz → 1000Hz(送信側と受信側で同期)

長所: 盗聴や妨害が困難になる。

短所: 送信側と受信側が正確に同期する必要がある。

4. まとめ

周波数多重化(FDM)では、事前にどの周波数使用するか決める必要がある。

✅ 決めずに通信すると「周波数の重複(混信)」や「干渉ノイズ)」が発生する。

✅ 事前に固定する方式(固定割り当て)、空いている周波数を使う方式(動的割り当て)、通信中に周波数を変える方式周波数ホッピング)などがある。

✅ この技術は、ラジオ放送携帯電話(4G/5G)、Wi-Fiなどの現代通信にも応用されている。

マルコーニの電信でも固定割り当て方式・動的割り当て方式周波数ホッピング方式などが使われていたのですか?

電信における周波数管理(固定割り当て・動的割り当て・周波数ホッピング

電信では、基本的に「固定割り当て方式」が使われていましたが、後に「動的割り当て方式」や「周波数ホッピング方式」の概念も登場しました。

ただし、当初の電信アナログ周波数多重化(FDM)ではなく、主に時間を分ける方式(TDM)や別の回路を使う方式が主流 でした。

では、各方式がどのように電信適用されたのか、具体的に説明していきます

1. 固定割り当て方式周波数を事前に決める)

電信の初期(有線・無線電信)では、固定割り当て方式一般的でした。

(1) 有線電信モールス符号

特定電信回線電線)ごとに通信者を固定。

1本の電線は1つの通信に専用(最初は1つの通信しかできなかった)。

ロンドン - パリ線(Aさん専用)

ニューヨーク - ボストン線(Bさん専用)

(2) 無線電信マルコーニの無線

特定周波数ごとに通信を割り当てる方式(固定周波数)。

例えば、軍事通信船舶通信では、**「この周波数は〇〇船専用」**と決められていた。

500kHz → 国際緊急通信SOS

850kHz → 商業通信船舶 → 陸地)

1000kHz → 軍事専用

2. 動的割り当て方式周波数リアルタイムで決める)

送信するタイミングで、利用可能周波数(または回線)を選ぶ方式

固定割り当てでは周波数無駄になるため、効率を上げるために開発された。

(1) 有線電信での動的割り当て

回線交換」技術を使い、通信ごとに使う電線を切り替えた。

これは、後の「電話交換機」の仕組みにもつながる。

Aさんが送信しようとすると、空いている回線を選ぶ
  └ [回線1] 使用中
  └ [回線2] 空き → 使用
Bさんが次に送信 → [回線3] を使用

問題点: 繋がるまで時間がかかる(交換手が必要)。

(2) 無線電信での動的割り当て

無線通信が増えると、「周波数の混雑」が問題になった。

そこで、送信時に「空いている周波数」を探し、利用する方式が開発された。

Aさんが送信しようとする
  └ [500kHz] 使用中
  └ [850kHz] 空き → 使用
Bさんが送信 → [1000kHz] を使用

3. 周波数ホッピング方式妨害対策軍事用)

通信中に周波数を切り替える方式ランダムまたは決められたパターン)。

無線電信軍事重要視されるようになったため、敵に妨害されにくい方式として開発された。

1940年代ハリウッド女優ヘディ・ラマー」と作曲家ジョージ・アンタイル」が特許を取得し、軍事通信に応用された。

0.1秒ごとに周波数が変化
[送信側] → 500kHz → 850kHz → 1000kHz
[受信側] → 500kHz → 850kHz → 1000kHz(同期)

長所: 妨害ジャミング)を受けにくい。

短所: 送信側と受信側が同期する必要がある(技術的に難しい)。

anond:20250217032556

フィルタ回路?

>(4) ノイズ対策

フィルタ回路を追加し、雷や外部ノイズによる誤信号の混入を低減。

フィルタ回路とは何ですか?

1. フィルタ回路とは?

フィルタ回路は、不要ノイズ高周波低周波干渉)を除去し、必要信号だけを通す回路 です。

電信通信においては、雷、誘導ノイズ地磁気変動などによる不要電流カット する役割を果たしました。

2. ノイズの種類と影響

(1) 雷(サージノイズ

雷の影響で強い電圧変動が発生し、電信線に一瞬大きな電流流れる

これがモールス符号の「短点(・)」や「長点(―)」に誤認される 可能性がある。

(2) 他の電信線との干渉クロストーク

複数電信線が並行して走っていると、お互いの信号干渉することがある。

これにより、「H」を送信したつもりが「I」に誤認されるなどのエラーが発生。

(3) 誘導電流(電磁ノイズ

近くに高電圧電線があると、電磁誘導によって不要電流が発生 し、電信信号乱れる

3. フィルタ回路の仕組み

フィルタ回路には**「特定周波数帯の信号だけを通し、それ以外を遮断する」** という働きがあります

これにより、ノイズを除去し、純粋電信信号だけを伝送することが可能になります

(1) ローパスフィルタ(低域通過フィルタ

一定以上の周波数カットし、低周波信号モールス信号)だけを通す。

これにより、高周波ノイズ(雷や誘導電流)が影響しにくくなる。

(2) ハイパスフィルタ(高域通過フィルタ

低周波ノイズ地磁気変動など)をカットし、必要信号だけを通す。

例えば、低い電圧の誤信号地磁気の変化による微弱な電流)を防ぐ。

(3) バンドパスフィルタ(帯域通過フィルタ

モールス信号周波数帯域(例:300Hz~800Hz)のみを通し、それより高すぎる or 低すぎる信号カット

必要範囲信号のみ通すため、誤信号の発生率が大幅に減少。


4. 電信での実装方法

フィルタ回路は、次のように電信システムに組み込まれました。

(1) 受信側にフィルタ回路を追加

モールス電信の受信機の前にフィルタを挿入し、ノイズを除去してから信号を受信する。これにより、オペレーター不要ノイズを聞かずに済む。

(2) グランド(接地)回路の強化

電信線の片側を地面に接続し、雷や外部ノイズを地面に逃がす「避雷回路」 を導入。雷が落ちた際、フィルタを通じてノイズグラウンドに逃し、受信機が誤動作しないようにした。

(3) ツイストペア線の導入

電信線を「ツイストペア(2本の導線をねじる)」構造にすることで、電磁ノイズの影響を減らす。これにより、隣の電信から干渉クロストーク)が大幅に軽減。


5. 現代への応用

フィルタ回路の技術は、現在通信技術にも応用されています

技術 説明

電話回線ノイズフィルタ アナログ電話回線では、低周波ノイズカットするフィルタが使われる。

インターネットルーター 高周波信号だけを通すフィルタを搭載し、データ通信信号品質を向上。

Wi-Fiバンドフィルタ 必要周波数(2.4GHz, 5GHz)だけを通すことで、干渉を防ぐ。

なぜねじる?

電信線を「ツイストペア(2本の導線をねじる)」構造にすることで、電磁ノイズの影響を減らす。

なんでねじるだけでそのようなことが可能なのですか?


ツイストペア線Twisted Pair)の仕組みとノイズ低減の原理

電信線を「ツイストペア(2本の導線をねじる)」構造にすることで、電磁ノイズの影響を減らすことができます

これは、電磁誘導干渉原理を利用した技術で、現在LANケーブル電話回線にも応用されています

1. なぜツイストペアノイズを減らせるのか?

ツイストペア線では、2本の導線をねじることで、外部ノイズの影響を打ち消す効果があります

(1) 外部ノイズの影響を平均化

例えば、電信線の周囲に**外部ノイズ源(電磁波、雷、他の電線の影響)**があるとします。

2本の導線が平行に配置されている場合、片方の導線だけに強くノイズが影響する可能性がある。

しかし、導線がねじられていると、外部ノイズの影響が導線全体で均等になり、結果として平均化される。

(図示:外部ノイズが発生する例)

平行な電線: 外部ノイズが不均等に影響
  ───────────  ← ノイズ(強い影響)
  ───────────  ← ノイズ(弱い影響)
ツイストペア線: ノイズが交互に影響し、平均化
\/\/\/\/\/\/\/  ← ノイズ(平均化)
/\/\/\/\/\/\/\

(2) 電磁誘導の打ち消し

電線流れる電流は、周囲に**磁場電磁波)**を発生させる。

ツイストペアでは、隣接する部分で磁場の向きが逆になるため、互いに打ち消し合い、ノイズが発生しにくくなる。

ワンタイムパッドってなに?

>(2) 乱数表を用いた暗号化

乱数表を使ってモールス符号を変換し、意味を隠す方法が開発された(ワンタイムパッド方式の先駆け)。

ここを詳しく教えてください

モールス電信では、盗聴のリスクを防ぐために暗号化技術が発展しました。その中でも、乱数表を利用した暗号化は、後に「ワンタイムパッド(One-Time Pad)」として発展する重要技術の先駆けでした。

1. 乱数表を用いた暗号化の仕組み

乱数表を使った暗号化は、送信する内容を事前に用意したランダムな数列と組み合わせて変換する方法です。

これは、一度しか使えない乱数を使うことで、解読がほぼ不可能になるという特徴があります

(1) 暗号化の手順

1.送信するメッセージを用意(例:「HELLO」)

2.事前に用意した乱数表を使う

例えば、「HELLO」に対して「37492」という乱数を割り当てる。

3.乱数メッセージを加算して符号

「H(8)+3 = 11」、「E(5)+7 = 12」、「L(12)+4 = 16」……

これを「11 12 16 16 25」として送信

4.受信者は同じ乱数表を持っており、復号する

11-3 = 8(H)」、「12-7 = 5(E)」……として元のメッセージ復元

2. 具体的な暗号化の例

(1) 乱数表の例

文字: A B C D E F G H I J K L M

乱数値: 3 7 4 9 2 5 8 3 6 1 0 4 7

文字: N O P Q R S T U V W X Y Z

乱数値: 2 5 3 9 1 4 7 8 6 2 3 5 0

(2) 送信するメッセージ

HELLO

(3) 乱数適用して変換

H(8)+ 3 = 11

E(5)+ 7 = 12

L(12)+ 4 = 16

L(12)+ 4 = 16

O(15)+ 5 = 20

送信される暗号文は:

11 12 16 16 20

3. 乱数表方式メリット

(1) 非常に強力な暗号化

事前に用意された 完全にランダムな数列 を使うため、乱数表を持っていない第三者が解読することは不可能

暗号文のパターン存在しないため、頻度分析による解読ができない。

(2) 一度しか使えない(ワンタイムパッド)

同じ乱数表を繰り返し使用すると解読されるリスク高まるため、使い捨てにするのが基本。

「ワンタイムパッド(One-Time Pad)」の基礎になった技術

(3) 盗聴対策

たとえモールス符号が傍受されても、受信者が持つ乱数表なしでは意味を解読できない。

4. 乱数表方式デメリット

(1) 事前に乱数表を共有する必要がある

送信者と受信者が 同じ乱数表を持っていないと通信できない。乱数表安全に配布する必要があり、これ自体が盗まれリスクがある。

(2) 一度しか使えない

同じ乱数表を何度も使うとパターンが発生し、解読される可能性がある。通信ごとに新しい乱数表を準備する必要がある。

5. 歴史的な応用

(1) 軍事通信19世紀末~20世紀)

軍隊では、電信の盗聴を防ぐために乱数表暗号採用特に第一次世界大戦第二次世界大戦では、機密電報暗号化に利用された。

(2) ワンタイムパッド(One-Time Pad)の確立

乱数表暗号アイデアは、後に「ワンタイムパッド暗号」として正式確立。これは理論上、絶対に解読不可能暗号方式であり、現在でも**超機密通信政府・軍・外交通信)**に使われている。

6. 現代への影響

乱数表を用いた暗号化は、以下の技術に発展しました:

技術 説明

ワンタイムパッド(One-Time Pad) 完全に安全暗号方式数学的に解読不可能

暗号鍵の生成技術 コンピュータでの乱数生成に応用

現代のエンドツーエンド暗号通信 メッセージごとに新しい暗号キーを使う発想

この仕組みについて、さらに詳しく知りたい部分(例えば乱数表の作り方、実際の軍事暗号の事例、現代暗号技術との関係)があれば、ぜひ質問してください!

どの乱数表つかうの?

乱数表を事前に共有するのは分かったのですが、送信者がどの乱数表を使ったのか分からないので受信者もどの乱数表を使えばいいのか分からなくないですか?

乱数表を事前に共有している場合送信者と受信者はどの乱数表を使うのか?

乱数表を使った暗号通信では、送信者と受信者が同じ乱数表を選んで使う必要があります

これを実現するために、以下の方法が考案されました。

1. 乱数表管理方法

送信者と受信者がどの乱数表を使うかを決める方法には、次のような方法があります

(1) 事前に順番を決めておく

乱数表リスト」**を事前に作成し、「1番目の乱数表 → 2番目の乱数表 → 3番目の乱数表」という順番で使用する。

送信者も受信者も、現在通信で 何番目の乱数表を使うのかを把握しておけば、同じものを使える。

1. 乱数表A(2024/02/17用)

2. 乱数表B(2024/02/18用)

3. 乱数表C(2024/02/19用)

2月17日送信する場合乱数表A を使用

2月18日送信する場合乱数表B を使用

送信者と受信者が 同じスケジュールに従って進めば、どの乱数表を使うべきか分かる。

(2) メッセージの中に乱数表識別番号を埋め込む

暗号文の先頭や末尾に、乱数表識別番号を入れておく。

信者識別番号を見て、対応する乱数表を使って復号する。

例(識別番号方式

暗号文:「12-48-93-55-02 (ID: 23)」

送信者が乱数表ID: 23」を使った場合、受信者は 「乱数表23」を選んで復号する。

(3) ワンタイムパッドの冊子を使用

事前に物理的な冊子を作成し、ページ番号を基準使用

例えば、通信のたびに1ページずつ破棄しながら進むことで、送信者と受信者が同期できる。

1ページ目:乱数表A(1回目の通信

2ページ目:乱数表B(2回目の通信

3ページ目:乱数表C(3回目の通信

使用したページは破棄することで、再利用を防ぐ(安全性が向上)。

(4) 日時を基準にする

例えば「2024年2月17日」のメッセージには、事前に決めた「2024/02/17用の乱数表」を使用

信者も同じルールで進めば、乱数表自動的に同期する。

2月17日乱数表 A

2月18日乱数表 B

2月19日乱数表 C

送信者と受信者カレンダーを共有していれば、追加の情報なしで同期が可能


(5) 数字放送ナンバーズステーション)の活用

スパイ軍事通信では、「数字放送」と呼ばれる短波ラジオ放送を利用し、乱数表識別情報を事前に送る方式が使われた」。

ラジオで**「本日キーは56」と送れば、受信者は「乱数表56」を使用する**ことができる。

2. 乱数表管理安全

一度使用した乱数表は必ず破棄し、再利用しない(ワンタイムパッド方式)。

乱数表が盗まれると危険なので、軍事スパイ通信では 使用後に物理的に燃やす(焼却処分) こともあった。

3. まとめ

送信者と受信者が同じ乱数表を選ぶ方法

事前に順番を決めておく(1回目の通信乱数表A、2回目→乱数表B)

メッセージ内に乱数表識別番号を含める(例:「ID: 23」を記載

ワンタイムパッドの冊子を作り、ページ番号順に使う

日付ごとに対応する乱数表を使う(例:2024/02/17乱数表A)

ナンバーズステーションのような方法で、事前に識別情報を伝える

識別認証コードってなに?

>3. 通信改ざん対策

>(1) 送信者の識別

>各電報には、**送信元の情報識別コード)**を付加し、なりすましを防ぐ仕組みが取られた。例:軍の電信では、送信者の認証コードを含めることで、偽のメッセージ排除

これはどういうことですか?

通信改ざん対策:(1) 送信者の識別

電信通信では、悪意のある第三者が偽のメッセージ送信し、受信者を騙すリスクがありました。

これを防ぐために、**送信者が本物であることを証明する仕組み(識別コード認証コード)**が導入されました。

1. なぜ送信者の識別必要なのか?

(1) なりすまし攻撃リスク

敵国やスパイが偽の軍事命令を送る可能性があった。例えば、**「本日午後3時に攻撃を開始せよ」**という偽の命令を送れば、相手を混乱させることができる。

(2) 本物の送信者を識別する必要

送信者が「本物」であることを確認しないと、受信者メッセージが信頼できるかどうか判断できない。そのため、送信者の識別情報認証コード)を追加し、受信者確認できる仕組みが作られた。

2. 送信識別方法

送信者の識別には、いくつかの手法が用いられました。

(1) 固有の識別コード付与

送信者ごとに 「ユニーク識別コード」 を設定し、電報最後に付加。受信者識別コードをチェックし、本物の送信であることを確認

📌 例(軍事電信識別コード

ATTACK AT DAWN. [CODE: XJ-472]

「XJ-472」が正しい識別コードなら、本物のメッセージ判断

偽の電信を送る者は、正しい識別コードを知らないため、識別される。

(2) 送信者の署名シグネチャー

送信者ごとに 決められた特定の「符号モールス符号パターン)」を入れる ことで、なりすましを防ぐ。

これは現代の「電子署名」のような仕組み。

MESSAGE: MEET AT POINT B

SIGNATURE: -.. .- ... .... (DASH)

送信者の Permalink | 記事への反応(2) | 03:26

ChatGPT 4o先生、まじ先生

先生何でも知ってるな

電気通信が登場するより前の通信歴史

今日通信歴史について学びたいです、電気通信が登場する以前の通信歴史についてお教えてください

高卒おじさんでも分かるように説明してね

1. 古代通信手段

(1) 口伝(くでん)と使者 (2) 狩猟戦争における合図 (3) 狼煙のろし

2. 古代文明の文字による通信

(1) 楔形文字メソポタミア)・ヒエログリフエジプト) (2) 郵便制度の発展

3. 中世通信手段

(1) 紀元5世紀15世紀 (2) 烽火(ほうか)・のろし (3) 飛脚制度日本

4. 近世(16~18世紀

(1) 印刷技術新聞 (2) 光学通信(腕木通信

電気通信以降の通信歴史

次に電気通信が登場以後の通信歴史についてお教えてください

1. 電信発明19世紀前半)

(1) モールス電信(1830~1840年代)

(2) 海底電信ケーブル(1858年

2. 電話発明19世紀後半)

(1) グラハム・ベル電話1876年

(2) 交換機の導入

3. 無線通信の登場(19世紀末~20世紀初頭)

(1) マルコーニと無線電信1895年

グリエルモ・マルコーニ無線通信ラジオ通信)の実験成功

1901年大西洋横断無線通信を達成し、船舶遠距離通信活躍

(2) AMFMラジオの発展(1920年代~)

1920年代AMラジオ放送が開始され、大衆向けの放送メディアとして普及。

1933年FMラジオ周波数変調)が登場し、音質が向上。

4. テレビ人工衛星20世紀中盤)

(1) テレビ放送の開始(192030年代

(2) 人工衛星通信の発展(1960年代~)

5. コンピュータインターネット誕生20世紀後半)

(1) コンピュータネットワークの発展

(2) インターネット誕生(1980~90年代

(3) 携帯電話の普及(1990年代~)

6. 現代通信技術21世紀~)

(1) スマートフォンの普及(2010年代~)

(2) 5G・6G通信2020年代~)

(3) 衛星インターネット宇宙通信

腕木通信

腕木通信の仕組みについて教えてください

1. 基本構造

腕木通信塔は以下の要素で構成されます

通信塔(セマフォア塔) 高い場所に建てられ、見晴らしの良い地点に設置される。直線上に複数の塔が並び、情報リレー方式で伝える。

腕木(アーム) 一般的には2本または3本の可動式の木製の腕。腕の角度を変えることで、異なる文字数字表現する。

制御機構 塔の内部には腕木を動かすためのハンドルロープがあり、通信員が操作する。

2. 通信の流れ

(1) 情報符号

腕木通信では、腕木の角度を組み合わせてアルファベット数字を表す符号が決められていました。

例: ある位置の角度が「A」、別の角度が「B」を意味する。組み合わせることで単語文章を伝達。

(2) 視認と伝達

信者通信員)が塔の上で腕木を特定の角度にセットする。隣の通信塔の通信員が望遠鏡でその信号確認する。確認した通信員が同じ符号自分の塔で再現する。これを繰り返し、情報が数十~数百km先までリレー方式で送られる。

3. 腕木通信の特徴

(1) 速さ

馬や飛脚より圧倒的に速く、良好な天候なら数百km先まで数分~数時間で伝達できた。例: フランスでは、パリリール間(約230km)を約3分通信可能だった。

(2) 天候の影響

晴天時は遠くまで見えるため有効だったが、霧・雨・夜間は利用できなかった。これが電信発明へとつながる大きな要因となった。

(3) 軍事行政利用

フランスではナポレオン戦争(1803-1815年)の際、軍事通信活用された。ヨーロッパ各国でも行政軍事目的で導入。

腕木通信の仕組みについてさらに知りたいです

例えばHELLOという言葉送信するにはどのようにするのですか?

アルファベット数字を表すために、腕木の角度を組み合わせた符号表(コードブック)が用意されていました。

ここでは、腕木通信で「HELLO」を送る具体的な手順を説明します。

1. 腕木通信の基本構造

腕木通信塔は以下の要素で構成されます

腕木(アーム):通常、2本または3本の可動アームが使われる。

制御機構:塔の中の操作員がロープや滑車でアームを動かす。

符号表(コードブック):各アルファベット数字特定のアームの角度が割り当てられている。

例:腕木の角度とアルファベット対応表(仮)

A = 10° / 30°

B = 20° / 40°

C = 30° / 50°

...

H = 80° / 12

E = 50° / 90°

L = 70° / 11

O = 90° / 130°

2. 「HELLO」を送る手順

腕木通信は 1文字ずつ順番に送信 し、隣の塔がそれを読み取り、次の塔に伝えるリレー方式情報を伝達します。

(1) Hを送信 通信塔のオペレーターが腕木をHに対応する角度(80° / 120°)に設定。隣の塔の通信士が望遠鏡確認し、同じ符号再現

(2) Eを送信 次に、腕木をEの角度(50° / 90°)に変更。これを隣の塔へリレー

(3) Lを送信(2回) Lの符号を作り、2回送信。

(4) Oを送信 最後に、Oの符号(90° / 130°)を送る。

3. 実際の腕木通信での改善

略語コード表の活用

文字ごとに送ると時間がかかるため、短縮コード(例:「HLO」で「HELLO」とする)を使うこともあった。軍事通信では暗号化された符号使用

エラーチェック

送信ミスを防ぐために「確認信号」を送ることがあった。受信者が「正しく受信した」ことを示す信号を返す方式採用

数値や記号送信

単なるアルファベットだけでなく、「数字」「特別記号」も符号表で定義

10° / 30°ってなに?

A = 10° / 30°

とはどういう意味なのですか?

10度のこと?30度のこと?


「A = 10° / 30°」という表記は、腕木(アーム)が複数ある場合に、それぞれの角度を指定する方式です。

通常、腕木通信には2本または3本の可動アームがあり、それぞれのアームを特定の角度にセットすることで、1つの文字数字表現します。

例えば、2本の腕木(上側と下側)がある場合

「A = 10° / 30°」は、次のように解釈できます

上のアーム:10° 下のアーム:30°

この2つの角度の組み合わせで「A」を表す。

確認信号ってなに?

送信ミスを防ぐために「確認信号」を送ることがあった。

>受信者が「正しく受信した」ことを示す信号を返す方式採用

これはどのような仕組みですか?

一般的確認手順として、次のような方法が考えられます

1.送信者が「A」送信

腕木を「A」対応する 10° / 30° の位置にセットし、隣の塔に見せる。

2.受信者「A」を受信

望遠鏡で腕木の角度を確認し、自分符号表と照合する。

もし「A」だと正しく認識できた場合確認信号を送る。

3.受信者確認信号送信

確認信号(例:「了解」を示す特定の腕木角度、または短い「OK信号)を送信する。

例えば「50° / 90°」のように、「受信しました」の意味を持つ角度が設定される。

4.送信者が確認信号を受信

信者から確認信号を見て、正しく受信されたことを確認 する。

正しく受信された場合、次の文字(Bなど)を送信する。

もし確認信号が来ない場合、または誤りを示す信号が来た場合、もう一度「A」送信し直す。

腕木通信には、以下のようなエラーチェックの方法も考案されました:

(1) 再送要求

信者符号を読み取れなかった場合、「もう一度送ってください」という特定信号リクエスト信号)を送る。

例:「不明瞭」や「再送」を示す角度(例:60° / 120°)を使用

(2) 確認の二重チェック

信者だけでなく、次の塔が再び「A」を送ることで、送信者が正しく伝わったことを確認できる。

これにより、1つの塔で間違いがあっても、別の塔で補正可能

電磁電信

次にサミュエルモールス(Samuel Morse)の電磁電信機の仕組みを教えてください

モールス電信機は、次の要素で構成されています

(1) 送信側(キー

電鍵(モールスキー) 手動のスイッチで、押すと電流流れる。押す時間の長短で「短点(・)」や「長点(―)」を作る。

(2) 通信

電線単線または複数線)送信機と受信機をつなぐ導線。初期の電信機は1本の電線と地面(アース)を回路として利用。

(3) 受信側(電磁石スタイラス

磁石

送信側でスイッチが押されると、電流が流れて磁場が発生。電磁石作動し、紙に記録する装置が動く。記録装置スタイラス紙テープスタイラス(針) が上下に動き、紙テープに「短点(・)」や「長点(―)」を記録。初期は音ではなく、紙テープに記録する方式が使われた。

>電磁石作動し、紙に記録する装置が動く。

この仕組みについて詳細に説明してもらえます

モールス電信機の受信機は、以下の主要な部品構成されています

(1) 電磁石

送信者が電鍵(モールスキー)を押すと、電流が流れ、受信側の電磁石電流が到達。電磁石が磁力を発生し、アームを引き寄せる。

(2) アーム(振り子状のレバー

磁石の磁力によってアームが動く(電流が流れた瞬間に引き寄せられる)。電流が切れると、バネの力でアームが元の位置に戻る。

(3) スタイラス(記録針)

アームの先端には スタイラス(記録針) が付いている。アームが動くことで、スタイラス紙テープ接触し、点や線を刻む。

(4) 紙送り装置

受信機には ロール状の紙テープ がセットされており、一定の速度で送られる。紙テープ一定の速度で進むことで、信号が「短点(・)」や「長点(―)」の形で記録される。

記録の流れ

(1) 短点(・)の記録

送信者が電鍵を短く押す(例:0.1秒)。受信機の電磁石が一瞬作動し、アームが紙に軽く接触。紙に小さな点が刻まれる(・)。電流が切れると、バネの力でアームが元の位置に戻る。

(2) 長点(―)の記録

送信者が電鍵を長く押す(例:0.3秒)。受信機の電磁石が長い間作動し、アームが長時間紙に押し付けられる。紙に長い線(―)が刻まれる。電流が切れると、バネの力でアームが元の位置に戻る。

(3) スペース(間隔)

電鍵を押さな時間が長いと、記録装置には何も刻まれず、文字区切り生まれる。一定時間(例:3単位)何も信号がなければ、単語区切りとみなされる。

音響受信への進化

初期のモールス電信では、紙テープに記録された符号を手作業で解読していた。

しかし、受信機のアームが動くと「カチッ」という音がすることに気づきオペレーターが耳で直接モールス符号を聞き取る方式サウンドレシーバー方式)が生まれた。

これにより、紙に記録しなくてもリアルタイムメッセージを受信できるようになった。

電流届かなくない?

電線電流を流す仕組みを聞いた限り距離制限されそうに思えます

これについて詳しく教えてください

モールス電信機は電流電線に流して情報を伝えるため、通信距離はいくつかの制限がありました。特に、長距離になると電流が弱まり信号が減衰(減少)するという問題がありました。

ここでは、電信通信距離制限と、それを克服するための技術について詳しく解説します。

距離電信通信において、電流の減衰(弱まる)原因として次のような要因がありました。

(1) 電気抵抗

電線の長さが長くなると、電気抵抗電流の流れを妨げる力)が増えるため、電流が弱まる。銅や鉄などの導線を使用していたが、特に鉄線は抵抗が大きく、距離が長くなると信号が伝わりにくくなる。

(2) 電流漏れ(地面への放電

19世紀電信では、片側の導線+地面を電流の経路として使用単線電信方式)していた。しかし、湿気や土壌の違いによって電流が地面に漏れ信号が弱くなることがあった。

(3) 誘導と外部ノイズ

近くに他の電信線があると、電磁誘導によって信号干渉することがあった。雷や電磁気の影響によって信号乱れることもあった。

こうした問題解決するために、いくつかの技術が導入されました。

(1) 中継局リレー

リレー(中継器)」を使って信号を増幅する方法発明された。1835年、ジョゼフ・ヘンリーが電磁リレーを開発。リレーは、受信した信号を増幅して再送信することで、長距離通信可能にした。例えば、100kmごとにリレーを設置すれば、電流の減衰を防ぎ、信号を遠くまで伝えられた。

(2) 高電圧使用

初期の電信では低電圧(数V程度)だったが、より高い電圧(数十V~100V)を使うことで信号を強くし、距離を延ばした。ただし、高電圧電線の絶縁性を高める必要があるため、ゴムガラスを使った絶縁技術が発展した。

(3) 改良された電線(銅線の採用

初期の電信では鉄線が多く使われていたが、鉄は抵抗が高いため、導電率の高い銅線が採用されるようになった。銅線の採用により、長距離でも電流の減衰が少なくなり、信号が安定。

(4) 海底ケーブル技術

距離の海底電信ケーブルでは、さら電流漏れを防ぐ工夫が必要だった。1858年最初大西洋横断海底ケーブルが敷設されたが、当初は絶縁技術が未熟で、短期間で故障1866年、改良された絶縁材(ガタパーチャ樹脂)を使用したケーブル成功し、長距離通信可能になった。


実際の通信距離進化

時代 通信距離 技術進化

1844年 64kmワシントンD.C. - ボルチモア) 初期の電信

1861年 約3,000kmアメリカ大陸横断電信リレー技術の発展

1866年 約4,000km大西洋横断海底ケーブル) 絶縁技術増幅器進化

1900年 数万kmグローバル電信網) 高電圧、改良ケーブル無線通信の併用

中継局リレー)ってなに?

中継局リレー)の仕組みを教えてください


電信通信において、距離が長くなると電流が減衰し、信号が弱くなる問題が発生しました。この問題解決するために開発されたのが 「リレー(中継器)」 です。

リレーは、弱まった電流を利用して新しい電流を作り、信号を増幅して次の区間へ送る装置 です。ここでは、リレーの仕組みを詳しく説明します。


1. リレーの基本構造

リレーは以下の主要な部品構成されています

(1) 電磁石

入力から微弱な電流流れると、電磁石作動 する。これにより、リレー内部のスイッチ(接点)がONになる。

(2) リレー接点(スイッチ

磁石の磁力でスイッチが閉じる(ON)と、新たな強い電流流れる。つまり、弱い信号トリガーとして、新しい電流を発生させる。

(3) 新しい電源

リレー Permalink | 記事への反応(1) | 03:22

2025-02-16

インディーズとか有名だけど売れてる訳じゃないバンド好きを公言する一部の奴

に限ってすっげぇ上から売れてるアーティスト批評してくるの本当にダッッッサい。

自分は本当の音楽分かってるぜ」みたいな謎の自信に溢れてるのウザすぎる。米津玄師名前あげれば「昔の方が好き」「Lemonから変わった」とか言うし(RADWIMPSやMrs.GREEN APPLEかに対しても同じ)、女性グループでも男性グループでもキラキラアイドルグループ名前挙げれば「あー(笑)」みたいな。「世間では流行ってるけど実際音楽的にはねー(笑)」みたいな。

なんか「売れてないけど本物のアーティストを見つけられる自分」に酔ってるだけだろって思う。たぶん今推してるバンドグループが売れ始めたら「変わっちゃった(笑)」とか言うんだろうなー冷めるんだろうなー。

勿論、インディーズならではの尖ってる感じが好きって人が大半だろうがファッションアイテムの一つみたいに「売れてないアーティスト」を好きになる奴もそれなりにいて、そいつらがマジでウザい。売れてる人たち小馬鹿にしないと保てない何かしらを持ってる人間

なんでキラキラアイドルソング馬鹿にするのかも、Lemon以降の米津玄師のなにがいやなのかも、色んなバンドが人気になってなにがどう変わったのかも、説明できない人間たち。本当にウザい。

anond:20250215175722

スレッジハンマースレッジはソリとは関係ないんだって。古英語でSlayみたいな意味だって

コンクリートスレッジは、コンクリート破壊用のでっかい金づちだね。primalがついているから「根本的なぶち壊しハンマー」くらいの意味じゃないか

スレッジハンマーとかコンクリートスレッジとかそんなメタル系のバンドとか曲とかあるよね。お約束言い回しっぽいな

ログイン ユーザー登録
ようこそ ゲスト さん