はてなキーワード: バンドとは
を見ている。
真剣に好き!とかではなく、作業用BGMとして動画をずっと流してる感じ。
おそらく編集担当は専業で、他メンバーは別でメインの仕事がある。
10万人くらいで食べていけることを知らなかったのでちょっとびっくり。
10万人到達も相当大変なんだとは思うけど。
休みほぼなしでずっと編集してるみたいで大変だな〜と思いながら流し見してる。
ずっと見てるとメンバーのキャラクターや関係性が見えてきて好きになってくる。
10年後、この人たちはこのコンテンツを続けているのだろうか?
続けていて欲しいけど。
視聴者の年齢層も上がっていくだろうな。そうなると、今やってるような企画はやらなくなるんだろうか。
10数時間生配信で延々会話し続けてるの見ると体力すごいなと思う。
そういうのは無くなりそう。
10年前にテレビに出ていた芸能人で、現在もテレビに出ているタレントは本当に稀だ。
すごく売れていた人でも気がついたらいなくなっている。
アイドルなども、年齢が上がるとファンの熱量はあからさまに落ちる。
全盛期の売り上げは絶対に続かない。
これは男同士でも行われてるけどやり方が若干違うから気づかない男も多い
男同士だと綺麗な女の人と結婚したりするとトロフィーワイフと言って自慢できるよね
これは女にもあるよ
女の場合は社会的地位の高い男の人と結婚するとトロフィーハズバンドと言って自慢できる
「こんなすごい男が私の旦那なんだよ!」っていうのが女バージョンだね
医者弁護士上場企業社員とかと結婚するといっぱいマウントできるよ
でも結婚できない女の人が増えてきた最近ではこれが流行るとやめちゃう女の人も多いから制限しようと言う動きもあるよ
その一つが夫婦別姓だね
「田村アンダーソン梨菜」みたいに日本人なのに真ん中にイギリス姓が入ってたりすると名前でマウントできるからね
イギリスみたいに夫婦別姓で名前変える必要ないのにわざわざ変えてマウンティングしている女の人も多いね
女同士だとそう言うの気づいてピキッってすると思うんだけど不思議だねー
ゲームのやりすぎで人生の大事なところでいつもしくじっている気がする。
私の場合はシミュレーション系のゲームを延々とやり続けてしまう。最初はプレステの三國志4だった。その次はウイイレのマスターリーグ、その次はエイジオブエンパイアをやりこんだ。エイジオブエンパイアはやりすぎて大学の単位が危なくなったのゲームディスクを自分で捨てた。
いまはパワプロの栄冠ナインを35年やり続けている。ゲーム以外では、職場の積み残しの仕事はあるし、「自己学習」課題もやんなくちゃいけないし、バンドの練習はしなくちゃいけないし、息子の学校の父母会の仕事もあるけど、全部ほっといてパワプロやってる。
まさか自分が「モテない男」の側に所属しているとは考えてもみなかった。
実際、女性と知り合うたびに「実家暮らしですか?」とそれとなく聞いては、
「そうだよ」と返事があると秘かに恋愛対象から除外していたものだ。
高校時代も女性とは縁がなかったのだが、それはそれ、努力していなかったからで、
俺も人並みの努力をすれば、性の営みを行えるものだと考えていたのだ。
最初はビクビクしていたものだが、「女性に話しかける」というのも案外と容易なもので、
連絡先も聞きさえすれば教えてくれるので「これはイケるぞ」と確信を深めた。
だが、本当に難しいのはここからだった。
連絡先の交換はできる、デートもしてくれる、しかし、セックスはしてくれないのだ。
女性と知り合い、デートを重ね、さてセックスをさせてくださいという段になると、
途端に相手の態度が冷淡になり、そして連絡がつかなくなる、ということが繰り返された。
一人の女など、俺と指を絡ませて歩き、一つのアイスクリームを二人で食べたりした。
デート終わり、ではキスをしようと背中に腕を回すと「嫌だ」と拒否をする。
いろいろと理由を言われたが連呼したのは「人が見ているから」だった。
しかし、そこは屋外というだけで、周囲にこっちを見ている人などいなかった。
その後、メールの返信が次第に遅くなり、しばらくして返事が途絶えた。
ほかにも家にまで呼んでおきながら、俺が求めると拒否する女もいた。
「俺もそのバンド好きだよ」と(嘘を)言うと、じゃあ遊びに来なよ、と言う。
俺は部屋に入れてくれるということは、OKだということだと理解し、期待をした。
それで女の家に行き、ベッドに並んで座りながら、DVDを見ていた。
実は俺は音楽ライブの楽しみ方がわからず、現場に入れば身体を揺らすなどして、
身体的に楽しむこともできようが、家で見る、となるとどうすればいいかわからなかった。
だから、黙ってみていたのだが、これがおそらく良くなかった。
15分ほどして「そろそろいいかな」と思い、女に抱きつくと、女の態度がおかしい。
俺の身体を強引に引き離し、ふぅふぅと息を荒げている。そして冷たく「帰って」と言い放った。
帰り道、「ごめん」とメールを送るも、音沙汰がなく、以降連絡はとれない。
これは今でも思い出す度にとても悲しくなる。
黒髪ロングの目鼻立ちがはっきりした美人で、あとちょっとだった。
一番上手くいっている女とは今でも連絡を取り合っていて、一緒に酒も飲む。
彼女は優しくて、俺がどんな話をしてもニコニコと聞いてくれるし、
酔った勢い(のフリ)でよく抱きついたり、お尻を触ったりしているのだが、怒らない。
しかし、彼女の腕を掴んで「セックスがしたい」と懇願しても「ダメ」と一蹴される。
だが、これは仕方のないことでもあり、というのも、彼女には夫がいるのだ。
俺は彼氏持ちや既婚者の女とは仲良くなりやすいのだが、セックスはさせてくれない。
何度もそれが重なり、ついにはセックスできないまま大学卒業となり、
「ああ、自分は女性に好かれる要素がないのだな」とやっと思い至った。
これを認めるのは本当に苦しいが、事実なのだからしょうがない。
俺はモテない男であり、異性交友のセンスが甚だしく欠如しているのだ。
街中でカップルを見ると、「なぜあいつはセックスできて俺はできんのだ」と悲しくなる。
特に女が妊娠していたりすると「こいつは中出しをされたのか」と凝視してしまう。
セックスさせてあげるのだろうと想像すると、怨めしい気持ちが湧いてくる。
もう女性に期待するのはやめて、嫉妬の念も何とか抑えて、慎ましく生きていこうと思う。
周波数多重化(FDM)では事前に周波数を決める必要があるのか?
はい、その通りです! 周波数多重化(FDM: Frequency Division Multiplexing)を使用する場合、事前に「どの通信がどの周波数を使うか」を決める必要があります。
そうしないと、異なる通信が同じ周波数を使ってしまい、「混信(干渉)」が発生してしまう からです。
FDMは、1本の電線に複数の異なる周波数の信号を流し、それぞれを個別に送受信する技術です。
[通信1] → 500Hz [通信2] → 800Hz [通信3] → 1000Hz
受信側は フィルターを使って周波数ごとに分離 し、それぞれの通信を復元する。
周波数を決めずに無秩序に通信を行うと、以下の問題が発生します。
(1) 周波数の重複(混信)
もし 2つの通信が同じ周波数を使うと、信号が混ざってしまい、正しく受信できなくなる。
[通信A] → 800Hz [通信B] → 800Hz (受信側) → 800HzにAとBの信号が混ざり、正しく判別できない
周波数が近すぎると、互いの信号が干渉し、受信品質が悪化する。
これを防ぐため、適切な「周波数の間隔(ガードバンド)」を設ける必要がある。
[通信A] → 500Hz [ガードバンド](空き周波数) [通信B] → 800Hz
ガードバンド(無信号の帯域)を入れることで、通信Aと通信Bが干渉しにくくなる。
3. どのように周波数を決めるのか?
(1) 固定割り当て方式
[通信A] → 500Hz (専用) [通信B] → 800Hz (専用) [通信C] → 1000Hz(専用)
短所: 周波数が固定されるため、使っていない周波数が無駄になることがある。
(2) 動的割り当て方式
空いている周波数をリアルタイムに決めるため、効率的に利用できる。
[現在の通信] [通信A] → 500Hz [通信B] → 800Hz (通信Bが終了) [新しい通信C] → 800Hz(Bが空いたので再利用)
短所: 送信側と受信側が「どの周波数を使うか」をリアルタイムで同期する必要がある。
通信中に周波数を高速で切り替える方式(例: 軍事無線、Bluetooth)。
[通信A] → 500Hz → 800Hz → 1000Hz(送信側と受信側で同期)
4. まとめ
✅ 周波数多重化(FDM)では、事前にどの周波数を使用するか決める必要がある。
✅ 決めずに通信すると「周波数の重複(混信)」や「干渉(ノイズ)」が発生する。
✅ 事前に固定する方式(固定割り当て)、空いている周波数を使う方式(動的割り当て)、通信中に周波数を変える方式(周波数ホッピング)などがある。
✅ この技術は、ラジオ放送、携帯電話(4G/5G)、Wi-Fiなどの現代通信にも応用されている。
電信における周波数管理(固定割り当て・動的割り当て・周波数ホッピング)
電信では、基本的に「固定割り当て方式」が使われていましたが、後に「動的割り当て方式」や「周波数ホッピング方式」の概念も登場しました。
ただし、当初の電信はアナログの周波数多重化(FDM)ではなく、主に時間を分ける方式(TDM)や別の回路を使う方式が主流 でした。
では、各方式がどのように電信に適用されたのか、具体的に説明していきます。
電信の初期(有線・無線電信)では、固定割り当て方式が一般的でした。
1本の電線は1つの通信に専用(最初は1つの通信しかできなかった)。
例えば、軍事通信や船舶通信では、**「この周波数は〇〇船専用」**と決められていた。
1000kHz → 軍事専用
送信するタイミングで、利用可能な周波数(または回線)を選ぶ方式。
固定割り当てでは周波数が無駄になるため、効率を上げるために開発された。
(1) 有線電信での動的割り当て
Aさんが送信しようとすると、空いている回線を選ぶ └ [回線1] 使用中 └ [回線2] 空き → 使用 Bさんが次に送信 → [回線3] を使用
そこで、送信時に「空いている周波数」を探し、利用する方式が開発された。
Aさんが送信しようとする └ [500kHz] 使用中 └ [850kHz] 空き → 使用 Bさんが送信 → [1000kHz] を使用
通信中に周波数を切り替える方式(ランダムまたは決められたパターン)。
無線電信が軍事で重要視されるようになったため、敵に妨害されにくい方式として開発された。
1940年代にハリウッド女優「ヘディ・ラマー」と作曲家「ジョージ・アンタイル」が特許を取得し、軍事通信に応用された。
0.1秒ごとに周波数が変化 [送信側] → 500kHz → 850kHz → 1000kHz [受信側] → 500kHz → 850kHz → 1000kHz(同期)
>フィルタ回路を追加し、雷や外部ノイズによる誤信号の混入を低減。
フィルタ回路とは何ですか?
1. フィルタ回路とは?
フィルタ回路は、不要なノイズ(高周波・低周波の干渉)を除去し、必要な信号だけを通す回路 です。
電信通信においては、雷、誘導ノイズ、地磁気変動などによる不要な電流をカット する役割を果たしました。
2. ノイズの種類と影響
(1) 雷(サージノイズ)
雷の影響で強い電圧変動が発生し、電信線に一瞬大きな電流が流れる。
これがモールス符号の「短点(・)」や「長点(―)」に誤認される 可能性がある。
複数の電信線が並行して走っていると、お互いの信号が干渉することがある。
これにより、「H」を送信したつもりが「I」に誤認されるなどのエラーが発生。
近くに高電圧の電線があると、電磁誘導によって不要な電流が発生 し、電信信号が乱れる。
3. フィルタ回路の仕組み
フィルタ回路には**「特定の周波数帯の信号だけを通し、それ以外を遮断する」** という働きがあります。
これにより、ノイズを除去し、純粋な電信信号だけを伝送することが可能になります。
一定以上の周波数をカットし、低周波信号(モールス信号)だけを通す。
これにより、高周波ノイズ(雷や誘導電流)が影響しにくくなる。
低周波のノイズ(地磁気変動など)をカットし、必要な信号だけを通す。
例えば、低い電圧の誤信号(地磁気の変化による微弱な電流)を防ぐ。
モールス信号の周波数帯域(例:300Hz~800Hz)のみを通し、それより高すぎる or 低すぎる信号をカット。
(1) 受信側にフィルタ回路を追加
モールス電信の受信機の前にフィルタを挿入し、ノイズを除去してから信号を受信する。これにより、オペレーターが不要なノイズを聞かずに済む。
(2) グランド(接地)回路の強化
電信線の片側を地面に接続し、雷や外部ノイズを地面に逃がす「避雷回路」 を導入。雷が落ちた際、フィルタを通じてノイズをグラウンドに逃し、受信機が誤動作しないようにした。
(3) ツイストペア線の導入
電信線を「ツイストペア(2本の導線をねじる)」構造にすることで、電磁ノイズの影響を減らす。これにより、隣の電信線からの干渉(クロストーク)が大幅に軽減。
5. 現代への応用
電話回線のノイズフィルタ アナログ電話回線では、低周波のノイズをカットするフィルタが使われる。
インターネットのルーター 高周波信号だけを通すフィルタを搭載し、データ通信の信号品質を向上。
Wi-Fiのバンドフィルタ 必要な周波数(2.4GHz, 5GHz)だけを通すことで、干渉を防ぐ。
ツイストペア線(Twisted Pair)の仕組みとノイズ低減の原理
電信線を「ツイストペア(2本の導線をねじる)」構造にすることで、電磁ノイズの影響を減らすことができます。
これは、電磁誘導と干渉の原理を利用した技術で、現在のLANケーブルや電話回線にも応用されています。
ツイストペア線では、2本の導線をねじることで、外部ノイズの影響を打ち消す効果があります。
(1) 外部ノイズの影響を平均化
例えば、電信線の周囲に**外部ノイズ源(電磁波、雷、他の電線の影響)**があるとします。
2本の導線が平行に配置されている場合、片方の導線だけに強くノイズが影響する可能性がある。
しかし、導線がねじられていると、外部ノイズの影響が導線全体で均等になり、結果として平均化される。
(図示:外部ノイズが発生する例)
平行な電線: 外部ノイズが不均等に影響 ─────────── ← ノイズ(強い影響) ─────────── ← ノイズ(弱い影響)
ツイストペア線: ノイズが交互に影響し、平均化 \/\/\/\/\/\/\/ ← ノイズ(平均化) /\/\/\/\/\/\/\
(2) 電磁誘導の打ち消し
電線に流れる電流は、周囲に**磁場(電磁波)**を発生させる。
ツイストペアでは、隣接する部分で磁場の向きが逆になるため、互いに打ち消し合い、ノイズが発生しにくくなる。
>乱数表を使ってモールス符号を変換し、意味を隠す方法が開発された(ワンタイムパッド方式の先駆け)。
ここを詳しく教えてください
モールス電信では、盗聴のリスクを防ぐために暗号化技術が発展しました。その中でも、乱数表を利用した暗号化は、後に「ワンタイムパッド(One-Time Pad)」として発展する重要な技術の先駆けでした。
乱数表を使った暗号化は、送信する内容を事前に用意したランダムな数列と組み合わせて変換する方法です。
これは、一度しか使えない乱数を使うことで、解読がほぼ不可能になるという特徴があります。
(1) 暗号化の手順
2.事前に用意した乱数表を使う
例えば、「HELLO」に対して「37492」という乱数を割り当てる。
「H(8)+3 = 11」、「E(5)+7 = 12」、「L(12)+4 = 16」……
「11-3 = 8(H)」、「12-7 = 5(E)」……として元のメッセージを復元。
2. 具体的な暗号化の例
(1) 乱数表の例
文字: A B C D E F G H I J K L M
乱数値: 3 7 4 9 2 5 8 3 6 1 0 4 7
文字: N O P Q R S T U V W X Y Z
乱数値: 2 5 3 9 1 4 7 8 6 2 3 5 0
H(8)+ 3 = 11
E(5)+ 7 = 12
L(12)+ 4 = 16
L(12)+ 4 = 16
O(15)+ 5 = 20
(1) 非常に強力な暗号化
事前に用意された 完全にランダムな数列 を使うため、乱数表を持っていない第三者が解読することは不可能。
暗号文のパターンが存在しないため、頻度分析による解読ができない。
同じ乱数表を繰り返し使用すると解読されるリスクが高まるため、使い捨てにするのが基本。
「ワンタイムパッド(One-Time Pad)」の基礎になった技術。
(3) 盗聴対策
たとえモールス符号が傍受されても、受信者が持つ乱数表なしでは意味を解読できない。
送信者と受信者が 同じ乱数表を持っていないと通信できない。乱数表を安全に配布する必要があり、これ自体が盗まれるリスクがある。
(2) 一度しか使えない
同じ乱数表を何度も使うとパターンが発生し、解読される可能性がある。通信ごとに新しい乱数表を準備する必要がある。
5. 歴史的な応用
軍隊では、電信の盗聴を防ぐために乱数表暗号を採用。特に第一次世界大戦、第二次世界大戦では、機密電報の暗号化に利用された。
乱数表暗号のアイデアは、後に「ワンタイムパッド暗号」として正式に確立。これは理論上、絶対に解読不可能な暗号方式であり、現在でも**超機密通信(政府・軍・外交通信)**に使われている。
6. 現代への影響
ワンタイムパッド(One-Time Pad) 完全に安全な暗号方式(数学的に解読不可能)
現代のエンドツーエンド暗号通信 メッセージごとに新しい暗号キーを使う発想
この仕組みについて、さらに詳しく知りたい部分(例えば乱数表の作り方、実際の軍事暗号の事例、現代の暗号技術との関係)があれば、ぜひ質問してください!
乱数表を事前に共有するのは分かったのですが、送信者がどの乱数表を使ったのか分からないので受信者もどの乱数表を使えばいいのか分からなくないですか?
乱数表を事前に共有している場合、送信者と受信者はどの乱数表を使うのか?
乱数表を使った暗号通信では、送信者と受信者が同じ乱数表を選んで使う必要があります。
これを実現するために、以下の方法が考案されました。
送信者と受信者がどの乱数表を使うかを決める方法には、次のような方法があります。
(1) 事前に順番を決めておく
送信者も受信者も、現在の通信で 何番目の乱数表を使うのかを把握しておけば、同じものを使える。
送信者と受信者が 同じスケジュールに従って進めば、どの乱数表を使うべきか分かる。
送信者が乱数表「ID: 23」を使った場合、受信者は 「乱数表23」を選んで復号する。
例えば、通信のたびに1ページずつ破棄しながら進むことで、送信者と受信者が同期できる。
使用したページは破棄することで、再利用を防ぐ(安全性が向上)。
(4) 日時を基準にする
例えば「2024年2月17日」のメッセージには、事前に決めた「2024/02/17用の乱数表」を使用。
送信者と受信者がカレンダーを共有していれば、追加の情報なしで同期が可能。
スパイや軍事通信では、「数字放送」と呼ばれる短波ラジオ放送を利用し、乱数表の識別情報を事前に送る方式が使われた」。
ラジオで**「本日のキーは56」と送れば、受信者は「乱数表56」を使用する**ことができる。
一度使用した乱数表は必ず破棄し、再利用しない(ワンタイムパッド方式)。
乱数表が盗まれると危険なので、軍事やスパイ通信では 使用後に物理的に燃やす(焼却処分) こともあった。
3. まとめ
事前に順番を決めておく(1回目の通信→乱数表A、2回目→乱数表B)
メッセージ内に乱数表の識別番号を含める(例:「ID: 23」を記載)
ワンタイムパッドの冊子を作り、ページ番号順に使う
日付ごとに対応する乱数表を使う(例:2024/02/17 → 乱数表A)
ナンバーズステーションのような方法で、事前に識別情報を伝える
>各電報には、**送信元の情報(識別コード)**を付加し、なりすましを防ぐ仕組みが取られた。例:軍の電信では、送信者の認証コードを含めることで、偽のメッセージを排除。
これはどういうことですか?
電信通信では、悪意のある第三者が偽のメッセージを送信し、受信者を騙すリスクがありました。
これを防ぐために、**送信者が本物であることを証明する仕組み(識別コード・認証コード)**が導入されました。
敵国やスパイが偽の軍事命令を送る可能性があった。例えば、**「本日午後3時に攻撃を開始せよ」**という偽の命令を送れば、相手を混乱させることができる。
送信者が「本物」であることを確認しないと、受信者はメッセージが信頼できるかどうか判断できない。そのため、送信者の識別情報(認証コード)を追加し、受信者が確認できる仕組みが作られた。
送信者ごとに 「ユニークな識別コード」 を設定し、電報の最後に付加。受信者は識別コードをチェックし、本物の送信者であることを確認。
ATTACK AT DAWN. [CODE: XJ-472]
「XJ-472」が正しい識別コードなら、本物のメッセージと判断。
偽の電信を送る者は、正しい識別コードを知らないため、識別される。
送信者ごとに 決められた特定の「符号(モールス符号のパターン)」を入れる ことで、なりすましを防ぐ。
先生何でも知ってるな
(1) 口伝(くでん)と使者 (2) 狩猟・戦争における合図 (3) 狼煙(のろし)
(1) 楔形文字(メソポタミア)・ヒエログリフ(エジプト) (2) 郵便制度の発展
(1) 紀元5世紀~15世紀 (2) 烽火(ほうか)・のろし (3) 飛脚制度(日本)
(2) 交換機の導入
グリエルモ・マルコーニが無線通信(ラジオ通信)の実験に成功。
1901年、大西洋横断無線通信を達成し、船舶や遠距離通信で活躍。
1920年代にAMラジオ放送が開始され、大衆向けの放送メディアとして普及。
腕木通信の仕組みについて教えてください
1. 基本構造
通信塔(セマフォア塔) 高い場所に建てられ、見晴らしの良い地点に設置される。直線上に複数の塔が並び、情報をリレー方式で伝える。
腕木(アーム) 一般的には2本または3本の可動式の木製の腕。腕の角度を変えることで、異なる文字や数字を表現する。
制御機構 塔の内部には腕木を動かすためのハンドルやロープがあり、通信員が操作する。
2. 通信の流れ
腕木通信では、腕木の角度を組み合わせてアルファベットや数字を表す符号が決められていました。
例: ある位置の角度が「A」、別の角度が「B」を意味する。組み合わせることで単語や文章を伝達。
(2) 視認と伝達
発信者(通信員)が塔の上で腕木を特定の角度にセットする。隣の通信塔の通信員が望遠鏡でその信号を確認する。確認した通信員が同じ符号を自分の塔で再現する。これを繰り返し、情報が数十~数百km先までリレー方式で送られる。
3. 腕木通信の特徴
(1) 速さ
馬や飛脚より圧倒的に速く、良好な天候なら数百km先まで数分~数時間で伝達できた。例: フランスでは、パリ~リール間(約230km)を約3分で通信可能だった。
(2) 天候の影響
晴天時は遠くまで見えるため有効だったが、霧・雨・夜間は利用できなかった。これが電信の発明へとつながる大きな要因となった。
フランスではナポレオン戦争(1803-1815年)の際、軍事通信に活用された。ヨーロッパ各国でも行政・軍事目的で導入。
アルファベットや数字を表すために、腕木の角度を組み合わせた符号表(コードブック)が用意されていました。
ここでは、腕木通信で「HELLO」を送る具体的な手順を説明します。
腕木(アーム):通常、2本または3本の可動アームが使われる。
符号表(コードブック):各アルファベットや数字に特定のアームの角度が割り当てられている。
A = 10° / 30°
B = 20° / 40°
C = 30° / 50°
...
H = 80° / 120°
E = 50° / 90°
L = 70° / 110°
O = 90° / 130°
2. 「HELLO」を送る手順
腕木通信は 1文字ずつ順番に送信 し、隣の塔がそれを読み取り、次の塔に伝えるリレー方式で情報を伝達します。
(1) Hを送信 通信塔のオペレーターが腕木をHに対応する角度(80° / 120°)に設定。隣の塔の通信士が望遠鏡で確認し、同じ符号を再現。
(2) Eを送信 次に、腕木をEの角度(50° / 90°)に変更。これを隣の塔へリレー。
(4) Oを送信 最後に、Oの符号(90° / 130°)を送る。
文字ごとに送ると時間がかかるため、短縮コード(例:「HLO」で「HELLO」とする)を使うこともあった。軍事通信では暗号化された符号も使用。
エラーチェック
送信ミスを防ぐために「確認信号」を送ることがあった。受信者が「正しく受信した」ことを示す信号を返す方式も採用。
単なるアルファベットだけでなく、「数字」「特別な記号」も符号表で定義。
A = 10° / 30°
とはどういう意味なのですか?
10度のこと?30度のこと?
「A = 10° / 30°」という表記は、腕木(アーム)が複数ある場合に、それぞれの角度を指定する方式です。
通常、腕木通信には2本または3本の可動アームがあり、それぞれのアームを特定の角度にセットすることで、1つの文字や数字を表現します。
例えば、2本の腕木(上側と下側)がある場合:
上のアーム:10° 下のアーム:30°
>受信者が「正しく受信した」ことを示す信号を返す方式も採用。
これはどのような仕組みですか?
腕木を「A」に対応する 10° / 30° の位置にセットし、隣の塔に見せる。
確認信号(例:「了解」を示す特定の腕木角度、または短い「OK」信号)を送信する。
例えば「50° / 90°」のように、「受信しました」の意味を持つ角度が設定される。
受信者からの確認信号を見て、正しく受信されたことを確認 する。
もし確認信号が来ない場合、または誤りを示す信号が来た場合、もう一度「A」を送信し直す。
腕木通信には、以下のようなエラーチェックの方法も考案されました:
(1) 再送要求
受信者が符号を読み取れなかった場合、「もう一度送ってください」という特定の信号(リクエスト信号)を送る。
例:「不明瞭」や「再送」を示す角度(例:60° / 120°)を使用。
(2) 確認の二重チェック
受信者だけでなく、次の塔が再び「A」を送ることで、送信者が正しく伝わったことを確認できる。
これにより、1つの塔で間違いがあっても、別の塔で補正が可能。
電鍵(モールスキー) 手動のスイッチで、押すと電流が流れる。押す時間の長短で「短点(・)」や「長点(―)」を作る。
(2) 通信線
電線(単線または複数線)送信機と受信機をつなぐ導線。初期の電信機は1本の電線と地面(アース)を回路として利用。
電磁石
送信側でスイッチが押されると、電流が流れて磁場が発生。電磁石が作動し、紙に記録する装置が動く。記録装置(スタイラス & 紙テープ)スタイラス(針) が上下に動き、紙テープに「短点(・)」や「長点(―)」を記録。初期は音ではなく、紙テープに記録する方式が使われた。
モールス電信機の受信機は、以下の主要な部品で構成されています:
(1) 電磁石
送信者が電鍵(モールスキー)を押すと、電流が流れ、受信側の電磁石に電流が到達。電磁石が磁力を発生し、アームを引き寄せる。
電磁石の磁力によってアームが動く(電流が流れた瞬間に引き寄せられる)。電流が切れると、バネの力でアームが元の位置に戻る。
(3) スタイラス(記録針)
アームの先端には スタイラス(記録針) が付いている。アームが動くことで、スタイラスが紙テープに接触し、点や線を刻む。
(4) 紙送り装置
受信機には ロール状の紙テープ がセットされており、一定の速度で送られる。紙テープが一定の速度で進むことで、信号が「短点(・)」や「長点(―)」の形で記録される。
記録の流れ
(1) 短点(・)の記録
送信者が電鍵を短く押す(例:0.1秒)。受信機の電磁石が一瞬作動し、アームが紙に軽く接触。紙に小さな点が刻まれる(・)。電流が切れると、バネの力でアームが元の位置に戻る。
(2) 長点(―)の記録
送信者が電鍵を長く押す(例:0.3秒)。受信機の電磁石が長い間作動し、アームが長時間紙に押し付けられる。紙に長い線(―)が刻まれる。電流が切れると、バネの力でアームが元の位置に戻る。
(3) スペース(間隔)
電鍵を押さない時間が長いと、記録装置には何も刻まれず、文字の区切りが生まれる。一定時間(例:3単位)何も信号がなければ、単語の区切りとみなされる。
初期のモールス電信では、紙テープに記録された符号を手作業で解読していた。
しかし、受信機のアームが動くと「カチッ」という音がすることに気づき、オペレーターが耳で直接モールス符号を聞き取る方式(サウンドレシーバー方式)が生まれた。
これにより、紙に記録しなくてもリアルタイムでメッセージを受信できるようになった。
電線に電流を流す仕組みを聞いた限り距離が制限されそうに思えます
これについて詳しく教えてください
モールス電信機は電流を電線に流して情報を伝えるため、通信距離にはいくつかの制限がありました。特に、長距離になると電流が弱まり、信号が減衰(減少)するという問題がありました。
ここでは、電信の通信距離の制限と、それを克服するための技術について詳しく解説します。
長距離の電信通信において、電流の減衰(弱まる)原因として次のような要因がありました。
(1) 電気抵抗
電線の長さが長くなると、電気抵抗(電流の流れを妨げる力)が増えるため、電流が弱まる。銅や鉄などの導線を使用していたが、特に鉄線は抵抗が大きく、距離が長くなると信号が伝わりにくくなる。
19世紀の電信では、片側の導線+地面を電流の経路として使用(単線電信方式)していた。しかし、湿気や土壌の違いによって電流が地面に漏れ、信号が弱くなることがあった。
近くに他の電信線があると、電磁誘導によって信号が干渉することがあった。雷や電磁気の影響によって信号が乱れることもあった。
こうした問題を解決するために、いくつかの技術が導入されました。
「リレー(中継器)」を使って信号を増幅する方法が発明された。1835年、ジョゼフ・ヘンリーが電磁リレーを開発。リレーは、受信した信号を増幅して再送信することで、長距離通信を可能にした。例えば、100kmごとにリレーを設置すれば、電流の減衰を防ぎ、信号を遠くまで伝えられた。
初期の電信では低電圧(数V程度)だったが、より高い電圧(数十V~100V)を使うことで信号を強くし、距離を延ばした。ただし、高電圧は電線の絶縁性を高める必要があるため、ゴムやガラスを使った絶縁技術が発展した。
初期の電信では鉄線が多く使われていたが、鉄は抵抗が高いため、導電率の高い銅線が採用されるようになった。銅線の採用により、長距離でも電流の減衰が少なくなり、信号が安定。
長距離の海底電信ケーブルでは、さらに電流の漏れを防ぐ工夫が必要だった。1858年、最初の大西洋横断海底ケーブルが敷設されたが、当初は絶縁技術が未熟で、短期間で故障。1866年、改良された絶縁材(ガタパーチャ樹脂)を使用したケーブルが成功し、長距離通信が可能になった。
1844年 64km(ワシントンD.C. - ボルチモア) 初期の電信
1861年 約3,000km(アメリカ大陸横断電信) リレー技術の発展
1866年 約4,000km(大西洋横断海底ケーブル) 絶縁技術と増幅器の進化
1900年 数万km(グローバル電信網) 高電圧、改良ケーブル、無線通信の併用
電信通信において、距離が長くなると電流が減衰し、信号が弱くなる問題が発生しました。この問題を解決するために開発されたのが 「リレー(中継器)」 です。
リレーは、弱まった電流を利用して新しい電流を作り、信号を増幅して次の区間へ送る装置 です。ここでは、リレーの仕組みを詳しく説明します。
(1) 電磁石
入力側から微弱な電流が流れると、電磁石が作動 する。これにより、リレー内部のスイッチ(接点)がONになる。
電磁石の磁力でスイッチが閉じる(ON)と、新たな強い電流が流れる。つまり、弱い信号をトリガーとして、新しい電流を発生させる。
(3) 新しい電源
に限ってすっげぇ上から売れてるアーティストの批評してくるの本当にダッッッサい。
「自分は本当の音楽分かってるぜ」みたいな謎の自信に溢れてるのウザすぎる。米津玄師の名前あげれば「昔の方が好き」「Lemonから変わった」とか言うし(RADWIMPSやMrs.GREEN APPLEとかに対しても同じ)、女性グループでも男性グループでもキラキラアイドルグループの名前挙げれば「あー(笑)」みたいな。「世間では流行ってるけど実際音楽的にはねー(笑)」みたいな。
なんか「売れてないけど本物のアーティストを見つけられる自分」に酔ってるだけだろって思う。たぶん今推してるバンドやグループが売れ始めたら「変わっちゃった(笑)」とか言うんだろうなー冷めるんだろうなー。
勿論、インディーズならではの尖ってる感じが好きって人が大半だろうがファッションのアイテムの一つみたいに「売れてないアーティスト」を好きになる奴もそれなりにいて、そいつらがマジでウザい。売れてる人たち小馬鹿にしないと保てない何かしらを持ってる人間。
なんでキラキラアイドルソングを馬鹿にするのかも、Lemon以降の米津玄師のなにがいやなのかも、色んなバンドが人気になってなにがどう変わったのかも、説明できない人間たち。本当にウザい。