Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                



Dates are inconsistent

Dates are inconsistent

311 results sorted by ID

2025/039 (PDF) Last updated: 2025-01-10
VDORAM: Towards a Random Access Machine with Both Public Verifiability and Distributed Obliviousness
Huayi Qi, Minghui Xu, Xiaohua Jia, Xiuzhen Cheng
Cryptographic protocols

Verifiable random access machines (vRAMs) serve as a foundational model for expressing complex computations with provable security guarantees, serving applications in areas such as secure electronic voting, financial auditing, and privacy-preserving smart contracts. However, no existing vRAM provides distributed obliviousness, a critical need in scenarios where multiple provers seek to prevent disclosure against both other provers and the verifiers. Implementing a publicly verifiable...

2024/2082 (PDF) Last updated: 2024-12-27
ClusterGuard: Secure Clustered Aggregation for Federated Learning with Robustness
Yulin Zhao, Zhiguo Wan, Zhangshuang Guan
Applications

Federated Learning (FL) enables collaborative model training while preserving data privacy by avoiding the sharing of raw data. However, in large-scale FL systems, efficient secure aggregation and dropout handling remain critical challenges. Existing state-of-the-art methods, such as those proposed by Liu et al. (UAI'22) and Li et al. (ASIACRYPT'23), suffer from prohibitive communication overhead, implementation complexity, and vulnerability to poisoning attacks. Alternative approaches that...

2024/2066 (PDF) Last updated: 2024-12-23
COCO: Coconuts and Oblivious Computations for Orthogonal Authentication
Yamya Reiki
Cryptographic protocols

Authentication often bridges real-world individuals and their virtual public identities, like usernames, user IDs and e-mails, exposing vulnerabilities that threaten user privacy. This research introduces COCO (Coconuts and Oblivious Computations for Orthogonal Authentication), a framework that segregates roles among Verifiers, Authenticators, and Clients to achieve privacy-preserving authentication. COCO eliminates the need for Authenticators to directly access virtual public identifiers...

2024/2042 (PDF) Last updated: 2024-12-18
A Note on Isogeny Group Action-Based Pseudorandom Functions
Yi-Fu Lai
Attacks and cryptanalysis

In PKC'24, de Saint Guilhem and Pedersen give a pseudorandom function basing on a relaxed group action assumption in the semi-honest setting. Basing on the assumption, they build an oblivious pseudorandom function (OPRF). Later, a recent paper by Levin and Pedersen uses the same function to build a verifiable random function (VRF), using the same assumption. We give a structural attack on this problem by reducing it to a few group action inverse problems (GAIP/DLog) over small subgroups....

2024/2035 (PDF) Last updated: 2025-01-08
A Heuristic Proof of P $\neq$ NP
Ping Wang
Foundations

The question of whether the complexity class P equals NP is a major unsolved problem in theoretical computer science. In this paper, we introduce a new language, the Add/XNOR problem, which has the simplest structure and perfect randomness, by extending the subset sum problem. We prove that P $\neq$ NP as it shows that the square-root complexity is necessary to solve the Add/XNOR problem. That is, problems that are verifiable in polynomial time are not necessarily solvable in polynomial...

2024/2015 (PDF) Last updated: 2024-12-13
Universal SNARGs for NP from Proofs of Correctness
Zhengzhong Jin, Yael Tauman Kalai, Alex Lombardi, Surya Mathialagan
Cryptographic protocols

We give new constructions of succinct non-interactive arguments ($\mathsf{SNARG}$s) for $\mathsf{NP}$ in the settings of both non-adaptive and adaptive soundness. Our construction of non-adaptive $\mathsf{SNARG}$ is universal assuming the security of a (leveled or unleveled) fully homomorphic encryption ($\mathsf{FHE}$) scheme as well as a batch argument ($\mathsf{BARG}$) scheme. Specifically, for any choice of parameters $\ell$ and $L$, we construct a candidate $\mathsf{SNARG}$ scheme...

2024/1820 (PDF) Last updated: 2024-11-06
On the Power of Oblivious State Preparation
James Bartusek, Dakshita Khurana
Cryptographic protocols

We put forth Oblivious State Preparation (OSP) as a cryptographic primitive that unifies techniques developed in the context of a quantum server interacting with a classical client. OSP allows a classical polynomial-time sender to input a choice of one out of two public observables, and a quantum polynomial-time receiver to recover an eigenstate of the corresponding observable -- while keeping the sender's choice hidden from any malicious receiver. We obtain the following results: - The...

2024/1809 (PDF) Last updated: 2024-11-05
Foundations of Adaptor Signatures
Paul Gerhart, Dominique Schröder, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Applications

Adaptor signatures extend the functionality of regular signatures through the computation of pre-signatures on messages for statements of NP relations. Pre-signatures are publicly verifiable; they simultaneously hide and commit to a signature of an underlying signature scheme on that message. Anybody possessing a corresponding witness for the statement can adapt the pre-signature to obtain the "regular" signature. Adaptor signatures have found numerous applications for conditional payments...

2024/1761 (PDF) Last updated: 2024-10-29
Resilience-Optimal Lightweight High-threshold Asynchronous Verifiable Secret Sharing
Hao Cheng, Jiliang Li, Yizhong Liu, Yuan Lu, Weizhi Meng, Zhenfeng Zhang
Cryptographic protocols

Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...

2024/1713 (PDF) Last updated: 2024-10-20
Universally Composable Non-Interactive Zero-Knowledge from Sigma Protocols via a New Straight-line Compiler
Megan Chen, Pousali Dey, Chaya Ganesh, Pratyay Mukherjee, Pratik Sarkar, Swagata Sasmal
Cryptographic protocols

Non-interactive zero-knowledge proofs (NIZK) are essential building blocks in threshold cryptosystems like multiparty signatures, distributed key generation, and verifiable secret sharing, allowing parties to prove correct behavior without revealing secrets. Furthermore, universally composable (UC) NIZKs enable seamless composition in the larger cryptosystems. A popular way to construct NIZKs is to compile interactive protocols using the Fiat-Shamir transform. Unfortunately, Fiat-Shamir...

2024/1626 (PDF) Last updated: 2024-10-11
Faster Proofs and VRFs from Isogenies
Shai Levin, Robi Pedersen
Cryptographic protocols

We improve recent generic proof systems for isogeny knowledge by Cong, Lai, Levin [26] based on circuit satisfiability, by using radical isogeny descriptions [19, 20] to prove a path in the underlying isogeny graph. We then present a new generic construction for a verifiable random function (VRF) based on a one-more type hardness assumption and zero-knowledge proofs. We argue that isogenies fit the constraints of our construction and instantiate the VRF with a CGL walk [22] and our new...

2024/1553 (PDF) Last updated: 2024-10-03
STARK-based Signatures from the RPO Permutation
Shahla Atapoor, Cyprien Delpech de Saint Guilhem, Al Kindi
Public-key cryptography

This work describes a digital signature scheme constructed from a zero-knowledge proof of knowledge of a pre-image of the Rescue Prime Optimized (RPO) permutation. The proof of knowledge is constructed with the DEEP-ALI interactive oracle proof combined with the Ben-Sasson--Chiesa--Spooner (BCS) transformation in the random oracle model. The EUF-CMA security of the resulting signature scheme is established from the UC-friendly security properties of the BCS transformation and the pre-image...

2024/1549 (PDF) Last updated: 2024-10-06
Universally Composable SNARKs with Transparent Setup without Programmable Random Oracle
Christian Badertscher, Matteo Campanelli, Michele Ciampi, Luigi Russo, Luisa Siniscalchi
Cryptographic protocols

Non-interactive zero-knowledge (NIZK) proofs allow a prover to convince a verifier about the validity of an NP-statement by sending a single message and without disclosing any additional information (besides the validity of the statement). Single-message cryptographic proofs are very versatile, which has made them widely used both in theory and in practice. This is particularly true for succinct proofs, where the length of the message is sublinear in the size of the NP relation. This...

2024/1499 (PDF) Last updated: 2024-09-24
Multi-Key Fully-Homomorphic Aggregate MAC for Arithmetic Circuits
Suvasree Biswas, Arkady Yerukhimovich
Cryptographic protocols

Homomorphic message authenticators allow a user to perform computation on previously authenticated data producing a tag $\sigma$ that can be used to verify the authenticity of the computation. We extend this notion to consider a multi-party setting where we wish to produce a tag that allows verifying (possibly different) computations on all party's data at once. Moreover, the size of this tag should not grow as a function of the number of parties or the complexity of the computations. We...

2024/1481 (PDF) Last updated: 2024-09-23
Tighter Adaptive IBEs and VRFs: Revisiting Waters' Artificial Abort
Goichiro Hanaoka, Shuichi Katsumata, Kei Kimura, Kaoru Takemure, Shota Yamada
Public-key cryptography

One of the most popular techniques to prove adaptive security of identity-based encryptions (IBE) and verifiable random functions (VRF) is the partitioning technique. Currently, there are only two methods to relate the adversary's advantage and runtime $(\epsilon, {\sf T})$ to those of the reduction's ($\epsilon_{\sf proof}, {\sf T}_{\sf proof}$) using this technique: One originates to Waters (Eurocrypt 2005) who introduced the famous artificial abort step to prove his IBE, achieving...

2024/1459 (PDF) Last updated: 2024-09-18
Verifiable Oblivious Pseudorandom Functions from Lattices: Practical-ish and Thresholdisable
Martin R. Albrecht, Kamil Doruk Gur
Cryptographic protocols

We revisit the lattice-based verifiable oblivious PRF construction from PKC'21 and remove or mitigate its central three sources of inefficiency. First, applying Rényi divergence arguments, we eliminate one superpolynomial factor from the ciphertext modulus \(q\), allowing us to reduce the overall bandwidth consumed by RLWE samples by about a factor of four. This necessitates us introducing intermediate unpredictability notions to argue PRF security of the final output in the Random Oracle...

2024/1130 (PDF) Last updated: 2024-07-11
Distributed Verifiable Random Function With Compact Proof
Ahmet Ramazan Ağırtaş, Arda Buğra Özer, Zülfükar Saygı, Oğuz Yayla
Cryptographic protocols

Verifiable Random Functions (VRFs) are cryptographic primitives that generate unpredictable randomness along with proofs that are verifiable, a critical requirement for blockchain applications in decentralized finance, online gaming, and more. Existing VRF constructions often rely on centralized entities, creating security vulnerabilities. Distributed VRFs (DVRFs) offer a decentralized alternative but face challenges like large proof sizes or dependence on computationally expensive bilinear...

2024/1050 (PDF) Last updated: 2024-06-28
On Sequential Functions and Fine-Grained Cryptography
Jiaxin Guan, Hart Montgomery
Foundations

A sequential function is, informally speaking, a function $f$ for which a massively parallel adversary cannot compute "substantially" faster than an honest user with limited parallel computation power. Sequential functions form the backbone of many primitives that are extensively used in blockchains such as verifiable delay functions (VDFs) and time-lock puzzles. Despite this widespread practical use, there has been little work studying the complexity or theory of sequential...

2024/1045 (PDF) Last updated: 2024-06-27
Efficient Secret Sharing for Large-Scale Applications
Sarvar Patel, Giuseppe Persiano, Joon Young Seo, Kevin Yeo
Cryptographic protocols

Threshold secret sharing enables distributing a message to $n$ parties such that no subset of fewer than $t$ parties can learn the message, whereas any subset of at least $t$ parties can recover the message. Despite being a fundamental primitive, secret sharing still suffers from one significant drawback, where its message reconstruction algorithm is computationally expensive for large privacy thresholds $t$. In this paper, we aim to address this significant drawback. We study general...

2024/968 (PDF) Last updated: 2025-01-03
Fast SNARK-based Non-Interactive Distributed Verifiable Random Function with Ethereum Compatibility
Jia Liu, Mark Manulis
Cryptographic protocols

Distributed randomness beacons (DRBs) are fundamental for various decentralised applications, such as consensus protocols, decentralised gaming and lotteries, and collective governance protocols. These applications are heavily used on modern blockchain platforms. This paper presents the so far most efficient direct construction and implementation of a non-interactive distributed verifiable random function (NI-DVRF) that is fully compatible with Ethereum. Our NI-DVRF scheme adopts...

2024/957 (PDF) Last updated: 2024-06-18
VRaaS: Verifiable Randomness as a Service on Blockchains
Jacob Gorman, Lucjan Hanzlik, Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, Pratik Sarkar, Sri AravindaKrishnan Thyagarajan
Foundations

Web3 applications, such as on-chain games, NFT minting, and leader elections necessitate access to unbiased, unpredictable, and publicly verifiable randomness. Despite its broad use cases and huge demand, there is a notable absence of comprehensive treatments of on-chain verifiable randomness services. To bridge this, we offer an extensive formal analysis of on-chain verifiable randomness services. We present the $first$ formalization of on-chain verifiable randomness in the...

2024/879 (PDF) Last updated: 2024-12-08
Consistency-or-Die: Consistency for Key Transparency
Joakim Brorsson, Elena Pagnin, Bernardo David, Paul Stankovski Wagner
Cryptographic protocols

This paper proposes a new consistency protocol that protects a key transparency log against split-view attacks and - contrary to all previous work - does not to rely on small committees of known external auditors, or out-of-band channels, or blockchains (full broadcast systems). Our approach is to use a mechanism for cryptographically selecting a small committee of random and initially undisclosed users, which are then tasked to endorse the current view of the log. The name of our...

2024/843 (PDF) Last updated: 2024-05-29
Formally verifying Kyber Episode V: Machine-checked IND-CCA security and correctness of ML-KEM in EasyCrypt
José Bacelar Almeida, Santiago Arranz Olmos, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet, Cameron Low, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma, Peter Schwabe, Pierre-Yves Strub
Public-key cryptography

We present a formally verified proof of the correctness and IND-CCA security of ML-KEM, the Kyber-based Key Encapsulation Mechanism (KEM) undergoing standardization by NIST. The proof is machine-checked in EasyCrypt and it includes: 1) A formalization of the correctness (decryption failure probability) and IND-CPA security of the Kyber base public-key encryption scheme, following Bos et al. at Euro S&P 2018; 2) A formalization of the relevant variant of the Fujisaki-Okamoto transform in...

2024/776 (PDF) Last updated: 2024-11-29
Instance-Hiding Interactive Proofs
Changrui Mu, Prashant Nalini Vasudevan
Foundations

In an Instance-Hiding Interactive Proof (IHIP) [Beaver et al. CRYPTO 90], an efficient verifier with a _private_ input x interacts with an unbounded prover to determine whether x is contained in a language L. In addition to completeness and soundness, the instance-hiding property requires that the prover should not learn anything about x in the course of the interaction. Such proof systems capture natural privacy properties, and may be seen as a generalization of the influential concept of...

2024/766 (PDF) Last updated: 2024-11-05
Breaking Verifiable Delay Functions in the Random Oracle Model
Ziyi Guan, Artur Riazanov, Weiqiang Yuan
Foundations

This work resolves the open problem of whether verifiable delay functions (VDFs) can be constructed in the random oracle model. A VDF is a cryptographic primitive that requires a long time to compute (even with parallelization), but produces a unique output that is efficiently and publicly verifiable. We prove that VDFs with \emph{imperfect completeness} and \emph{computational uniqueness} do not exist in the random oracle model. This also rules out black-box constructions of VDFs from...

2024/675 (PDF) Last updated: 2024-11-20
Succinctly Verifiable Computation over Additively-Homomorphically Encrypted Data with Applications to Privacy-Preserving Blueprints
Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, Meghna Sengupta
Cryptographic protocols

With additively homomorphic encryption (AHE), one can compute, from input ciphertexts $\mathsf{Enc}(x_1),\ldots,\mathsf{Enc}(x_n)$, and additional inputs $y_1,\ldots,y_k$, a ciphertext $c_\textit{f}=\mathsf{Enc}(f(x_1,\ldots,x_n,y_1,\ldots, y_k))$ for any polynomial $f$ in which each monomial has total degree at most $1$ in the $x$-variables (but can be arbitrary in the $y$-variables). For AHE that satisfies a set of natural requirements, we give a non-interactive zero-knowledge proof...

2024/661 (PDF) Last updated: 2024-05-02
On amortization techniques for FRI-based SNARKs
Albert Garreta, Hayk Hovhanissyan, Aram Jivanyan, Ignacio Manzur, Isaac Villalobos, Michał Zając
Cryptographic protocols

We present two techniques to improve the computational and/or communication costs of STARK proofs: packing and modular split-and-pack. Packing allows to generate a single proof of the satisfiability of several constraints. We achieve this by packing the evaluations of all relevant polynomials in the same Merkle leaves, and combining all DEEP FRI functions into a single randomized validity function. Our benchmarks show that packing reduces the verification time and proof size compared...

2024/643 (PDF) Last updated: 2024-09-23
Key-Homomorphic and Aggregate Verifiable Random Functions
Giulio Malavolta
Public-key cryptography

A verifiable random function (VRF) allows one to compute a random-looking image, while at the same time providing a unique proof that the function was evaluated correctly. VRFs are a cornerstone of modern cryptography and, among other applications, are at the heart of recently proposed proof-of-stake consensus protocols. In this work we initiate the formal study of aggregate VRFs, i.e., VRFs that allow for the aggregation of proofs/images into a small digest, whose size is independent of the...

2024/628 (PDF) Last updated: 2024-07-08
MUSEN: Aggregatable Key-Evolving Verifiable Random Functions and Applications
Bernardo David, Rafael Dowsley, Anders Konring, Mario Larangeira
Cryptographic protocols

A Verifiable Random Function (VRF) can be evaluated on an input by a prover who holds a secret key, generating a pseudorandom output and a proof of output validity that can be verified using the corresponding public key. VRFs are a central building block of committee election mechanisms that sample parties to execute tasks in cryptographic protocols, e.g. generating blocks in a Proof-of-Stake (PoS) blockchain or executing a round of MPC protocols. We propose the notion, and a matching...

2024/590 (PDF) Last updated: 2024-04-16
Revisiting the Security of Fiat-Shamir Signature Schemes under Superposition Attacks
Quan Yuan, Chao Sun, Tsuyoshi Takagi
Public-key cryptography

The Fiat-Shamir transformation is a widely employed technique in constructing signature schemes, known as Fiat-Shamir signature schemes (FS-SIG), derived from secure identification (ID) schemes. However, the existing security proof only takes into account classical signing queries and does not consider superposition attacks, where the signing oracle is quantum-accessible to the adversaries. Alagic et al. proposed a security model called blind unforgeability (BUF, Eurocrypt'20), regarded as a...

2024/462 (PDF) Last updated: 2024-03-19
Perfect Zero-Knowledge PCPs for #P
Tom Gur, Jack O'Connor, Nicholas Spooner
Foundations

We construct perfect zero-knowledge probabilistically checkable proofs (PZK-PCPs) for every language in #P. This is the first construction of a PZK-PCP for any language outside BPP. Furthermore, unlike previous constructions of (statistical) zero-knowledge PCPs, our construction simultaneously achieves non-adaptivity and zero knowledge against arbitrary (adaptive) polynomial-time malicious verifiers. Our construction consists of a novel masked sumcheck PCP, which uses the...

2024/453 (PDF) Last updated: 2024-03-16
Verifiable Information-Theoretic Function Secret Sharing
Stanislav Kruglik, Son Hoang Dau, Han Mao Kiah, Huaxiong Wang, Liang Feng Zhang
Cryptographic protocols

A function secret sharing (FSS) (Boyle et al., Eurocrypt 2015) is a cryptographic primitive that enables additive secret sharing of functions from a given function family $\mathcal{F}$. FSS supports a wide range of cryptographic applications, including private information retrieval (PIR), anonymous messaging systems, private set intersection and more. Formally, given positive integers $r \geq 2$ and $t < r$, and a class $\mathcal{F}$ of functions $f: [n] \to \mathbb{G}$ for an Abelian group...

2024/435 (PDF) Last updated: 2024-03-13
Unbiasable Verifiable Random Functions
Emanuele Giunta, Alistair Stewart
Public-key cryptography

Verifiable Random Functions (VRFs) play a pivotal role in Proof of Stake (PoS) blockchain due to their applications in secret leader election protocols. However, the original definition by Micali, Rabin and Vadhan is by itself insufficient for such applications. The primary concern is that adversaries may craft VRF key pairs with skewed output distribution, allowing them to unfairly increase their winning chances. To address this issue David, Gaži, Kiayias and Russel (2017/573) proposed a...

2024/397 (PDF) Last updated: 2024-06-22
Exponent-VRFs and Their Applications
Dan Boneh, Iftach Haitner, Yehuda Lindell
Public-key cryptography

Verifiable random functions (VRFs) are pseudorandom functions with the addition that the function owner can prove that a generated output is correct (i.e., generated correctly relative to a committed key). In this paper we introduce the notion of an exponent-VRF (eVRF): a VRF that does not provide its output $y$ explicitly, but instead provides $Y = y \cdot G$, where $G$ is a generator of some finite cyclic group (or $Y=g^y$ in multiplicative notation). We construct eVRFs from DDH and from...

2024/379 (PDF) Last updated: 2024-06-04
SyRA: Sybil-Resilient Anonymous Signatures with Applications to Decentralized Identity
Elizabeth Crites, Aggelos Kiayias, Markulf Kohlweiss, Amirreza Sarencheh
Cryptographic protocols

We introduce a new cryptographic primitive, called Sybil-Resilient Anonymous (SyRA) signatures, which enable users to generate, on demand, unlinkable pseudonyms tied to any given context, and issue signatures on behalf of these pseudonyms. Concretely, given a personhood relation, an issuer (who may be a distributed entity) enables users to prove their personhood and extract an associated long-term key, which can then be used to issue signatures for any given context and message....

2024/358 (PDF) Last updated: 2024-05-28
Stateless Deterministic Multi-Party EdDSA Signatures with Low Communication
Qi Feng, Kang Yang, Kaiyi Zhang, Xiao Wang, Yu Yu, Xiang Xie, Debiao He
Cryptographic protocols

EdDSA, standardized by both IRTF and NIST, is a variant of the well-known Schnorr signature scheme based on Edwards curves, benefitting from stateless and deterministic derivation of nonces (i.e., it does not require a reliable source of randomness or state continuity). Recently, NIST called for multi-party threshold EdDSA signatures in one mode of verifying such nonce derivation via zero-knowledge (ZK) proofs. However, it is challenging to translate the stateless and deterministic benefits...

2024/281 (PDF) Last updated: 2024-02-19
Polynomial Commitments from Lattices: Post-Quantum Security, Fast Verification and Transparent Setup
Valerio Cini, Giulio Malavolta, Ngoc Khanh Nguyen, Hoeteck Wee
Cryptographic protocols

Polynomial commitment scheme allows a prover to commit to a polynomial $f \in \mathcal{R}[X]$ of degree $L$, and later prove that the committed function was correctly evaluated at a specified point $x$; in other words $f(x)=u$ for public $x,u \in\mathcal{R}$. Most applications of polynomial commitments, e.g. succinct non-interactive arguments of knowledge (SNARKs), require that (i) both the commitment and evaluation proof are succinct (i.e., polylogarithmic in the degree $L$) - with the...

2024/198 (PDF) Last updated: 2024-10-06
Distributed Randomness using Weighted VUFs
Sourav Das, Benny Pinkas, Alin Tomescu, Zhuolun Xiang
Cryptographic protocols

Shared randomness in blockchain can expand its support for randomized applications and can also help strengthen its security. Many existing blockchains rely on external randomness beacons for shared randomness, but this approach reduces fault tolerance, increases latency, and complicates application development. An alternate approach is to let the blockchain validators generate fresh shared randomness themselves once for every block. We refer to such a design as the \emph{on-chain}...

2024/052 (PDF) Last updated: 2024-01-13
Simple Vs Vectorial: Exploiting Structural Symmetry to Beat the ZeroSum Distinguisher Applications to SHA3, Xoodyak and Bash
SAHIBA SURYAWANSHI, Shibam Ghosh, Dhiman Saha, Prathamesh Ram
Attacks and cryptanalysis

Higher order differential properties constitute a very insightful tool at the hands of a cryptanalyst allowing for probing a cryptographic primitive from an algebraic perspective. In FSE 2017, Saha et al. reported SymSum (referred to as SymSum_Vec in this paper), a new distinguisher based on higher order vectorial Boolean derivatives of SHA-3, constituting one of the best distinguishers on the latest cryptographic hash standard. SymSum_Vec exploits the difference in the algebraic degree...

2023/1911 (PDF) Last updated: 2023-12-13
Non-Interactive Classical Verification of Quantum Depth: A Fine-Grained Characterization
Nai-Hui Chia, Shih-Han Hung
Cryptographic protocols

We introduce protocols for classical verification of quantum depth (CVQD). These protocols enable a classical verifier to differentiate between devices of varying quantum circuit depths, even in the presence of classical computation. The goal is to demonstrate that a classical verifier can reject a device with a quantum circuit depth of no more than $d$, even if the prover employs additional polynomial-time classical computation to deceive. Conversely, the verifier accepts a device with a...

2023/1887 (PDF) Last updated: 2024-09-03
GRandLine: Adaptively Secure DKG and Randomness Beacon with (Log-)Quadratic Communication Complexity
Renas Bacho, Christoph Lenzen, Julian Loss, Simon Ochsenreither, Dimitrios Papachristoudis
Cryptographic protocols

A randomness beacon is a source of continuous and publicly verifiable randomness which is of crucial importance for many applications. Existing works on randomness beacons suffer from at least one of the following drawbacks: (i) security only against static (i.e., non-adaptive) adversaries, (ii) each epoch takes many rounds of communication, or (iii) computationally expensive tools such as proof-of-work (PoW) or verifiable delay functions (VDF). In this work, we introduce GRandLine, the...

2023/1677 (PDF) Last updated: 2023-10-30
Multi-Theorem Fiat-Shamir Transform from Correlation-Intractable Hash Functions
Michele Ciampi, Yu Xia
Cryptographic protocols

In STOC 2019 Canetti et al. showed how to soundly instantiate the Fiat-Shamir transform assuming that prover and verifier have access to the key of a 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒 ℎ𝑎𝑠ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑠𝑒𝑎𝑟𝑐ℎ𝑎𝑏𝑙𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠. The transform requires the starting protocol to be a special 3-round public-coin scheme that Canetti et al. call 𝑡𝑟𝑎𝑝𝑑𝑜𝑜𝑟 𝑠𝑖𝑔𝑚𝑎-𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙. One downside of the Canetti et al. approach is that the key of the hash function can be used only once (or a pre-determined bounded...

2023/1655 (PDF) Last updated: 2024-05-26
Approximate Lower Bound Arguments
Pyrros Chaidos, Aggelos Kiayias, Leonid Reyzin, Anatoliy Zinovyev
Foundations

Suppose a prover, in possession of a large body of valuable evidence, wants to quickly convince a verifier by presenting only a small portion of the evidence. We define an Approximate Lower Bound Argument, or ALBA, which allows the prover to do just that: to succinctly prove knowledge of a large number of elements satisfying a predicate (or, more generally, elements of a sufficient total weight when a predicate is generalized to a weight function). The argument is approximate because...

2023/1651 (PDF) Last updated: 2024-03-20
Publicly Verifiable Secret Sharing over Class Groups and Applications to DKG and YOSO
Ignacio Cascudo, Bernardo David
Cryptographic protocols

Publicly Verifiable Secret Sharing (PVSS) allows a dealer to publish encrypted shares of a secret so that parties holding the corresponding decryption keys may later reconstruct it. Both dealing and reconstruction are non-interactive and any verifier can check their validity. PVSS finds applications in randomness beacons, distributed key generation (DKG) and in YOSO MPC (Gentry et al. CRYPTO'21), when endowed with suitable publicly verifiable re-sharing as in YOLO YOSO (Cascudo et al....

2023/1554 (PDF) Last updated: 2024-01-31
Cornucopia: Distributed randomness beacons at scale
Miranda Christ, Kevin Choi, Joseph Bonneau
Cryptographic protocols

We propose Cornucopia, a distributed randomness beacon protocol combining accumulators and verifiable delay functions. Cornucopia extends the Unicorn protocol of Lenstra and Wesolowski, utilizing an accumulator to enable efficient verification by each participant that their randomness contribution has been included in the beacon output. The output is unpredictable as long as at least one participant is honest, yielding a highly scalable distributed randomness beacon with strong security...

2023/1466 (PDF) Last updated: 2023-09-24
On Black-Box Verifiable Outsourcing
Amit Agarwal, Navid Alamati, Dakshita Khurana, Srinivasan Raghuraman, Peter Rindal
Foundations

We study verifiable outsourcing of computation in a model where the verifier has black-box access to the function being computed. We introduce the problem of oracle-aided batch verification of computation (OBVC) for a function class $\mathcal{F}$. This allows a verifier to efficiently verify the correctness of any $f \in \mathcal{F}$ evaluated on a batch of $n$ instances $x_1, \ldots, x_n$, while only making $\lambda$ calls to an oracle for $f$ (along with $O(n \lambda)$ calls to...

2023/1459 (PDF) Last updated: 2023-09-23
Identity-Based Threshold Signatures from Isogenies
Shahla Atapoor
Cryptographic protocols

The identity-based signature, initially introduced by Shamir [Sha84], plays a fundamental role in the domain of identity-based cryptography. It offers the capability to generate a signature on a message, allowing any user to verify the authenticity of the signature using the signer's identifier information (e.g., an email address), instead of relying on a public key stored in a digital certificate. Another significant concept in practical applications is the threshold signature, which serves...

2023/1386 (PDF) Last updated: 2023-09-16
Improving Privacy of Anonymous Proof-of-Stake Protocols
Shichen Wu, Zhiying Song, Puwen Wei, Peng Tang, Quan Yuan
Cryptographic protocols

The proof of stake (PoS) mechanism, which allows stakeholders to issue a block with a probability proportional to their wealth instead of computational power, is believed to be an energy-efficient alternative to the proof of work (PoW). The privacy concern of PoS, however, is more subtle than that of PoW. Recent research has shown that current anonymous PoS (APoS) protocols do not suffice to protect the stakeholder's identity and stake, and the loss of privacy is theoretically inherent for...

2023/1381 (PDF) Last updated: 2024-06-01
Sometimes You Can’t Distribute Random-Oracle-Based Proofs
Jack Doerner, Yashvanth Kondi, Leah Namisa Rosenbloom
Cryptographic protocols

We investigate the conditions under which straight-line extractable NIZKs in the random oracle model (i.e. without a CRS) permit multiparty realizations that are black-box in the same random oracle. We show that even in the semi-honest setting, any MPC protocol to compute such a NIZK cannot make black-box use of the random oracle or a hash function instantiating it if security against all-but-one corruptions is desired, unless the number of queries made by the verifier to the oracle grows...

2023/1378 (PDF) Last updated: 2023-09-14
Advisor-Verifier-Prover Games and the Hardness of Information Theoretic Cryptography
Benny Applebaum, Oded Nir
Cryptographic protocols

A major open problem in information-theoretic cryptography is to obtain a super-polynomial lower bound for the communication complexity of basic cryptographic tasks. This question is wide open even for very powerful non-interactive primitives such as private information retrieval (or locally-decodable codes), general secret sharing schemes, conditional disclosure of secrets, and fully-decomposable randomized encoding (or garbling schemes). In fact, for all these primitives we do not even...

2023/1351 (PDF) Last updated: 2023-09-11
Bicameral and Auditably Private Signatures
Khoa Nguyen, Partha Sarathi Roy, Willy Susilo, Yanhong Xu
Cryptographic protocols

This paper introduces Bicameral and Auditably Private Signatures (BAPS) -- a new privacy-preserving signature system with several novel features. In a BAPS system, given a certified attribute $\mathbf{x}$ and a certified policy $P$, a signer can issue a publicly verifiable signature $\Sigma$ on a message $m$ as long as $(m, \mathbf{x})$ satisfies $P$. A noteworthy characteristic of BAPS is that both attribute $\mathbf{x}$ and policy $P$ are kept hidden from the verifier, yet the latter is...

2023/1339 (PDF) Last updated: 2023-12-30
FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains
Aniket Kate, Easwar Vivek Mangipudi, Siva Mardana, Pratyay Mukherjee
Cryptographic protocols

Web3 applications based on blockchains regularly need access to randomness that is unbiased, unpredictable, and publicly verifiable. For Web3 gaming applications, this becomes a crucial selling point to attract more users by providing credibility to the "random reward" distribution feature. A verifiable random function (VRF) protocol satisfies these requirements naturally, and there is a tremendous rise in the use of VRF services. As most blockchains cannot maintain the secret keys required...

2023/1251 (PDF) Last updated: 2024-10-17
Verifiable random function from the Deuring correspondence and higher dimensional isogenies
Antonin Leroux
Cryptographic protocols

In this paper, we introduce $\mathsf{DeuringVUF}$, a new Verifiable Unpredictable Function (VUF) protocol based on isogenies between supersingular curves. The most interesting application of this VUF is $\mathsf{DeuringVRF}$ a post-quantum Verifiable Random Function (VRF). The main advantage of this new scheme is its compactness, with combined public key and proof size of roughly 450 bytes, which is orders of magnitude smaller than other generic purpose post-quantum VRF...

2023/1069 (PDF) Last updated: 2023-08-26
DuckyZip: Provably Honest Global Linking Service
Nadim Kobeissi
Applications

DuckyZip is a provably honest global linking service which links short memorable identifiers to arbitrarily large payloads (URLs, text, documents, archives, etc.) without being able to undetectably provide different payloads for the same short identifier to different parties. DuckyZip uses a combination of Verifiable Random Function (VRF)-based zero knowledge proofs and a smart contract in order to provide strong security guarantees: despite the transparency of the smart contract log,...

2023/1047 (PDF) Last updated: 2023-07-04
Private Coin Verifiable Delay Function
Peter Chvojka
Cryptographic protocols

We construct the first tight verifiable delay function (VDF) where the evaluation algorithm only evaluates sequentially the function and hence outputs and empty proof, verification is independent of time parameter $T$ and setup has constant size parameters. Our VDF is based on repeated squaring in hidden order groups, but it requires that coins used to sample a random instance must be kept secret in order to guarantee sequentiality. We denote such a VDF as a private coin verifiable delay...

2023/1016 (PDF) Last updated: 2023-06-30
Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials
Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, Daniel Slamanig
Cryptographic protocols

Anonymous credentials (AC) have emerged as a promising privacy-preserving solu- tion for user-centric identity management. They allow users to authenticate in an anonymous and unlinkable way such that only required information (i.e., attributes) from their credentials are re- vealed. With the increasing push towards decentralized systems and identity, e.g., self-sovereign identity (SSI) and the concept of verifiable credentials, this also necessitates the need for suit- able AC systems. For...

2023/1004 (PDF) Last updated: 2023-06-28
On the Non-Malleability of ECVRF in the Algebraic Group Model
Willow Barkan-Vered, Franklin Harding, Jonathan Keller, Jiayu Xu

ECVRF is a verifiable random function (VRF) scheme used in multiple cryptocurrency systems. It has recently been proven to satisfy the notion of non-malleability which is useful in applications to blockchains (Peikert and Xu, CT-RSA 2023); however, the existing proof uses the rewinding technique and has a quadratic security loss. In this work, we re-analyze the non-malleability of ECVRF in the algebraic group model (AGM) and give a tight proof. We also compare our proof with the...

2023/959 (PDF) Last updated: 2024-08-26
Randomness Recoverable Secret Sharing Schemes
Mohammad Hajiabadi, Shahram Khazaei, Behzad Vahdani
Foundations

It is well-known that randomness is essential for secure cryptography. The randomness used in cryptographic primitives is not necessarily recoverable even by the party who can, e.g., decrypt or recover the underlying secret/message. Several cryptographic primitives that support randomness recovery have turned out useful in various applications. In this paper, we study randomness recoverable secret sharing schemes (RR-SSS), in both information-theoretic and computational settings and provide...

2023/846 (PDF) Last updated: 2023-10-15
Lattice-Based Polynomial Commitments: Towards Asymptotic and Concrete Efficiency
Giacomo Fenzi, Hossein Moghaddas, Ngoc Khanh Nguyen
Public-key cryptography

Polynomial commitments schemes are a powerful tool that enables one party to commit to a polynomial $p$ of degree $d$, and prove that the committed function evaluates to a certain value $z$ at a specified point $u$, i.e. $p(u) = z$, without revealing any additional information about the polynomial. Recently, polynomial commitments have been extensively used as a cryptographic building block to transform polynomial interactive oracle proofs (PIOPs) into efficient succinct arguments. In...

2023/650 (PDF) Last updated: 2023-05-08
Pseudorandom Correlation Functions from Variable-Density LPN, Revisited
Geoffroy Couteau, Clément Ducros
Public-key cryptography

Pseudorandom correlation functions (PCF), introduced in the work of (Boyle et al., FOCS 2020), allow two parties to locally gen- erate, from short correlated keys, a near-unbounded amount of pseu- dorandom samples from a target correlation. PCF is an extremely ap- pealing primitive in secure computation, where they allow to confine all preprocessing phases of all future computations two parties could want to execute to a single short interaction with low communication and computation,...

2023/587 (PDF) Last updated: 2023-04-24
Proof-Carrying Data From Arithmetized Random Oracles
Megan Chen, Alessandro Chiesa, Tom Gur, Jack O'Connor, Nicholas Spooner
Foundations

Proof-carrying data (PCD) is a powerful cryptographic primitive that allows mutually distrustful parties to perform distributed computation in an efficiently verifiable manner. Known constructions of PCD are obtained by recursively-composing SNARKs or related primitives. SNARKs with desirable properties such as transparent setup are constructed in the random oracle model. However, using such SNARKs to construct PCD requires heuristically instantiating the oracle and using it in a...

2023/560 (PDF) Last updated: 2023-07-25
A Framework for Practical Anonymous Credentials from Lattices
Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, Alessandro Sorniotti
Public-key cryptography

We present a framework for building practical anonymous credential schemes based on the hardness of lattice problems. The running time of the prover and verifier is independent of the number of users and linear in the number of attributes. The scheme is also compact in practice, with the proofs being as small as a few dozen kilobytes for arbitrarily large (say up to $2^{128}$) users with each user having several attributes. The security of our scheme is based on a new family of lattice...

2023/543 (PDF) Last updated: 2023-09-20
Pseudorandomness with Proof of Destruction and Applications
Amit Behera, Zvika Brakerski, Or Sattath, Omri Shmueli
Foundations

Two fundamental properties of quantum states that quantum information theory explores are pseudorandomness and provability of destruction. We introduce the notion of quantum pseudorandom states with proofs of destruction (PRSPD) that combines both these properties. Like standard pseudorandom states (PRS), these are efficiently generated quantum states that are indistinguishable from random, but they can also be measured to create a classical string. This string is verifiable (given the...

2023/508 (PDF) Last updated: 2023-10-13
Computing Isogenies of Power-Smooth Degrees Between PPAVs
Jesús-Javier Chi-Domínguez, Amalia Pizarro-Madariaga, Edgardo Riquelme
Public-key cryptography

The wave of attacks by Castryck and Decru (Eurocrypt, 2023), Maino, Martindale, Panny, Pope and Wesolowski (Eurocrypt, 2023) and Robert (Eurocrypt, 2023), highlight the destructive facet of calculating power-smooth degree isogenies between higher-dimensional abelian varieties in isogeny-based cryptography. Despite those recent attacks, there is still interest in using isogenies but for building protocols on top of higher-dimensional abelian varieties. Examples of such protocols are...

2023/408 (PDF) Last updated: 2024-06-11
Machine-Checked Security for $\mathrm{XMSS}$ as in RFC 8391 and $\mathrm{SPHINCS}^{+}$
Manuel Barbosa, François Dupressoir, Benjamin Grégoire, Andreas Hülsing, Matthias Meijers, Pierre-Yves Strub
Public-key cryptography

This work presents a novel machine-checked tight security proof for $\mathrm{XMSS}$ — a stateful hash-based signature scheme that is (1) standardized in RFC 8391 and NIST SP 800-208, and (2) employed as a primary building block of $\mathrm{SPHINCS}^{+}$, one of the signature schemes recently selected for standardization as a result of NIST’s post-quantum competition. In 2020, Kudinov, Kiktenko, and Fedoro pointed out a flaw affecting the tight security proofs of $\mathrm{SPHINCS}^{+}$ and...

2023/388 (PDF) Last updated: 2023-03-17
Non-Interactive Blind Signatures for Random Messages
Lucjan Hanzlik
Public-key cryptography

Blind signatures allow a signer to issue signatures on messages chosen by the signature recipient. The main property is that the recipient's message is hidden from the signer. There are many applications, including Chaum's e-cash system and Privacy Pass, where no special distribution of the signed message is required, and the message can be random. Interestingly, existing notions do not consider this practical use case separately. In this paper, we show that constraining the recipient's...

2023/292 (PDF) Last updated: 2023-02-27
A Formal Treatment of Distributed Key Generation, and New Constructions
Chelsea Komlo, Ian Goldberg, Douglas Stebila
Public-key cryptography

In this work, we present a novel generic construction for a Distributed Key Generation (DKG) scheme. Our generic construction relies on three modular cryptographic building blocks. The first is an aggregatable Verifiable Secret Sharing (AgVSS) scheme, the second is a Non-Interactive Key Exchange (NIKE) scheme, and the third is a secure hash function. We give formal definitions for the AgVSS and NIKE schemes, as well as concrete constructions. The utility of this generic construction is...

2023/245 (PDF) Last updated: 2024-05-14
A Detailed Analysis of Fiat-Shamir with Aborts
Julien Devevey, Pouria Fallahpour, Alain Passelègue, Damien Stehlé, Keita Xagawa
Public-key cryptography

Lyubashevky's signatures are based on the Fiat-Shamir with Aborts paradigm. It transforms an interactive identification protocol that has a non-negligible probability of aborting into a signature by repeating executions until a loop iteration does not trigger an abort. Interaction is removed by replacing the challenge of the verifier by the evaluation of a hash function, modeled as a random oracle in the analysis. The access to the random oracle is classical (ROM), resp. quantum (QROM), if...

2023/232 (PDF) Last updated: 2024-07-15
Crypto Dark Matter on the Torus: Oblivious PRFs from shallow PRFs and FHE
Martin R. Albrecht, Alex Davidson, Amit Deo, Daniel Gardham
Cryptographic protocols

Partially Oblivious Pseudorandom Functions (POPRFs) are 2-party protocols that allow a client to learn pseudorandom function (PRF) evaluations on inputs of its choice from a server. The client submits two inputs, one public and one private. The security properties ensure that the server cannot learn the private input, and the client cannot learn more than one evaluation per POPRF query. POPRFs have many applications including password-based key exchange and privacy-preserving authentication...

2023/223 (PDF) Last updated: 2023-02-18
Classical and Quantum Security of Elliptic Curve VRF, via Relative Indifferentiability
Chris Peikert, Jiayu Xu
Public-key cryptography

Verifiable random functions (VRFs) are essentially pseudorandom functions for which selected outputs can be proved correct and unique, without compromising the security of other outputs. VRFs have numerous applications across cryptography, and in particular they have recently been used to implement committee selection in the Algorand protocol. Elliptic Curve VRF (ECVRF) is an elegant construction, originally due to Papadopoulos et al., that is now under consideration by the Internet...

2023/221 (PDF) Last updated: 2023-02-17
Bicorn: An optimistically efficient distributed randomness beacon
Kevin Choi, Arasu Arun, Nirvan Tyagi, Joseph Bonneau
Cryptographic protocols

We introduce Bicorn, an optimistically efficient distributed randomness protocol with strong robustness under a dishonest majority. Bicorn is a "commit-reveal-recover" protocol. Each participant commits to a random value, which are combined to produce a random output. If any participants fail to open their commitment, recovery is possible via a single time-lock puzzle which can be solved by any party. In the optimistic case, Bicorn is a simple and efficient two-round protocol with no...

2023/182 (PDF) Last updated: 2024-09-18
CAPYBARA and TSUBAKI: Verifiable Random Functions from Group Actions and Isogenies
Yi-Fu Lai
Public-key cryptography

In this work, we introduce two post-quantum Verifiable Random Function (VRF) constructions based on abelian group actions and isogeny group actions with a twist. The former relies on the standard group action Decisional Diffie-Hellman (GA-DDH) assumption. VRFs serve as cryptographic tools allowing users to generate pseudorandom outputs along with publicly verifiable proofs. Moreover, the residual pseudorandomness of VRFs ensures the pseudorandomness of unrevealed inputs, even when multiple...

2023/137 (PDF) Last updated: 2023-02-15
PAPR: Publicly Auditable Privacy Revocation for Anonymous Credentials
Joakim Brorsson, Bernardo David, Lorenzo Gentile, Elena Pagnin, Paul Stankovski Wagner
Cryptographic protocols

We study the notion of anonymous credentials with Publicly Auditable Privacy Revocation (PAPR). PAPR credentials simultaneously provide conditional user privacy and auditable privacy revocation. The first property implies that users keep their identity private when authenticating unless and until an appointed authority requests to revoke this privacy, retroactively. The second property enforces that auditors can verify whether or not this authority has revoked privacy from an issued...

2023/002 (PDF) Last updated: 2023-10-19
Ring Verifiable Random Functions and Zero-Knowledge Continuations
Jeffrey Burdges, Oana Ciobotaru, Handan Kılınç Alper, Alistair Stewart, Sergey Vasilyev
Cryptographic protocols

We introduce a new cryptographic primitive, named ring verifiable random function (ring VRF). Ring VRF combines properties of VRF and ring signatures, offering verifiable unique, pseudorandom outputs while ensuring anonymity of the output and message authentication. We design its security in the universal composability (UC) framework and construct two protocols secure in our model. We also formalize a new notion of zero-knowledge (ZK) continuations allowing for the reusability of proofs by...

2022/1608 (PDF) Last updated: 2022-11-18
Ligero: Lightweight Sublinear Arguments Without a Trusted Setup
Scott Ames, Carmit Hazay, Yuval Ishai, Muthuramakrishnan Venkitasubramaniam
Cryptographic protocols

We design and implement a simple zero-knowledge argument protocol for $\mathsf{NP}$ whose communication complexity is proportional to the square-root of the verification circuit size. The protocol can be based on any collision-resistant hash function. Alternatively, it can be made non-interactive in the random oracle model, yielding concretely efficient zk-SNARKs that do not require a trusted setup or public-key cryptography. Our protocol is obtained by applying an optimized version of the...

2022/1536 (PDF) Last updated: 2023-03-28
Privacy-Preserving Blueprints
Markulf Kohlweiss, Anna Lysyanskaya, An Nguyen
Cryptographic protocols

In a world where everyone uses anonymous credentials for all access control needs, it is impossible to trace wrongdoers, by design. This makes legitimate controls, such as tracing illicit trade and terror suspects, impossible to carry out. Here, we propose a privacy-preserving blueprint capability that allows an auditor to publish an encoding $pk_A$ of the function $f(x,\cdot)$ for a publicly known function $f$ and a secret input $x$. For example, $x$ may be a secret watchlist, and...

2022/1487 (PDF) Last updated: 2023-10-07
An efficient verifiable state for zk-EVM and beyond from the Anemoi hash function
Jianwei Liu, Harshad Patil, Akhil Sai Peddireddy, Kevin Singh, Haifeng Sun, Huachuang Sun, Weikeng Chen
Applications

In our survey of the various zk-EVM constructions, it becomes apparent that verifiable storage of the EVM state starts to be one of the dominating costs. This is not surprising because a big differentiator of EVM from UTXO is exactly the ability to carry states and, most importantly, their transitions; i.e., EVM is a **state** machine. In other words, to build an efficient zk-EVM, one must first build an efficient verifiable state. The common approach, which has been used in...

2022/1383 (PDF) Last updated: 2024-06-04
Sublinear-Round Broadcast without Trusted Setup against Dishonest Majority
Andreea B. Alexandru, Julian Loss, Charalampos Papamanthou, Giorgos Tsimos
Cryptographic protocols

Byzantine broadcast is one of the fundamental problems in distributed computing. Many practical applications from secure multiparty computation to consensus mechanisms for blockchains require increasingly weaker trust assumptions, as well as scalability for an ever-growing number of users, which rules out existing solutions with linear number of rounds or trusted setup requirements. In this paper, we propose the first sublinear-round and trustless Byzantine broadcast protocol. Unlike...

2022/1373 (PDF) Last updated: 2022-10-12
ZKBdf: A ZKBoo-based Quantum-Secure Verifiable Delay Function with Prover-secret
Teik Guan Tan, Vishal Sharma, Zengpeng Li, Pawel Szalachowski, Jianying Zhou
Cryptographic protocols

Since the formalization of Verifiable Delay Functions (VDF) by Boneh et al. in 2018, VDFs have been adopted for use in blockchain consensus protocols and random beacon implementations. However, the impending threat to VDF-based applications comes in the form of Shor’s algorithm running on quantum computers in the future which can break the discrete logarithm and integer factorization problems that existing VDFs are based on. Clearly, there is a need for quantum-secure VDFs. In this paper, we...

2022/1368 (PDF) Last updated: 2023-02-28
Functional Commitments for All Functions, with Transparent Setup and from SIS
Leo de Castro, Chris Peikert
Public-key cryptography

A *functional commitment* scheme enables a user to concisely commit to a function from a specified family, then later concisely and verifiably reveal values of the function at desired inputs. Useful special cases, which have seen applications across cryptography, include vector commitments and polynomial commitments. To date, functional commitments have been constructed (under falsifiable assumptions) only for functions that are essentially *linear*, with one recent exception that works...

2022/1290 (PDF) Last updated: 2022-09-28
Bool Network: An Open, Distributed, Secure Cross-chain Notary Platform
Zeyuan Yin, Bingsheng Zhang, Jingzhong Xu, Kaiyu Lu, Kui Ren
Applications

With the advancement of blockchain technology, hundreds of cryptocurrencies have been deployed. The bloom of heterogeneous blockchain platforms brings a new emerging problem: typically, various blockchains are isolated systems, how to securely identify and/or transfer digital properties across blockchains? There are three main kinds of cross-chain approaches: sidechains/relays, notaries, and hashed time-lock contracts. Among them, notary-based cross-chain solutions have the best...

2022/1272 (PDF) Last updated: 2022-09-26
PPAD is as Hard as LWE and Iterated Squaring
Nir Bitansky, Arka Rai Choudhuri, Justin Holmgren, Chethan Kamath, Alex Lombardi, Omer Paneth, Ron D. Rothblum
Foundations

One of the most fundamental results in game theory is that every finite strategic game has a Nash equilibrium, an assignment of (randomized) strategies to players with the stability property that no individual player can benefit from deviating from the assigned strategy. It is not known how to efficiently compute such a Nash equilibrium --- the computational complexity of this task is characterized by the class PPAD, but the relation of PPAD to other problems and well-known complexity...

2022/1264 (PDF) Last updated: 2024-11-13
Rotatable Zero Knowledge Sets: Post Compromise Secure Auditable Dictionaries with application to Key Transparency
Brian Chen, Yevgeniy Dodis, Esha Ghosh, Eli Goldin, Balachandar Kesavan, Antonio Marcedone, Merry Ember Mou
Cryptographic protocols

Key Transparency (KT) systems allow end-to-end encrypted service providers (messaging, calls, etc.) to maintain an auditable directory of their users’ public keys, producing proofs that all participants have a consistent view of those keys, and allowing each user to check updates to their own keys. KT has lately received a lot of attention, in particular its privacy preserving variants, which also ensure that users and auditors do not learn anything beyond what is necessary to use the...

2022/1072 (PDF) Last updated: 2023-09-04
Recursion over Public-Coin Interactive Proof Systems; Faster Hash Verification
Alexandre Belling, Azam Soleimanian, Olivier Bégassat
Cryptographic protocols

SNARK is a well-known family of cryptographic tools that is increasingly used in the field of computation integrity at scale. In this area, multiple works have introduced SNARK-friendly cryptographic primitives: hashing, but also encryption and signature verification. Despite all the efforts to create cryptographic primitives that can be proved faster, it remains a major performance hole in practice. In this paper, we present a recursive technique that can improve the efficiency of the...

2022/1056 (PDF) Last updated: 2022-09-26
Linear-Time Probabilistic Proofs with Sublinear Verification for Algebraic Automata Over Every Field
Jonathan Bootle, Alessandro Chiesa, Ziyi Guan, Siqi Liu
Foundations

Interactive oracle proofs (IOPs) are a generalization of probabilistically checkable proofs that can be used to construct succinct arguments. Improvements in the efficiency of IOPs lead to improvements in the efficiency of succinct arguments. Key efficiency goals include achieving provers that run in linear time and verifiers that run in sublinear time, where the time complexity is with respect to the arithmetic complexity of proved computations over a finite field $\mathbb{F}$. We...

2022/1045 (PDF) Last updated: 2022-09-22
On UC-Secure Range Extension and Batch Verification for ECVRF
Christian Badertscher, Peter Gaži, Iñigo Querejeta-Azurmendi, Alexander Russell
Public-key cryptography

Verifiable random functions (Micali et al., FOCS'99) allow a key-pair holder to verifiably evaluate a pseudorandom function under that particular key pair. These primitives enable fair and verifiable pseudorandom lotteries, essential in proof-of-stake blockchains such as Algorand and Cardano, and are being used to secure billions of dollars of capital. As a result, there is an ongoing IRTF effort to standardize VRFs, with a proposed ECVRF based on elliptic-curve cryptography appearing as the...

2022/1028 (PDF) Last updated: 2022-08-11
New Unbounded Verifiable Data Streaming for Batch Query with Almost Optimal Overhead
Jiaojiao Wu, Jianfeng Wang, Xinwei Yong, Xinyi Huang, Xiaofeng Chen
Cryptographic protocols

Verifiable Data Streaming (VDS) enables a resource-limited client to continuously outsource data to an untrusted server in a sequential manner while supporting public integrity verification and efficient update. However, most existing VDS schemes require the client to generate all proofs in advance and store them at the server, which leads to a heavy computation burden on the client. In addition, all the previous VDS schemes can perform batch query (i.e., retrieving multiple data entries at...

2022/1007 (PDF) Last updated: 2022-08-05
zkQMC: Zero-Knowledge Proofs For (Some) Probabilistic Computations Using Quasi-Randomness
Zachary DeStefano, Dani Barrack, Michael Dixon
Applications

We initiate research into efficiently embedding probabilistic computations in probabilistic proofs by introducing techniques for capturing Monte Carlo methods and Las Vegas algorithms in zero knowledge and exploring several potential applications of these techniques. We design and demonstrate a technique for proving the integrity of certain randomized computations, such as uncertainty quantification methods, in non-interactive zero knowledge (NIZK) by replacing conventional randomness with...

2022/993 (PDF) Last updated: 2023-07-12
A New Look at Blockchain Leader Election: Simple, Efficient, Sustainable and Post-Quantum
Muhammed F. Esgin, Oguzhan Ersoy, Veronika Kuchta, Julian Loss, Amin Sakzad, Ron Steinfeld, Xiangwen Yang, Raymond K. Zhao
Applications

In this work, we study the blockchain leader election problem. The purpose of such protocols is to elect a leader who decides on the next block to be appended to the blockchain, for each block proposal round. Solutions to this problem are vital for the security of blockchain systems. We introduce an efficient blockchain leader election method with security based solely on standard assumptions for cryptographic hash functions (rather than public-key cryptographic assumptions) and that does...

2022/857 (PDF) Last updated: 2022-06-28
Succinct Classical Verification of Quantum Computation
James Bartusek, Yael Tauman Kalai, Alex Lombardi, Fermi Ma, Giulio Malavolta, Vinod Vaikuntanathan, Thomas Vidick, Lisa Yang
Foundations

We construct a classically verifiable succinct interactive argument for quantum computation (BQP) with communication complexity and verifier runtime that are poly-logarithmic in the runtime of the BQP computation (and polynomial in the security parameter). Our protocol is secure assuming the post-quantum security of indistinguishability obfuscation (iO) and Learning with Errors (LWE). This is the first succinct argument for quantum computation in the plain model; prior work...

2022/766 (PDF) Last updated: 2022-06-14
The Cost of Statistical Security in Interactive Proofs for Repeated Squaring
Cody Freitag, Ilan Komargodski
Foundations

In recent years, the number of applications of the repeated squaring assumption has been growing rapidly. The assumption states that, given a group element $x$, an integer $T$, and an RSA modulus $N$, it is hard to compute $x^{2^T} \mod N$---or even decide whether $y\stackrel{?}{=}x^{2^T} \mod N$---in parallel time less than the trivial approach of computing $T$ sequential squarings. This rise has been driven by efficient interactive proofs for repeated squaring, opening the door to more...

2022/762 (PDF) Last updated: 2022-06-14
The Price of Verifiability: Lower Bounds for Verifiable Random Functions
Nicholas Brandt, Dennis Hofheinz, Julia Kastner, Akin Ünal
Public-key cryptography

Verifiable random functions (VRFs) are a useful extension of pseudorandom functions for which it is possible to generate a proof that a certain image is indeed the correct function value (relative to a public verification key). Due to their strong soundness requirements on such proofs, VRFs are notoriously hard to construct, and existing constructions suffer either from complex proofs (for function images), or rely on complex and non-standard assumptions. In this work, we attempt to...

2022/542 (PDF) Last updated: 2022-05-10
On Valiant's Conjecture: Impossibility of Incrementally Verifiable Computation from Random Oracles
Mathias Hall-Andersen, Jesper Buus Nielsen
Foundations

In his landmark paper at TCC 2008 Paul Valiant introduced the notion of ``incrementally verifiable computation'' which enables a prover to incrementally compute a succinct proof of correct execution of a (potentially) long running process. The paper later won the 2019 TCC test of time award. The construction was proven secure in the random oracle model without any further computational assumptions. However, the overall proof was given using a non-standard version of the random-oracle...

2022/541 (PDF) Last updated: 2022-11-03
The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols
Sandro Coretti, Aggelos Kiayias, Cristopher Moore, Alexander Russell
Cryptographic protocols

One of the most successful applications of peer-to-peer communication networks is in the context of blockchain protocols, which—in Satoshi Nakamoto's own words—rely on the "nature of information being easy to spread and hard to stifle." Significant efforts were invested in the last decade into analyzing the security of these protocols, and invariably the security arguments known for longest-chain Nakamoto-style consensus use an idealization of this tenet. Unfortunately, the real-world...

2022/465 Last updated: 2022-04-22
Băhēm: A Provably Secure Symmetric Cipher
M. Rajululkahf
Secret-key cryptography

This paper proposes Băhēm; a symmetric cipher that, when used with a pre-shared secret key k, no cryptanalysis can degrade its security below H(k) bits of entropy, even under Grover's algorithm or even if it turned out that P = NP. Băhēm's security is very similar to that of the one-time pad (OTP), except that it does not require the communicating parties the inconvenient constraint of generating a large random pad in advance of their communication. Instead, Băhēm allows the parties...

2022/434 (PDF) Last updated: 2024-11-11
Verifiable Quantum Advantage without Structure
Takashi Yamakawa, Mark Zhandry
Foundations

We show the following hold, unconditionally unless otherwise stated, relative to a random oracle: - There are NP search problems solvable by quantum polynomial-time machines but not classical probabilistic polynomial-time machines. - There exist functions that are one-way, and even collision resistant, against classical adversaries but are easily inverted quantumly. Similar separations hold for digital signatures and CPA-secure public key encryption (the latter requiring the assumption...

2022/432 (PDF) Last updated: 2022-04-06
Classical Verification of Quantum Computations in Linear Time
Jiayu Zhang
Cryptographic protocols

In the quantum computation verification problem, a quantum server wants to convince a client that the output of evaluating a quantum circuit $C$ is some result that it claims. This problem is considered very important both theoretically and practically in quantum computation [arXiv:1709.06984, 1704.04487, 1209.0449]. The client is considered to be limited in computational power, and one desirable property is that the client can be completely classical, which leads to the classical...

2022/383 (PDF) Last updated: 2022-03-28
On Succinct Non-Interactive Arguments in Relativized Worlds
Megan Chen, Alessandro Chiesa, Nicholas Spooner
Foundations

Succinct non-interactive arguments of knowledge (SNARKs) are cryptographic proofs with strong efficiency properties. Applications of SNARKs often involve proving computations that include the SNARK verifier, a technique called recursive composition. Unfortunately, SNARKs with desirable features such as a transparent (public-coin) setup are known only in the random oracle model (ROM). In applications this oracle must be heuristically instantiated and used in a non-black-box way. In this...

2022/377 (PDF) Last updated: 2022-03-28
(Commit-and-Prove) Predictable Arguments with Privacy
Hamidreza Khoshakhlagh
Cryptographic protocols

Predictable arguments introduced by Faonio, Nielsen and Venturi (PKC17) are private-coin argument systems where the answer of the prover can be predicted in advance by the verifier. In this work, we study predictable arguments with additional privacy properties. While the authors in [PKC17] showed compilers for transforming PAs into PAs with zero-knowledge property, they left the construction of witness indistinguishable predictable arguments (WI-PA) in the plain model as an open problem. In...

2022/364 (PDF) Last updated: 2022-03-18
Single-trace clustering power analysis of the point-swapping procedure in the three point ladder of Cortex-M4 SIKE
Aymeric Genêt, Novak Kaluđerović
Public-key cryptography

In this paper, the recommended implementation of the post-quantum key exchange SIKE for Cortex-M4 is attacked through power analysis with a single trace by clustering with the $k$-means algorithm the power samples of all the invocations of the elliptic curve point swapping function in the constant-time coordinate-randomized three point ladder. Because each sample depends on whether two consecutive bits of the private key are the same or not, a successful clustering (with $k=2$) leads to the...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.